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Abstract – This paper describes an architecture for
remote monitoring of a distributed embedded system
via Internet. The data at the target system is gathered
with a time-triggered sensor network which transmits
the measured values to a local target server. The sen-
sor network approach makes the system easily adapt-
able to different embedded target systems.

The sensor network is connected to a target server
that communicates via Internet with visualization and
programming tools at the monitoring computer. The
visualization clients provide a live display of the pa-
rameters of the observed system.

The target server acts as a gateway between target
system and monitoring clients and provides security
and authentication features for connecting monitor-
ing clients. One target server is able to serve for
multiple target systems.

As a case study, the presented system will be used
in an embedded systems lab course where students
are requested to implement various applications on
an embedded target board. Using the remote moni-
toring feature, a student is able to do the work from
his or her home place.

1 Introduction

The increased use of embedded applications in the do-
mains of automation, process control, transportation
systems, ubiquitous computing, etc. calls for means
to monitor and control the embedded system with-
out the need to be physically at the place of the ob-
served system. We will follow a remote monitoring
approach using Internet technologies as it is used in
applications in the automation domain [1, 2, 3, 4] and
in railway transportation systems [5].

Typically, the monitored target system has real-
time properties, which puts real-time requirements
onto the monitoring system. When also consider-
ing aspects like flexibility, extensibility and, since the
monitored data is usually transmitted over the In-
ternet, security, the design of the monitoring system
becomes a challenging and difficult task.

This paper presents a distributed remote monitor-
ing system based on a real-time fieldbus network, an
Internet server, and a data visualization system on
the user’s PC. The real-time fieldbus network inter-
connects several smart transducers that periodically
gather measurements from the process variables of
interest. The fieldbus approach supports the flexible
adaption of the system to different target systems.
The resulting data is forwarded to a target server that
communicates the data via Internet to the user’s PC
where a dedicated visualization software displays the
actual system state.

As case study, we present a distant learning appli-
cation which enables students to implement and test
embedded software on real embedded systems hard-
ware. The case study supports the parallel monitor-
ing of several target boards which are connected to
a target server. An authentication server takes care
that students can access only their admitted target
boards. For the communication between the target
server and the visualization and programming tools
at the students PC, we have developed the so-called
Remote Workplace Protocol (RWP).

The remaining parts of this paper are organized
in the following way: Section 2 elaborates general
requirements for remote monitoring of embedded ap-
plications. Section 3 describes the monitored system
used in the case study. Section 4 presents the time-
triggered fieldbus approach used to do the real-time
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gathering of the monitored data. The authentication
and data transmission and visualization is described
in Section 5. Section 6 describes the local client sys-
tem. Section 7 describes how remote monitoring will
be used in our embedded systems lab-courses. Sec-
tion 8 briefly discusses related approaches providing
remote access to embedded systems hardware. Sec-
tion 9 concludes the paper.

2 General Requirements for
Remote Monitoring

A typical remote monitoring application comes with
several requirements in real-time capabilities, archi-
tectural requirements, and security/collaboration is-
sues:

Firm real-time support: In order to get sufficient
information, it is necessary to periodically and
regularly sample the real-time variables of the
target system with appropriate speed. In theory
we need at least Nyquist frequency [6], that is the
double of the highest frequency in the monitored
signal, to reconstruct the signal dynamics. In
practice an oversampling of about ten times of
the signal with highest frequency is convenient.

Synchronized snapshots: The time difference be-
tween two concurrent measurements of different
variables should be minimal in order to receive
consistent snapshot views of the target system.

No interference at the target system: The
monitoring system must not interfere in the
functionality of the measured system. Note that
in an embedded system such a probe effect [7]
can arise from inserted monitoring code as
well as from active measurement methods
(e. g., ultrasonic sensors emitting a scanning
signal), heat dissipation, and shared resources
such as common power supplies or, especially
in wireless system, shared bandwidth of the
communication system.

Bandwidth: The bandwidth of the fieldbus system
and the Internet stream must be sufficient in or-
der to transmit the monitored data.

Temporal accuracy: The freshness of the data
must be provided at the user’s PC, especially
when the user is intended to perform feedback
actions on the observed system.

Target system flexibility: The remote monitor-
ing system should be adaptable to different tar-
get applications without the need to perform
changes throughout the whole monitoring archi-
tecture.

Target system extensibility: The number of
components in a typical embedded applications
is likely to increase, therefore the system should
support monitoring of large embedded systems
with a high number of process variables. More-
over, it should be possible to use the system
concurrently for multiple processes.

Flexible client system: Since the idea of remote
monitoring is to enable the access from an arbi-
trary place in the Internet, it would be counter-
productive to require an extensive setup of the
specific visualization and communication soft-
ware at the clients computer.

Secure access: We require a save authentication
and data transmission for the monitoring session
in order to avoid interception or interference of
data from an outside attacker.

3 Target System

Our target system to be monitored contains four 8-bit
microcontrollers (Atmel AVR ATmega128) which in-
strument a display, a small light bulb, a photo sensor,
a temperature sensor and a small cooling fan. Fur-
thermore, the nodes are interconnected by an ISO
k-line communication bus. Figure 1 shows a tar-
get board with microcontroller nodes, add-on hard-
ware, JTAG debugging interface board, and measure-
ment network. Unlike standard debugging boards,
our JTAG debugging board was especially developed
in order to support an electronic switching between
multiple target processors without the need to locally
re-plug the debugging cables.

Thus, the target system contains the following data
sources to be monitored:

Seven-segment display: The seven-segment dis-
play consists of 8 separate seven-segment digits
which are refreshed with a frequency of 100 Hz.
A single digit has 8 connections for the cathodes
of the LEDs (7 segments and one decimal point)
and one for the common anode. The multiplex-
ing is done by applying supply voltage to one
of the eight anodes and thereby activating the
corresponding digit. A segment is lit if supply



Table 1: Sensor inputs and expected data rate
I/O Sampling frequency data size req. Bandwidth
7 segment display 100 Hz 24 bytes 2 400 bytes/s
Light bulb input 50 Hz 3 bytes 150 bytes/s
Photo sensor 50 Hz 1 byte 50 bytes/s
Temperature sensor 50 Hz 1 byte 50 bytes/s
Motor input voltage 50 Hz 1 byte 50 bytes/s
Motor rotation speed 160 Hz 2 bytes 320 bytes/s
ISO k-line signal (compressed) – – 10 000 bytes/s

voltage is applied to the common anode and the
cathode is pulled to ground. The current content
of the display can therefore be stored in an array
of 8 bytes. A second array can be used to store
the activation time of each digit to represent the
brightness of each digit.

Light bulb input signal: The brightness of the
light bulb is controlled by pulse-width modu-
lation (PWM). The interesting parameters for
PWM are the signal frequency (two bytes) and
the duty cycle percentage (one byte). Since the
light bulb reacts rather slowly to the control sig-
nal, a sampling frequency of 50 Hz is sufficient
for monitoring the light bulb signal.

Photo sensor: The photo sensor converts the light
emitted by the light bulb to an analog voltage.
This voltage is digitized to an 8 bit value. A
sampling frequency of 50 Hz is sufficient for mon-
itoring the photo sensor.

Temperature sensor: The temperature of the

Figure 1: The remote workplace target board
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Figure 2: Monitoring network system

light bulb is measured by a temperature sensor
and also converted from an analog voltage to an
8 bit value. A sampling frequency of 50 Hz is
sufficient for monitoring the temperature sensor.

Motor input voltage: The supply voltage of the
fan motor is measured by an 8bit analog/digital
converter. We have specified a sampling fre-
quency of 50 Hz for the monitoring the supply
voltage.

Motor rotation speed: The motor supplies a ro-
tation speed signal with one impulse per revo-
lution. The rotation speed of the motor can be
controlled in a range of 580 to 9600 revolutions
per minute, thus, the expected maximum data
rate if one assumes a 2 byte integer for the speed
is 320 bytes/sec.

ISO k-line bus: The four microcontrollers used in
our target system are interconnected by an ISO
k-line bus. The bus communication will be com-
pressed by run-length encoding, the compressed
signal is expected to require a bandwidth of
about 10 kbytes/s. Different from the other sen-
sor inputs, the ISO k-line signal is captured by
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Figure 3: Overview of the remote workplace setup

the gateway node, thus, it does need to be trans-
mitted via the fieldbus network.

Table 1 summarizes the expected data rates for the
different sensor inputs.

The measured values (display content, motor
speed, . . . ) are transmitted via the gateway to the
target server by a USB connection. The target server
transmits the data via Internet to the monitoring PC,
where the current system state is visualized.

A first idea was to apply a digital video camera
viewing the target board that streams the informa-
tion over the Internet. While this approach would
be rather generic (changing or extending the target
system would not require a change in the video sys-
tem set up), we decided to use a dedicated measuring
approach for the following two reasons:

• The overall data rate in our application is about
13 kbytes/sec — far less then the usual data rate
for a video stream. Thus, the transfer of mea-
surement values and debugging data uses less
network bandwidth than the transfer of a video
stream.

• The camera would not show all information of
interest. Due to frame rate restrictions, fast
changes on the display or motor would not be
displayed properly. Furthermore, some data
sources do not have a visual feedback at the
target board like the temperature sensor or the
state on the communication bus (this would re-
quire to connect an oscilloscope and other mea-
surement devices for visualization).

Thus, we decided to use a specific measurement
system that collects the data of interest.

4 Monitoring Fieldbus Net-
work

The monitoring fieldbus system interconnects several
smart transducers. A smart transducer is the inte-
gration of an analog or digital sensor or actuator el-
ement, a processing unit, and a communication in-
terface. In case of a sensor, the smart transducer
transforms the raw sensor signal to a standardized
digital representation, checks and calibrates the sig-
nal, and transmits this digital signal to its users via
a standardized communication protocol [8].

Each smart transducer periodically performs mea-
surements on several target system variables and
transmits these to a gateway that is connected to
the target server via a USB interface. The smart
transducers are interconnected via a time-triggered
TTP/A [9] network. The time-triggered approach
uses a global schedule for all communication, compu-
tation, and action schedules. All nodes are synchro-
nized to a global time which enables synchronized
actions, as for example triggering of measurements
and a predictable real-time data transfer using a pre-
defined conflict-free TDMA scheme.

Figure 2 depicts the monitoring network architec-
ture. The collected data is transmitted from the
smart transducers to a gateway node that forwards
the data to the target server. Note that our archi-
tecture supports multiple monitoring networks per
target server as indicated in Figure 3.

5 Authentication and Data
Transmission

The remote workplace software has to handle the fol-
lowing tasks:

• Authentication of students: Login requests have
to be checked in the database.

• Assignment of time-slots: To assure each stu-
dent a fair portion of the available target time,
students can reserve target time. Without reser-
vation, access time is assigned according to the
“first come - first serve” principle.

• Data transmission: Measured values and debug-
ging information have to be transmitted over the
Internet and dispatched to the assigned target.
Furthermore the students must be able to upload
their programs to the target.



Figure 4: Microcontroller node with attached seven-segment display and visualization of a display module

• Visualization of the target board: On the client
side, the remote workplace software has to visu-
alize the state of the target system.

Figure 3 shows the different parts of the remote
workplace setup: The authentication server, the tar-
get server, the login client, and the visualization soft-
ware.

For the communication between authentication
server, target server, and local client software we de-
veloped the RWP protocol. Requests and responses
between the programs are encoded using XML, op-
tionally followed by a binary data stream which is
separated from the XML part by a single NUL char-
acter. First the client software initializes a connec-
tion to the authentication server. If the authentica-
tion succeeds, a target is assigned to the student and
an authentication cookie is transmitted back. This
cookie is used by the visualization software to set up
data connections to the target server. If the assigned
time-slot of the student expires the session is closed.

The RWP protocol builds the concept of so-called
endpoints – virtual sensors that form a hierarchy
(similar to the directory hierarchy in a computer
filesystem) that is later mapped onto the hardware
by the target server. Since the RWP protocol is inde-
pendent of the underlying sensor hardware, different
types of interfaces can be easily integrated by adding
a new driver module to the target server.

6 Local Client Software

For our remote workplace setup we needed to get two
things to the students: The development environ-
ment and the visualization software. Our develop-
ment toolchain is based on the Free Software Foun-
dation GNU tools in order to be able to distribute
the client system without costs for software licenses.

The client set-up contains the following software:
The cross-compiler avr-gcc (the normal gcc compiler

set up for cross-compilation for Atmel AVR 8-bit mi-
crocontrollers), the automation tool make, and the
GNU debugger gdb with the graphical frontend in-
sight.

Additionally, a visualization system that provides
a virtual dashboard [10] to allow the students to re-
motely monitor the current state of the target board
is included within the client software. Using a web
browser as visualization client at the user’s PC is
a appealing approach, however experiences with re-
mote monitoring applications running as Java applets
have shown that standard settings of communica-
tion and access rights for Java applets in typical web
browsers are very restrictive and hinder the commu-
nication with local software (e. g., debuggers). There-
fore, the visualization software runs as a stand-alone
Java program.

All the described software packages are available
for several operating systems like Windows, Linux,
and Mac OS X. However, our lab course requires to
establish about 120 students with the correct soft-
ware setup. In order to avoid problems with het-
erogenous environment and system software, we have
decided to provide all the necessary software on a
bootable CD featuring the auto-configuring Linux
system based on Knoppix [11]. Knoppix supports
various PC hardware (desktops as well as notebook
types). Knoppix users do not need to have Linux or
any other Software pre-installed on the user’s com-
puter. The Knoppix system fully runs from CD and
does not install any software on the user’s computer.
However, it supports access to local harddisk in order
to store the user’s private files.

The Knoppix system we use has been customized
in order to provide our development toolchain and
the visualization software, which is tailored to visu-
alize the state of the target system. After booting
the Knoppix environment, the user starts a session
by running the local client software. The software
contacts the authentication server and – if the login



Figure 5: Snapshot of the development environment
on a customized Knoppix CD

succeeds – is connected to a free target. Whenever a
local program is started, it contacts the login client
for the assigned session cookie and uses this to con-
nect to the target.

All connections between the local client software
and the authentication- and target servers are accom-
plished with the RWP protocol, using secure socket
layer (SSL) connections to achieve a secure communi-
cation channel between client and server. The target
server will transmit all measured values from the tar-
get to the visualization client and will forward the
GDB debugging stream which enables the students
to debug their programs over the Internet. The au-
thentication server keeps track of all user connections
and terminates the session if the assigned time-slot
elapses.

The visualization software will display the mea-
sured values as a graphical visualization of the target
board, where the hardware elements of the board are
displayed in real-time similar as if was filmed by a
camera (e.g., the picture of the display will show the
currently measured values and the light bulb’s bright-
ness shown on the screen will correspond to the mea-
sured values).

7 Application Scenario

We are planning to deploy a remote workplace setup
that uses a graphical visualization of the target
boards in the “Embedded Systems Design and Pro-
gramming” course in the winter term 2006/07. The
Embedded Systems Programming (ESP) course is
an undergraduate course designed to introduce third

year computer engineering students to design and
programming of distributed embedded computer sys-
tems. In the practical part of the course, the students
have to implement three exercises like using a multi-
plexed seven-segment display, controlling the speed of
a fan, or measuring the brightness and temperature
of a light bulb on an embedded system, consisting
of four 8-bit Atmel AVR microcontrollers with 128
kbytes program and 4 kbytes data memory that are
connected through a fieldbus network.

Students that want to use a remote workplace are
supplied with a customized Knoppix CD that in-
cludes a full, pre configured development environ-
ment for our remote target boards. To start a remote
workplace session, the student inserts the Knoppix
CD into his/her computer and reboots the system.
On start-up the Knoppix system establishes an Inter-
net connection using the standard DHCP protocol.

The student starts up the login client program that
contacts the target server using the account data that
the student received at the course registration. If the
login succeeds the local client software is connected
to a free target and the student can start with his or
her programming tasks.

The course programs are written and compiled lo-
cally and then sent to the remote target system. Fig-
ure 5 shows the desktop of a customized Knoppix CD
with various development tools.

For debugging the programs the GNU Debugger
frontend insight is used that communicates with the
target server using the GDB protocol. Visualization
clients are used to monitor the physical outputs of
the tested software (see Figure 4 for a prototype vi-
sualization of a seven-segment display). If a course
example is finished, it can be submitted electronically
over the Internet. The remote workplace session ei-
ther ends if the student logs out or if the assigned
time-slot elapses.

8 Related Work

At the University of Technology in Sydney, Moulton
et al. have developed an embedded systems lab with
remote access [12]. Their target system is equipped
with a master server providing access to the devel-
opment board and a camera server monitoring the
target board. Master and camera server are accessi-
ble remotely via Internet. The students’ computer re-
quire an SSH (Secure Shell) client and a web browser.

Tzafestas et al. describe a remote robotic labo-
ratory featuring an industrial robotic manipulator
and a camera accessible via a web-based graphical



interface connected to a robot and video Internet
server [13].

The NetLab approach [14] at the University of
South Australia provides remote access to measure-
ment equipment that is interfaced via IEEE 4888.2, a
standard interface to measurement instruments. Us-
ing a LabView client, students are able to access the
instruments via Internet in order to gather measure-
ment data. Additionally, a camera provides visual
access to the set-up. However, since the target sys-
tem is neither a programmable microcontroller nor
a remote configurable hardware, the possibilities of
interactions are limited.

González-Castaño et al. describe a remote lab fea-
turing target boards accessible through the Internet
via CORBA [15]. While in this approach students
work with real hardware, there is not much interac-
tion with a physical environment except for a module
that allows students to remotely press physical but-
tons. The module is connected directly to the target
server via the printer parallel interface.

Callaghan et al. use a remote desktop approach to
access a PC with connected measurement hardware
interfaced by IEEE 4888.2 and various target sys-
tems such as Microcontrollers, Field-programmable
gate array, Digital signal processors, etc., which are
interfaced by an RS232 connection [16]. While the
remote desktop approach easily establishes a remote
interface, the approach is resource-demanding since
each working student monopolizes one workstation
during experiments.

The Virtual Laboratory project [17, 18] at the Uni-
versity of Zagreb employs an architecture that is sim-
ilar to our proposed approach. The architecture spec-
ifies a CAN network that connects two C167 devel-
opment kit to an Internet server. One C167 board
acts as development board for the students while the
other one is used to monitor the effects on the phys-
ical process environment.

The Internet server provides a web interface for
lab time reservation, gives access to the development
board, and forwards the data from the monitoring
node. The students’ computer are running a Java
visualization client that displays the current state of
the target system.

Besides technical differences regarding the type of
fieldbus network and employed web techniques, the
main difference to our approach is that the target
system in the virtual lab is a single computer instead
of a distributed system.

9 Conclusion

We have presented a remote monitoring architecture
on the example of a distant learning application. The
system consists of a monitoring network system of
networked smart transducers that collect data about
the target system. The data is made available on
the Internet via a target server using our RWP pro-
tocol. The software on the client computer visual-
izes the current state of the target system. In order
to be independent of the client computer’s software
setup, we propose a self-contained Knoppix system
that contains all the necessary communication and
visualization software.

The general properties of our architecture make the
approach also interesting for different applications
where real-time monitoring, flexibility with respect
to the target and the client systems and authenti-
cated access is required. The used software is fully
either open source or developed by our group so that
it is easily possible to extend the course size or set-up
the presented system at other universities without li-
censing costs. The remote workplace will be used
in the course “Embedded Systems Design and Pro-
gramming” in autumn 2006 at the Vienna University
of Technology.
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