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Abstract

This work presents an improvement of the existing SSCEA2D (Spatially Struc-
tured Cellular Evolutionary Algorithm in 2D Space) in FREVO (FRamework for
EVOlutionary Design), a simulation program for physical, biological and technical
optimization tasks. The SSCEA2D method de�nes a lattice grid with candidate
solutions of a problem and they are called individuals. Each individual executes
an evolutionary algorithm with its neighbors and thus evolves over generations. In
the context of this work, evolutionary algorithms are used to de�ne rules which are
applied in Self-Organizing Systems and Cyber Physical Systems.
Before it was only possible to use a squared lattice grid for the evolution of individu-
als in FREVO. This master thesis extends the previous implementation to allow for
setting the height and width of a lattice grid separately (rectangular grids). Addi-
tionally, it is possible to integrate non-working individuals, which are called obstacles
in this context. Each obstacle can be distributed randomly inside the lattice grid
and also some prede�ned obstacle patterns with �xed positions are available. With
these new features we have investigated the behavior of evolution within the grid
and the impact in di�erent simulation runs. Measures for describing results are the
�tness (also called objective function or solution feedback) and diversity (a measure
of how many di�erent solutions there are) of the evolved individuals.
Two reference problems in FREVO were used to evaluate the new SSCEA2D. First
one is the Light! problem and features a robot searching a light source. With di�er-
ent initial states (seeds) and simulation setups (with/without obstacles, rectangular
and squared grid, grid and random neighborhood) the new features of the opti-
mization algorithm were examined. The scattering of all runs per simulation run
(�tness and diversity by last generation) is visualized via boxplots. Furthermore,
we investigated how the results are matching existing statistical distributed. The
three most common distributions are shown and described at the end. The second
reference problem one is the Simpli�ed Robot Soccer simulation. With two di�erent
seeds and similar simulation setups we obtained results through a simulated soccer
tournament.
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Zusammenfassung

Diese Arbeit präsentiert eine Verbesserung des bereits existierenden SSCEA2D
(engl. Spatially Structured Cellular Evolutionary Algorithm in 2D Space) in FREVO
(FRamework for EVOlutionary Design), ein Simulationsprogramm für physikalis-
che, biologische und technische Optimierungsaufgaben. Die SSCEA2D Methode
de�niert ein Gitternetz mit Lösungskandidaten für ein Problem und werden Indi-
viduen genannt. Jedes Individuum führt einen evolutionären Algorithmus mit seinen
nächsten Nachbarn aus und entwickelt sich über Generationen weiter. Evolutionäre
Algorithmen haben de�nierte Regeln und werden in Selbstorganisierende Systemen
und Cyber Physikalischen Systemen angewandt.
Vorher war es in FREVO lediglich möglich ein quadratisches Gitternetz für die
Evolution von Individuen zu verwenden. Diese Masterarbeit erweitert die bisherige
Implementierung um einen Ansatz zum Einstellen der Höhe und Breite eines Git-
ternetzes (rechteckige Netze). Zusätzlich ist es möglich sogenannte nicht-arbeitende
Individuen zu integrieren. Diese werden Obstacles (dt. "Hindernisse") genannt.
Jedes Obstacle kann zufällig im Gitternetz verteilt werden. Ebenfalls gibt es auch
de�nierte Vorlagen für Obstacles mit �xer Position. Mit diesen neuen Möglichkeiten
wurde das evolutionäre Verhalten und die Ein�üsse innerhalb der Gitternetze mit
verschiedenen Simulationen untersucht. Dazu gibt es für die entwickelten Individuen
zwei Maÿe für die Beschreibung von Ergebnissen und sie heiÿen Fitness (auch Objec-
tive Funktion oder Lösungsfeedback) und Diversität (sagt aus, wie viele verschieden
Lösungsansätze es während der Evolution gibt).
Es wurden zwei Referenzprobleme in FREVO für den neuen SSCEA2D genutzt. Das
erste ist das "Light!" Problem und stellt einen Roboter dar, der eine Lichtquelle
sucht. Mit verschieden Anfangszuständen (engl. Seeds) und Simulationssetups
(mit/ohne Obstacles, rechteckiges und quadratisches Netz, Netz- und zufällige Nach-
barschaft) wurden die neuen Features untersucht. Mit Boxplots kann man die Streu-
ung der Ergebnisse pro Simulation sehen. Zusätzlich wurde auch die Wahrschein-
lichkeit diskutiert, wie die Boxplot-Ergebnisse verteilt sind. Die drei häu�gsten
Verteilungen werden schlieÿlich beschrieben. Das zweite Referenzproblem ist die
"Simpli�ed Robot Soccer" Simulation. Mit zwei verschiedenen Anfangszustän-
den und ähnlichen Simulationssetups wurden die Ergebnisse anhand eines Fuÿball-
turniers verglichen und simuliert.
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Chapter 1

Introduction

1.1 Background and Motivation

Evolutionary Algorithms (EA) are stochastic, meta-heuristic methods and �nd ap-
plication in various optimization problems. EAs were inspired by natural creatures
and they evolve through evolving operations over a certain amount of generations.
This kind of algorithm is also used in the FRamework for EVOlutionary design
(FREVO), a simulation program for investigating reference problems and to �nd
optimized solutions. Based on our understanding we can already predict some es-
sential di�erences between panmixia (random mating) and structured (mating con-
sidering the closest neighbors) algorithms. Figure 1.1 shows an example of �tness
evolution. Hint: This graph does not base on any measuring results, rather it gives
an idea how the graphical behavior of panmixia and structure roughly look like.
Which algorithm is more suitable depends on the problem complexity and duration
of evolution. Panmixia has at the beginning a higher �tness, but for long-term simu-
lations the SSCEA2D (Spatially Structured Cellular Evolutionary Algorithm in 2D
Space) overtakes. In the structured approach, each individual (candidate solution)
considers its closest neighbors inside an area and each generation will be executed
by selection, recombination, mutation and replacement. In panmixia, the neigh-
borhood does not play a role, rather how high the �tness and mating probability
equals. Ether each individual has the same probability for mating or the probability
depends on the �tness (i.e. higher �tness leads to higher probability and vice versa).

1



Figure 1.1: Comparison between panmixia and structured evolution

Because of this advantage after more generations, the SSCEA2D will use for
researching. By improving and developing this algorithm we can integrated more
optimized solutions in scienti�c and technical applications.

The vision of autonomous systems received attention since the end of 19th cen-
tury and until now stayed very relevant in research. To contribute this e�ort, the
project "CPSwarm" [2, 36] was launched in collaboration with international research
institutions and companies of the European Union (EU). The Institute Networked
and Embedded Systems (NES) of the Alpen-Adria-Universität (AAU) in Klagenfurt
as one of the project partners is responsible for designing the single/population tools
and swarm modeling. Other partners of the project are: Fraunhofer FIT (Germany),
SOFTEAM Cadexian (France), Robotnik (Spain), DigiSky (Italy), LINKS (Italy),
SEARCH-LAB (Hungary), Lakeside Labs (Austria) and TTTech (Austria).

The duration of the project is a time span of three years from January, 1st 2017
until December, 31st 2019 and the expected outcome after this deadline includes an
open-source tool-chain (simulation program) with the following features:

1. Setting up autonomous CPSs

2. Test swarm performance

3. Deploy solutions in CPS devices

Because of the high potential in research for swarm and Arti�cial Intelligence (AI)
domain, CPSwarm gives students an opportunity to take part into the development.
Each contribution of innovative ideas gain the implementation for scientists in the
future.
We can obtain already now autonomous appliances like robots as vacuum cleaners
or mowers for households and lawns. If more cyber physical devices are applied and
they collaborate, we speak about swarm robotics. Purpose of this vision is to save
and ease our daily life in di�erent scenarios.

2



On the other hand, Cyber Physical Systems (CPSs) and AI �nd application in our
daily tra�c in towns. An approach of swarm intelligence could be to limit accidents
of vehicles. Human carelessness and distraction caused in the past decades until
now these problems.

For these examples the approach of evolutionary design as essential part is nec-
essary. A couple of years ago, the simulation program FREVO was developed by
the institute NES. With this framework it is possible to takeover the simulation
part for the tool-chain of CPSwarm. FREVO consists of a cellular EA, which �nds
applications in CPSs and SOSs as well. With this algorithm are improvements
implemented and may �nd e�cient solution approaches for swarm robotics. EAs
have the big advantage for solving multi-objective optimization and searching tasks.
These algorithms �nd applications in economy, engineering and sciences. Bene�t of
this evolutionary approach is to takeover the rules in nature and to apply in bio-
logical, industrial or technical scenarios. In other words, EAs are nature-inspired.
These properties make EAs as suitable approach for swarm intelligence and robotics.

1.2 De�nitions

1.2.1 Self-Organizing Systems

This section addresses the connection between Self-Organizing Systems (SOSs) and
CPSs. Both of them are independent kinds of systems but they can combined
together. Di�erence between them is that CPSs consist of technical parts where
SOSs can also have biological or chemical components. If we apply robots in swarm
technology, we use both systems for this domain. In other words for di�erentiation,
a SOS does not necessarily consist of technical elements, but a CPS does. SOS play
also an interdisciplinary role in AI, complex systems, cybernetics and biology [11].
A SOS describes the compilation of working processes without external in�uences.
Behavior of these systems show the integrated individuals and they are responsible
for the duration and quality of evolution. SOS have the property, that there is no
leadership between individuals and they are decentralized. Which kinds of SOSs
exist and how can we imagine this complexities? The origin of this phenomenon
was found in nature [4], for example bees [26], wasps, bee orchids [21], �sh, birds
and ants for search the closest route for �nding food [6] or ant clustering [30]. All of
these animals work in a de�ned manner and each individual has a role in the SOS.
Ants build for instance an anthill and they carry parts for �nishing their nest. On
the other hand, �sh and birds swim/�y in a coordinated way without a de�ned rule.
Each participant knows its own role and how to move itself.
But why do we need these biology processes in engineering? For the past years,
scientists research to adapt the rules of nature to technology. These kind of rules
may be integrated in software solutions for AI as algorithms. Nature algorithms
are realized e.g. within �re�ies and bats [23]. The most important category of
algorithms for this master thesis will be those implements of swarm intelligence

3



[20, 7]. Figure 1.2 shows an example for a swarm dynamic in nature. Fish interact
in peer-to-peer behavior (each �sh has the same ranking and we have no leaders in
the swarm).
SOSs in engineering have often a meta-heuristic property in designing (approximate
a solution of optimizing problems). The general designation of these algorithms
is called EA [32]. Rules inside EA may i.e. be approximated by mathematical
di�erential equations [12, 22].

Figure 1.2: Fish swim in an organized order

It follows, that we can �nd SOS nowadays in many applications as geography
[40], quantum computing [19], searching [28], eco- and industrial networks [8]. Nat-
ural evolution is based on the processes of diversity creation within a population
evaluation of �tness and selection [27].
SOS have three main characteristics [34]. First of them is robustness and means
that the system can �x failures or damages without external in�uence. A working
SOS does not break down suddenly because of changes within the system. Another
characteristic describes the ability to adapt changes in the system or environment
(adaptability). Involved entities are responsible for continuously adaptions. The
third property is de�ned as scalability and means that a SOS still functions even
the number of entities is very large. Example could be as in Figure 1.2 when the
population of �sh increase in a very high amount and the self-organization still
functions. Fish have an decentralized behavior because within the swarm is no cen-
tralized leader present and each �sh observes its neighbors while swimming. This
all makes SOS an interesting concept for networked technical applications.
Designing a SOS depends on the local rules for the behavior of each individuals.
Often is designing done by trial and error processes. In high complex systems are
these methods too ine�cient or even impossible to realize. Unpredictable results
may be also caused by small change of simulating parameters as a consequence. On
the other hand, evolutionary methods provide means to optimize these parameters
e�ciently and automatize the testing of SOS [14]. Note that SOS not always base on

4



evolutionary methods because it exists SOS without evolution as well (non-biologic
processes) [11].

Evolving a SOS requires six major components [16] which are depicted in Fig-
ure 1.3:

1. Task Description: Which kind of problem is given and has to be solved?
The task description gives also information about which outcome (objective)
is expected to solve the given problem.

2. Simulation Setup: Which con�gurations are needed and possible? In this
area we plan a referring model (see next sub-chapter) to the task description.
Models represent important aspects of the system and have e�cient properties.

3. Interaction Interface: Plans the way how system components interact with
each other and their environment. This part of the system is responsible for
communication (sensors) and interfaces (protocols).

4. Evolvable Decision Unit: Focuses the actual representation of components.
This unit is separated from the system model because a evolutionary method
need evolvable representations.

5. Objective Function (or �tness): De�ned as quality of the individuals so-
lution. Also this parameter describes the intelligence of each individual. We
can measure the objective function as for example a relative (number of won
games in soccer) or an absolute value (between 0 and 1 as in percent).

6. Search Algorithms: They are typically meta-heuristic search algorithms
and have the ability to �nd a global cost minimum. Optimizing the candidate
solutions is the main purpose. The choice of the search algorithm can in�uence
the quality of results.

Figure 1.3: Evolutionary design approach for SOS [16]
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1.2.2 Simulation

Each simulation is based on a problem and describes a system for analyzing and
solving. For describing problems we need models (physical, mathematical). It exists
roughly two types of modeling:

• Explanatory: Simulation shows why and how a system works or a phenomenon
occurs. Thus, no new properties or events are expected. Explanatory simula-
tions show already proved systems from the past.

• Exploratory: Prediction of new and probably unexpected behaviors. Not all
simulations have a strict line of rules.

Next to the types of simulations, we have also to consider in which dimension we
simulate (1D, 2D or 3D simulations [29, 10]). We discuss in this thesis exclusively
about the two-dimensional domain.
Systems are a collection of individuals to get the accomplishment of some conclusive
end. The information, which describes the system at a given moment is called state.
To solve a given problem, it is necessary to design a model. We have to consider
that simulation means an abstraction of the real environment. An overview between
reality and simulation is visible in Figure 1.4.
Simulating of SOS and evolutionary approach describes the core topic of this mas-
ter thesis. Evolution can be simulated as for example a biology-inspired process in
nature. Evolutionary approaches consists of the steps selection, recombination and
mutation. These processes can be represented by evolutionary algorithms for simu-
lating scienti�c and technical scenarios. With FREVO it is possible to realize this
approach. The user can set, how many generations are needed for any simulations.
The sum of all generations is called evolution. More details about the simulation
program FREVO will discussed in a following sub-chapter.
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Figure 1.4: Relation between reality and abstraction for simulations

If we have a given problem and want to solve it, we proceed with describing the
related model as an abstract presentation. Lets have an example:
We want to construct a building for some research companies. Before starting,
you should consider how the construction must look like. How many �oors, doors
and rooms gets each company is also important to imagine? In this case we have
to develop a scaled-down building of the original as model. A solution may be a
miniature representation (physical or as software plan). With this �nal step we can
solve our problem (building) in the real world with our given model as template.
These processes of simulating and modeling work like a cycle in Figure 1.4.

1.2.3 Topology vs. Neighborhood

As already mentioned, a swarm technology consists of many individuals. Dependent
on the simulation, we ether want to show an abstracted (lattice grid in Figure 1.5)
or imitated (e.g. areas from the real world) environment. Determining the location
and amount of individuals is also an important factor [35].
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Figure 1.5: Structured population in a lattice grid [38]

This kind of neighborhood in Figure 1.5 is called by Moore. The entire lattice
grid shows the intelligence of each individual identi�ed by colors (seen in Chapter
3). Members inside the grid build AI for problem solutions. Each of them has an
individual �tness.
The topology in a 3D space can be based on a toroid [1], as shown in Figure 1.6.
There are di�erent topologies of neighbors as ring and von Neumann [18, 25]. This
master thesis uses however Moore's neighborhood. Other types are visible in Fig-
ure 1.7.

Figure 1.6: Toroid with grid
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Figure 1.7: Von Neumann neighborhood and one-dimensional ring topology

A member in SSCEA2D considers only its closest neighbors. The environment
where individuals work and communicate represents a lattice grid (Figure 1.5). Note:
Individuals are in other articles, books or papers often called members, agents [39],
cells or participants and has in this context the same meaning. In this work we use
the term individual(s) exclusively. Dependent on the algorithm and rules, individ-
uals work from each other to get an expected solution. There are four operations
and they are listed as follows (and visible in Figure 1.8):

1. Selection: An individual chooses two potential parents (highest �tness) for
reproduction (mating interactions [24]). The formed couple will be the parents
for generating new o�springs in the next generation.

2. Recombination: Give birth to new children with a genotype mixed from the
genotypes of the parents.

3. Mutation: Change the actual genotype of an individual randomly. In other
words mutations are changing the representation.

4. Replacement: Replace the o�spring to their new place if it has a higher
�tness.
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Figure 1.8: Evolution of each member as a life cycle [33]

Note, that these four operations do not match exactly with the rules de�ned
by Charles Darwin. In Darwins theory is the selection for example de�ned as the
decision, who survives for the next generation and not who are the parents for new
individuals. When you consider again processes in biology we recognize that each
evolution of any system needs a certain time. The group of all individuals forms a
population with the following properties:

• Individuals are con-speci�cs

• Spatial context

• Reproduction ability

We call the process of optimization as evolution and means also the long-term
alteration within generations (step of evolutionary process).

10



Algorithm1.1 shows a simple pseudo code, how an EA works. Initialization steps
prepare the population and candidates. While-loop contains the four evolutionary
steps as discussed before and also the ranking of each candidate.

initialize population;
evaluate candidates;
while not (termination criterion) do

parent selection;
recombination;
mutation;
evaluate candidates;
survivor selection;

end
Algorithm 1.1: Principle of EA [41]

Before an evolution starts, we generate (initialize) a population randomly and
each individual gets a random �tness. After �nishing these �rst steps, the evolution
itself starts in�nitely until no termination criterion occurs. Each individual chooses
its potential parents. These parents make an o�spring (recombination). Mutation is
a random change of genes, in this case the �tness. Each o�spring will be evaluated
after recombination and mutation. The strongest individuals (higher �tness) will
survive and the weak ones will not.
The evaluation of candidates is also called as ranking and refer to �tness. There
are no common units for this parameter. Fitness can be calculated as an absolute
(for example a �oat number between 0 and 1) or a relative value with a certain
number of won games (for instance soccer match).
Algorithm1.2 shows how an implemented cellular EA or SSCEA2D works. ρe, ρm
and ρc denote the rate of elite individuals, probability of mutation and crossover.
ne represents the number of elite candidates and is dependent from ρe and neigh-
borhood size [41].
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X ← randomly generated population;
while not (termination criterion) do

Xnew ← empty population;
foreach candidate xi of X do

run experiment for the neighborhood Ri of xi;
compute the �tness f(x) of Ri;
descending sort of Ri based on f(x);
if number of xi in Ri ≤ ne then

add xi to Xnew;
else

generate random number r ∈ [0,1];
if r < ρm then

xe ← randomly selected elite candidate;
x′e ← mutate xe;
add x′e to Xnew;

else if r < ρm + ρc then
xe ← randomly selected elite candidate;
ci ← mate xi and xe;
add ci to Xnew;

else
xn ← randomly genertated individual;
add xn to Xnew;

end

end

end
X ← Xnew;

end
Algorithm 1.2: Pseudo-code for cellular EA [41]

Individuals mate with partners from geographically close region. In this case
the closest neighborhood plays a role because we have a structure. This phenomena
may occur in our real life if humans meet their potential partners for family planing
(woman meets a man or vise versa). In other words, the distance between each
individual does play a role for mating. The opposite of a structured neighborhood
is called panmixia, where the distance is irrelevant for mate choice.
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1.2.4 Fitness

Fitness is de�ned as the feedback of solutions and evaluates how close a solution
is optimized for the given problem. The higher a value of �tness is, the better the
solution. It gives us information, how well the optimizing problem can be solved.
Fitness is expressed as absolute or relative value. In some problems it is su�cient to
just compare candidate solutions and determine, which one is the best one (relative).
Absolute values are expressed as for example in percentage or �oat numbers between
0.0 and 1.0. There are formulas in di�erent contexts how to calculate the �tness on
this sub chapter [9].

a b z
0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: Truth table of an exclusive or (XOR) gate (two inputs and one output)

The output is only logic 1 (true or high) if both inputs di�er from each other
(0,1 and 1,0), seen in Table 1.1. One input must not have the same state as the
other one, otherwise the output state is 0 (false or low). The principle of XOR gate
bases on addition of binary numbers.

F = −1

4

4∑
i=1

(oi − zi)2 (1.1)

The formula for �tness function is typically di�erent for every problem. For the
XOR gate we use the principle of (negative) mean square error [5] as depicted in
Equation 1.1. oi stands for the output of representation for the inputs and zi for the
expected output. Index i of the sum goes from 1 to 4 because we have four possible
states with two inputs and one output.

fi = 1− 1

(Nc − 1)2 · w · h

w∑
x=1

h∑
y=1

(cyx − ryx)2 (1.2)

SOS are also applied in image processing. With Cellular Automaton Morpho-
genesis (CAM) we can try to reconstruct a reference image. The target picture is
copied and has the same amount of columns and rows of pixels as the template.
Equation 1.2 above shows how to calculate the �tness by using CAM. NC stands
for the number of di�erent colors from the reference image. w and h are width and
height of the picture. x and y show the indexes. cyx represents the color output of
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the associated coordinates and ryx the pixel reference (expected value).

F =
N∑
i=1

fi
2N−1

(1.3)

Equation 1.3 describes the �tness for a non-oscillating and stable solution. fi is
the calculated �tness from the Equation 1.2 before and N the number of iterations.

1.2.5 Diversity

Diversity has di�erent meanings in technical and non-technical sciences. This chap-
ter discusses the behavioral diversity in swarm technologies [3]. In member based
simulations exist during the run more or less di�erent solutions. Members work in a
collaborated working manner. Through this group dynamic may exists more or less
di�erent solutions. Diversity is a measure de�ned by the mean distance of genotypes
from a population of individuals. A di�erent measure for diversity is based on the
entropy from Shannon in information theory (see Equation 1.4 below). Entropy has
its origins from the second law of thermodynamics [17].
High diversities means a group of individuals have more di�erent solutions. That
means, we have inside the grid more smaller groups of individuals and they may not
share their information to the other groups. Drawback is here, that the individual
solutions might be so di�erent that they cannot learn from the other ones. Partici-
pants work in this situation more isolated.
Lower diversities explain exactly the opposite of high: Less di�erent solutions and
more teamwork with the individuals inside a lattice grid is then the case. In this
situation we su�er from a low variety of less solutions for problem solving.
It follows, that neither high nor low diversity show an e�cient work behavior. If
we should consider an average diversity, then we can use the advantages of both
properties. Determining of diversities will be simulated and shown in Chapter 4.

H(X) =
M∑
i=1

pi · log2(pi) (1.4)

H(X) in Equation 1.4 stands for the entropy, pi is the probability of index i
and M shows the amount of indexes. log2 means the dual logarithm and can be
calculated as follows:

log2(x) =
ln(x)

ln(2)
=
log10(x)

log10(2)
(1.5)

Hint: You can use the dual logarithm with naturalis or generalis (Equation 1.5)
divided by the base of 2. x may be any number for calculating. The dual logarithm
is very often used because of binary operations in information technologies.
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1.2.6 FREVO

FREVO is a simulation tool for evolving algorithms in technical, physical and bio-
logical domains [37]. It represents an open-source framework and is developed for
evolutionary design or optimization tasks (written in Java [15]). FREVO has the
major feature of separated key building blocks. They are called as the problem
de�nition, solution representation and optimization method. By separating these
blocks the user can easily change and swap di�erent con�gurations.

Figure 1.9: FREVO user interface (version 1.4.1)

If you open FREVO, you have to set in the con�gure session (red marked in
Figure 1.9) �ve di�erent options and they are as follows:

1. Problem: Shows the context of individuals for the evaluations.

2. Method: How to structure a solution. Method contains some optimization
algorithms as the SSCEA2D.

3. Representation: How is the intelligence of each individual built? For intel-
ligence are Arti�cial Neural Networks (ANNs) used.

4. Ranking: De�nes how the evaluation of all individuals is done. This module
creates a ranking based on �tness (feedback of the individual).

5. Cog wheel: Set the number of simulations (runs), the initial state (seed) and
the name of experiment.
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Figure 1.10: Robot searches a light source in FREVO

FREVO includes several examples for autonomous robotics. A simple problem
is to make a robot �nd the light source inside an area using its local sensors,
which is shown in Figure 1.10. Dependent on the best �tness of the simu-
lation, robot needs more or less steps and time to �nd the target. Starting
position to search the light depends on the seed and starting direction. Steps will
be counted and the robot stops, if the yellow ball (light bulb) is reached by the robot.

16



Figure 1.11: Soccer game with AI in FREVO

FREVO also o�ers more complex problems. A particular one is the evolution
of autonomous soccer players [16]. The �tness depends on various indicators (�eld
coverage, ball possession and scored goals), which de�nes the better team out of
two teams playing against each other. An example is visible in Figure 1.11 with 11
players per team.

1.2.7 Neural Networks

Many applications use ANNs as evolutionary controllers [13, 14]. Our brain con-
sists of neurons as well and much of them are responsible for recognizing letters,
symbols, shapes, objects or people. ANNs are for instance used in memory network
applications (convert images in bit-maps [42]). Neurons are complex cells and react
on electrochemically signals [31].
A typical ANN neuron works like a comparator, which produces an output if a cu-
mulative e�ect of input impulses exceed a threshold. Each input branch consists
of an impulse xi and a accordingly weighting wi (a kind of �lter for linking the in-
puts with neurons). These weightings gain (excitatory, positive value) or attenuate
(inhibitory, negative value). Weights are typically represented with real values.

net =
∑
i

xi · wi + bi (1.6)

net is the sum of all inputs with weightings and i the index (Equation 1.6). f
represents the activation function. Dependent on threshold for activation, a so called
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bias bi will be used.

y = f(net) (1.7)

Dependent on net, y in Equation 1.7 may have di�erent mathematical behaviors
as linear, step, tangent hyperbolic or Sigmoid. All of these functions have a typical
range for activation. Because of this reason we need a bias for meaningful activation
as well.

Figure 1.12: Simple ANN [31]

Figure 1.12 shows a simpli�ed representation of an ANN. Example: Inputs on the
left side are fragments of symbols (i.e. numbers). Gray circle merges these fragments
and gives an output dependent which symbol we notice. ANNs in practice may have
course many more inputs and also (hidden) layers between input and output. A
hard-to-read handwriting complicates our perception and neurons, so more layers
may be necessary.

Figure 1.13: Block diagram for ANNs [31]

ANNs can be displayed with block diagrams. Output y is dependent on the sum
of weighted inputs net (Figure 1.13).
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Figure 1.14: TLNN vs. FMN

In this thesis we are dealing with two di�erent types of neural networks and they
are called Fully Meshed Net (FMN) and Three Layered Neural Network (TLNN).
Both of them are available as representation in FREVO and important for evaluating
the SSCEA2D. TLNN consists of a middle layer between inputs and outputs as
processing stage. In contrast, FMN has no de�ned hierarchy and each neuron is
directly with each other connected (Figure 1.14). The results that can be achieved
through this will be revealed in the simulations.
Let us consider an example of numbers. We have an coordinate system (Figure 1.15)
and each coordinate has an own designation. In Figure 1.16 we recognize di�erent
symbols with this kind of coordination system. These symbols are written in black
color and the rest of area is white. The activation value for black is in this case 0.00
and for white 1.00. Values between them are called gray-scales, but for an easier
illustration we use only maximum and minimum activation values. All numbers are
located in a 8x8 net (64 possible positions or coordinates for depiction). Notice,
that these nets have nothing to do with cellular evolutionary lattice grids, rather
with the neuronal recognition.
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Figure 1.15: Coordinates for mapping each pixel

Figure 1.16: Numbers between 0 and 9
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Figure 1.17: 8x8 net for recognizing numbers with TLNN

Figure 1.18: Symbols with FMN

Some symbols consist of mostly equal parts as the numbers 8 and 9. Figure 1.17
and Figure 1.18 show how our brain creates connections between similar symbols
for recognition. In FMN are input and output nodes de�ned by a-priori. With these
both representations we describe two di�erent variants of AI for each member in
SSCEA2D. The behavior in certain situations inside the lattice grid is decisively
determined by the intelligence of individuals.
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Chapter 2

Problem Description

This chapter explains which practical steps were to ful�ll and gives deeper infor-
mation about the tasks. Solutions for the tasks were realized with the already
existing simulation tool FREVO. FREVO was prepared for an update-version
with extended features for SSCEA2D. Engineers and scientists will get with this
improved software more possibilities in research and development regarding SOSs.

2.1 Purpose

SSCEA2D consists of individuals, which are located in a two-dimensional grid. Each
ot them considers only its closest neighbors and develop dependent on their �tness
new solutions to apply in SOSs. The previous chapter explains the properties of
SSCEA2D more in detail. This master thesis researches with this existing algorithm
to improve its behavior and capabilities in simulation environments. Can we get
more e�cient solutions or improvements?

2.2 Research Questions

To get a deeper understanding what the expected outcome of this work is, will be
explained by the research questions. They are as follows:

1. How do �tness and diversity change by rectangular grid?
Fitness and diversity have a dependence on the population size. How are these
a�ected for di�erent width and height of the grid in a non-panmixia evolution?

2. Do integrated obstacles in�uence the evolution in the grid?
Obstacles mean, that some grid cells are non-functional. This way, 100 indi-
viduals could be �t into a larger 12x12 grid instead of a 10x10 grid. Can we
achieve a higher �tness by adding obstacles?
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3. Which conditions yield the highest �tness and/or average diversity?
Which solutions are possible with adjustable grid width/height and obstacles?
Which setup yields the best results and why?

4. Does the new developed system work more e�ciently compared to
the existing algorithm?
The grid in SSCEA2D was earlier only a square grid in FREVO. Does the new
approach provide better performance in comparison to the existing implemen-
tations?

5. How is the resulting distributed?
If we have some results of di�erent simulations and conditions, we want to
analyze their �tness and diversity by di�erent seeds. There are many types
of distributions (Gauss, uniformly, gamma, exponential, Weibull, chi-squared,
etc.... ) and the questions is, which distribution matches with the simulation
results.

2.3 Tools and Methods

FREVO was implemented in the languages JAVA and XML. For developing it fur-
ther, the development environment Eclipse was used. The entire framework uses
object-oriented-programming. For answering the research questions, the prede�ned
classes in the Java code were modi�ed and extended with new methods and proper-
ties. To determine the distribution of di�erent simulations, a Python program was
used to check the distribution of data. This code compares the simulation results
and estimates the probability, how the data matches with the distributions.
Many simulations in FREVO were necessary requiring a server to run simulations
o�ine with the duration of several days. To evaluate the results statistically, Mi-
crosoft Excel was used.
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Chapter 3

Implementation

All solutions regarding the project are listed and described in the following chapter.
Code snippets and �gures show, how the FREVO update is realized.

3.1 Rectangular Grid

The user can now set the width and height of the grid to an arbitrary number at
will. Figure 3.1 and Figure 3.2 show some examples of rectangular lattice grids.
Inside are the individuals for evolutionary simulations located (squares). Each
of them has a color and represents the associated �tness. Green means good,
orange/yellow stands for average and red individual consists of a poor �tness.
White squares are no individuals but can be occupied in the next generations.
After each generation, the grid gets an update and the members inside change their
color because of their neighborhood activities (selection, recombination, mutation
and replacement).
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Figure 3.1: Grid with 8 width and 10 height

Figure 3.2: Grid with 12 width and 6 height

3.2 Obstacles

Next feature is the possibility to add obstacles in the lattice grid. There exist three
prede�ned patterns (setup for at least 10x10 grid) and the fourth one distributes
gray obstacles randomly as well (grid size not critical).
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Figure 3.3: Pattern 1

Figure 3.3 shows the shape of two pyramids and in total are 25 obstacles present.
So the size of this example grid consists of 100 possible individuals minus 25 obsta-
cles. It follows, this is a rectangular lattice grid with 75 valid individuals.

Figure 3.4: Pattern 2

Next experiment shows how to separate the entire grid into two sub-grids with a
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horizontal line (Figure 3.4). With this pattern we have the ability to set two isolated
populations as well.

Figure 3.5: Pattern 3

The last prede�ned pattern shows two added rectangular shapes, seen in Fig-
ure 3.5. All patterns will be used for simulating comparisons.
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Figure 3.6: Pattern 4 and 10x15 grid

In Figure 3.6 you can see a random distribution of gray obstacles. With FREVO
it is possible con�gure a set of runs with di�erent obstacle shape (dependent on the
seeds). Thus, we can determine �tness, diversity and distribution of each setup.
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3.3 Source code

The next sections show the software implementation in di�erent programming lan-
guages. Extensive codes to look up are in the chapter Appendices. Each code has
numerated lines for facilitating the explanations.

3.3.1 Setting obstacles, patterns, parameters and plotting di-

versity

The following implementations for modifying the SSCEA2D were written in Java.

• De�nition of parameters for SSCEA2D: Input of obstacle patterns,
height/width for lattice grid, etc. in Listing A.1 from line 1-154. Method
in line 162 shows a random number generator for obstacle distribution (based
on the seed).

• Programmed neighborhoods (grid and random) in Listing A.2 from line 305-
326 and 331-347.

• Implementation of obstacles (patterns and randomly distribution) in List-
ing A.3 from line 101-191.

• Plot diversity and �tness Listing A.3 (lines 636-640)

3.3.2 Reading text �les for generating boxplots

Python programs are responsible for:

• reading text �les (�tness and diversity results) in Listing B.1 from line 3-13.

• plot boxplots of each simulation run (Listing B.1, line 18).

3.3.3 New parameters for FREVO interface

Existing code in Listing C.1 was modi�ed, see lines 10-18 and 24-28. XML code has
now the following features:

• to insert width and height.

• additional information about the modi�ed algorithm

• to enter obstacle patterns
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Chapter 4

Simulation Comparisons

4.1 Preparations

All simulations were executed on an external server ("feynman") of the University.
For data management, WinSCP was used and PuTTY is a console for starting and
modifying setups.

Figure 4.1: Running simulation on simulation server
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Figure 4.2: Data management on WinSCP

In Figure 4.1 is a running process of simulation via PuTTY. The appearing lines
are results (.zre �les) and saved in the directory for results. You need for starting a
shell-�le (.sh) and a session-�le (.zse). The console commands base on the scripting
language "Bash". A graphical overview o�ers the WinSCP window in Figure 4.2,
where you can manage your acquired data on the server.
The implementations have to be examined after �nishing the simulation runs. For
this reason, we used di�erent sizes of the lattice grid (square and rectangular with-
/without obstacles) to determine the most e�cient solution. The algorithm further
supports two kinds of neighborhoods: grid and random.
Grid neighborhood means each individual considers its adjacent neighbors. Purpose
of this comparison is not only to compare obstacle or rectangular modes. Neighbor-
hood and representations may be also considered to get conclusive data for research.
Random neighborhoods are the opposite of grid and individuals get their neighbors
randomly. In this mode exists no structure by rows/columns and thus there is no
structured way. Additionally we want to show some di�erences with our two repre-
sentations in FREVO: FMN and TLNN. Table 4.1 and Table 4.2 give an overview of
executed simulation runs. The modi�ed SSCEA2D was tested here with the Light!
and Simpli�ed Soccer Game problems in FREVO because the original SSCEA2D
was compatible with those problems. FMN and TLNN were chosen because they
were used in past researching tasks and to get some conclusive comparisons.
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ID Neighborhood Obstacles Height Width Population size Representation

0 Grid 20 10 12 100 FMN

1 Grid 0 10 10 100 FMN

2 Grid Pattern 1 10 10 75 FMN

3 Grid Pattern 2 10 10 90 FMN

4 Grid Pattern 3 10 10 56 FMN

5 Grid 0 8 8 64 FMN

6 Grid 11 5 15 64 FMN

7 Grid 11 15 5 64 FMN

8 Grid 0 20 5 100 FMN

9 Grid 0 5 20 100 FMN

10 Grid 150 10 20 50 FMN

11 Grid 150 20 10 50 FMN

12 Grid 50 10 10 50 FMN

13 Random 20 10 12 100 FMN

14 Random 0 10 10 100 FMN

15 Random Pattern 1 10 10 75 FMN

16 Random Pattern 2 10 10 90 FMN

17 Random Pattern 3 10 10 56 FMN

18 Random 0 8 8 64 FMN

19 Random 11 5 15 64 FMN

20 Random 11 15 5 64 FMN

21 Random 0 20 5 100 FMN

22 Random 0 5 20 100 FMN

23 Random 150 10 20 50 FMN

24 Random 150 20 10 50 FMN

25 Random 50 10 10 50 FMN

26 Grid 20 10 12 100 TLNN

27 Grid 0 10 10 100 TLNN

28 Grid Pattern 1 10 10 75 TLNN

29 Grid Pattern 2 10 10 90 TLNN

30 Grid Pattern 3 10 10 56 TLNN

31 Grid 0 8 8 64 TLNN

32 Grid 11 5 15 64 TLNN

33 Grid 11 15 5 64 TLNN

34 Grid 0 20 5 100 TLNN

35 Grid 0 5 20 100 TLNN

36 Grid 150 10 20 50 TLNN

37 Grid 150 20 10 50 TLNN

38 Grid 50 10 10 50 TLNN

39 Random 20 10 12 100 TLNN

40 Random 0 10 10 100 TLNN

41 Random Pattern 1 10 10 75 TLNN

42 Random Pattern 2 10 10 90 TLNN

43 Random Pattern 3 10 10 56 TLNN

44 Random 0 8 8 64 TLNN

45 Random 11 5 15 64 TLNN

46 Random 11 15 5 64 TLNN

47 Random 0 20 5 100 TLNN

48 Random 0 5 20 100 TLNN

49 Random 150 10 20 50 TLNN

50 Random 150 20 10 50 TLNN

51 Random 50 10 10 50 TLNN

Table 4.1: Overview of simulations with Light!
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Each simulation starts with the random initial state ("seed") 12345 and runs
100 times until 12444 inclusively (for the Light! problem). From each ID, the
highest �tness will be selected, so all 52 maximums will be compared. Not only the
minimum and maximum play a role, rather the scattering of each simulation ID by
using boxplots will be shown on the next pages. For the diversities of each sim-
ulation (with the 100 seeds), mean values are calculated and compared, respectively.

ID Neighborhood Obstacles Height Width Population size

1A Grid 0 10 10 100
2A Grid 100 20 10 100
3A Grid 200 10 30 100
4A Grid 25 10 10 75

5A Random 0 10 10 100
6A Random 100 20 10 100
7A Random 200 10 30 100
8A Random 25 10 10 75

1B Grid 0 10 10 100
2B Grid 100 20 10 100
3B Grid 200 10 30 100
4B Grid 25 10 10 75

5B Random 0 10 10 100
6B Random 100 20 10 100
7B Random 200 10 30 100
8B Random 25 10 10 75

Table 4.2: Overview of simulations with Simpli�ed Soccer

We used for the soccer problem di�erent setups and runs. Instead of 100 seeds
here are two seeds used with 1000 generations for each run. TLNN is a memory-less
representation and has the drawback, that the neural network has no knowledge
about the past states, which signi�cantly a�ects the soccer players rightly. Soccer
players with a TLNN intelligence run only by each other and do not consider to kick
the ball into the goal. In contrast, FMNs can keep a state via recurrent feedback
connections and therefore are suitable for this soccer problem. Each run in Table 4.2
will be run twice because of two di�erent seeds (12345 forA and 11111 forB). With
both seeds we want to prove, is this setting suitable in general or not. Runs with
population size 75 need more than 1000 generations (exactly 1000∗(1/0.75) = 1333)
compared to size 100 because a smaller grid needs more evolution time. So we can
ensure, that the matches run with fair conditions.
All settings in FREVO are visible in Table 4.3, Table 4.4, Table 4.5, Table 4.6, and
Table 4.7.
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Keys Values

evalnumber 20
�tnesscalculation Using Time and Distance
gridcellsize 30.0f
simulationtime 30000

Table 4.3: Settings for Light!

Keys Values

apply stamina model FALSE
ball distance weight 1000
ball goal weight 100000
controller model NEARESTINFOPLAYER
evaluation time 60000
isCartesian interpretation TRUE
kick weight 20000
max kicks 10
playersPerTeam 10
position weight 1
score weight 4000000

Table 4.4: Settings for Simpli�ed Robot Soccer

Keys Values

generations 200
mutationprobability 1
mutationseverity 0.3f
neighbourhoodmode 1 or 2
obstacle-pattern 1, 2, 3 or 4
percentelite 11
percentmutateelite 59
percentxoverelite 30
populationsize height on request
populationsize width on request
random obstacles on request
saveinterval 0

Table 4.5: Settings for CEA2D
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Keys Values

activationFunction LINEAR
bias range 2f
hiddenNodes 2
iterations 2
mutation rate 0.2f
random bias range 0.2f
random source false
variable mutation rate false
weight range 2f

Table 4.6: Settings for FMN

Keys Values

bias range 2f
hiddenNodes 2
stepNumber 2
weight range 2f

Table 4.7: Settings for TLNN
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4.2 Fitness and Diversity Results

Statistical results are in the next sub-chapters after data acquisition be shown.
Because of the high amount of results (100 �tness and diversity values of each run),
we consider only values from the last generation of each simulation run. A way to
compare the scattering, maximum, minimum, etc. is to use boxplots.

Figure 4.3: Parameters of Boxplot

Figure 4.3 shows the principle of boxplots and which parameters are interesting
in statistics. Advantage of this method is to get a clear overview of the behavior
from results. Boxplots are divided in four so called quartiles and show the range of
each 25%. They have the following characteristics for analysis:

• Lower whisker: Is de�ned as the lowest data value that is still within (Q1 −
(Q3−Q1)) · 1.5.

• Q1: This is the �rst quartile and represents the �rst 25% of data as well.

• Median: Mean value of data. The median is the end point of the second
quartile and starting point of the third quartile.

• Q3: It is the end point of the third quartile and starting point of the fourth
quartile.

• Upper whisker: This is the highest data point that is still within (Q3+ (Q3−
Q1)) · 1.5.

• Outliers: Values under the lower and over the upper whisker are considered to
be outliers.
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4.2.1 Light!

Simulation ID Maximum Fitness Diversity

0 0.8465 17.7111

1 0.8805 19.6437

2 0.8366 22.4593

3 0.8731 24.0929

4 0.8277 21.5454

5 0.8758 14.1775

6 0.9098 16.2253

7 0.8483 15.3739

8 0.854 28.3004

9 0.8577 30.5439

10 0.7398 115.8686

11 0.7356 101.1211

12 0.7807 29.2327

13 0.8913 14.1262

14 0.9017 16.0454

15 0.8993 12.8149

16 0.869 11.8084

17 0.8251 14.664

18 0.8759 13.2979

19 0.8539 10.2891

20 0.8925 10.2772

21 0.9017 16.0454

22 0.9017 16.0454

23 0.8521 11.9458

24 0.8748 14.4284

25 0.8701 15.2629

26 0.8681 0.4801

27 0.8697 0.4023

28 0.8796 0.4393

29 0.8702 0.5095

30 0.854 0.4974

31 0.8568 0.2835

32 0.8648 0.5546

33 0.8653 0.4123

34 0.8821 0.5286

35 0.8674 0.491

36 0.8196 1.5196

37 0.8419 2.1099

38 0.8765 0.8522

39 0.8536 0.5543

40 0.8541 0.3891

41 0.8701 0.2765

42 0.8743 0.331

43 0.8611 0.4467

44 0.8773 0.3422

45 0.868 0.2938

46 0.8604 0.3627

47 0.8541 0.3891

48 0.8541 0.3891

49 0.8748 0.285

50 0.8565 0.2685

51 0.8627 0.3061

Table 4.8: Overview of maximum �tness and average diversity for Light!
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In Table 4.8 are the maximum �tness of each run with the referred diversity. Note
that theses values do not give information about the scattering of each simulation.
In every run, one seed generates the highest �tness and the results are in the table
above. Green marked cells in Table 4.8 show the closest values of average diversity
and the maximum �tness of all 52 experiments as well.
There are boxplots for the representations FMN and TLNN in the next illustrations
(Figure 4.4,Figure 4.5, Figure 4.6, Figure 4.7). Simulation IDs 10, 11, 36 and 37
contains 75% of obstacles and the scattering is much wider than the other exper-
iments with less percentage of obstacles. Additionally, the user can increase with
this feature the diversity as well. These simulations show that the population size
itself says nothing about �tness and scattering, but the number of obstacles inside
the grid. This feature occurs already by 50% of obstacles (seen in simulation IDs
12, 25, 38 and 51). At less than 50% we cannot detect any signi�cant changes. So
with obstacles we can summarized increase the scattering of �tness and diversity.

Figure 4.4: Fitness results (FMN) of 0-25 with Light!
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Figure 4.5: Diversities of Fully Meshed Net (run 0-25) with Light!

Figure 4.6: Fitness results (TLNN) of 26-51 with Light!
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Figure 4.7: Diversities of Three Layered Neural Network (run 26-51) with Light!

To determine the average diversity of these versatile experiments, the mean is
used by summing up all FMN and TLNN values divided by the amount of samples
(in this case 26 for each representation) separately. The reason is, that the diversity
in FMN is di�erently scaled compared to TLNN.

x =
1

N

N−1∑
i=0

xi (4.1)

N shows the number of simulations (26), i the index and x the mean value in
Equation Equation 4.1.

xFMN = 24.3594923
xTLNN = 0.52747692

In the next page are the maximum �tness referred to the population size once
more compared in detail.
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Shape FMN grid FMN rand TLNN grid TLNN rand

10x12 (20 obstacles) 0.8465 0.8913 0.8681 0.8536
10x10 0.8805 0.9017 0.8697 0.8541
20x5 0.854 0.9017 0.8821 0.8541
5x20 0.8577 0.9017 0.8674 0.8541

Table 4.9: Comparison with population size 100

Table 4.9 compares the population size 100. We can show that the �tness is
equal with random neighborhood by same size. Height and width do not play a role
because the only requirement is the same area of 100 (10x10, 20x5 or 5x20), but no
obstacles integrated.

Shape FMN grid FMN rand TLNN grid TLNN rand

8x8 0.8758 0.8759 0.8568 0.8773
5x15 (11 obstacles) 0.9098 0.8539 0.8648 0.8773
15x5 (11 obstacles) 0.8483 0.8925 0.8653 0.868

Table 4.10: Comparison with population size 64

A smaller population size gives dependent on the seed and obstacle position a
comparable good �tness (seen in Table 4.10).

Shape FMN grid FMN rand TLNN grid TLNN rand

Pattern 1 0.8366 0.8993 0.8796 0.8701
Pattern 2 0.8731 0.869 0.8702 0.8743
Pattern 3 0.8277 0.8251 0.854 0.8611

Table 4.11: Comparison of prede�ned shapes

Also we checked in Table 4.11 di�erent patterns with a 10x10 grid. Here gets
the �rst pattern with random neighborhood and FMN the maximum �tness again.
Reason of that may be, that each individual does not consider its closest partners,
but the get them randomly. So obstacles in�uence the evolution less than in other
conditions.

Shape FMN grid FMN rand TLNN grid TLNN rand

20x10 (150 obstacles) 0.7398 0.8521 0.8196 0.8748
10x20 (150 obstacles) 0.7356 0.8748 0.8419 0.8565
10x10 (50 obstacles) 0.7807 0.8701 0.8765 0.8627

Table 4.12: Comparison of population size 50

Table 4.12 compares the performance of large grids. A high amount of obstacles
actually a�ects the �tness and increases the diversity in grid neighborhood (FMN).
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It follows, that we can in�uence the evolution in a SSCEA2D dependent on all
conditions.

4.2.2 Simpli�ed Robot Soccer

ID Maximum Fitness Diversity Seed

1A 12 375.1016 12345
2A 14 875.4956 12345
3A 14 1978.1802 12345
4A 12 456.0329 12345
5A 14 343.9337 12345
6A 12 422.0973 12345
7A 14 261.6435 12345
8A 12 262.0488 12345

1B 14 440.7321 11111
2B 14 958.246 11111
3B 12 1932.2489 11111
4B 12 355.0129 11111
5B 12 390.5385 11111
6B 14 217.4259 11111
7B 14 284.2216 11111
8B 12 340.3382 11111

Table 4.13: Overview of maximum �tness and diversity for Simpli�ed Robot Soccer
(last generation)

In the Light! problem are the �tness values calculated with an absolute value. For
the soccer game is however a relative value of �tness given. During the simulation
runs, the di�erence between two soccer teams will be calculated. A goal equals
two points and the di�erence between both teams are in this context the relative
�tness. Table 4.13 shows also the results of each last generation. Fitness gives in
this case information, how many points the soccer team during the simulation run
("training") reached. A tied game equals 1 and a won match is 2 points worth.
The soccer problem needs compared to the Light! simulation much more computing
time. This is why in this experiment are only two seeds used. Graphs depicting
diversity for both seeds are shown in Figure 4.8 and Figure 4.9. The more obstacles
are integrated, the higher is the diversity.
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Figure 4.8: Diversity 12345

Figure 4.9: Diversity 11111
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4.3 Analysis of the Distribution

With the acquired data for the Light! problem we analyzed the distributions of
the �tness and diversity values of the best candidate from 100 simulation runs with
di�erent seeds but otherwise identi�ed parameters. The tool distribution-check 1

was used, which compares data against 80 reference distributions. The tool �rst �ts
the set of data values against every possible probability distribution. The second
step is to apply the "Kolmogorov-Smirnof one sided test". After executing these
steps, the user gets an overview how high the probabilities of each distribution
equals from the data.
You can run python programs with the command line in windows as well without
editor. With −i 10 we run ten iterations and with −f the following �le. With >
and a �lename you can create a text �le with results. Note: Names of text �les
are here just examples. Python program and reading �le have to be in the same
directory. An example how to run a python �le and write a new text-�le is listed
as follows:

python distribution-check.py -i 10 -f Diversity-exp1.txt > results-exp1-diversity.txt

After generating the text-�les, all results of the 10th iteration with 10 distribu-
tions was checked. The decision, which distribution was chosen depended on the
probability and amount of parameters. If two results have a nearly equal probability,
but one of them has for example four and the other less parameters for distribution,
we have chosen the one with less parameters. And if the distribution with highest
probability has four parameters and the next one has a high probabilistic di�er-
ence, we have taken the one with more parameters. These results refer to the Light!
problem and are visible in Table 4.14 and Table 4.15.

1http://www.aizac.info/simple-check-of-a-sample-against-80-distributions/
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4.3.1 Distributions for Light!

Simulation ID Distribution Probability Variance

0 genlogistic 0.9865180078488742 0.0010916111454697707

1 gumbel l 0.9924514176774271 0.0003829529789569228

2 powernorm 0.8850714396657178 0.015055501965301015

3 exponpow 0.9512592201851093 0.08304737779684349

4 johnsonsb 0.8113623309974298 0.01749743220243876

5 gumbel l 0.880805767340619 0.0050342323101667755

6 weibull min 0.9963533180007291 0.00014475100027720592

7 frechet l 0.9799343853483486 0.001023285186427505

8 gumbel l 0.9391565077062718 0.002081950362228999

9 gumbel l 0.9692462769894858 0.0018862317926438912

10 foldnorm 0.7427924035705387 0.012458854626202194

11 dweibull 0.6338456515101991 0.013054429711435046

12 dgamma 0.8957863757905299 0.01948454347443313

13 johnsonsu 0.8861649875225976 0.003531125763507211

14 gumbel l 0.9648320464875485 0.001470183389221166

15 genlogistic 0.7462400085939366 0.009898099092611487

16 genlogistic 0.8560367081426447 0.012186694762176672

17 gumbel l 0.8757788657498244 0.004180931347972064

18 genlogistic 0.9271418859244289 0.00436341796226457

19 exponpow 0.8009835209370719 0.01446574131903986

20 triang 0.9281272078919243 0.005844961128872467

21 gumbel l 0.9436945594122893 0.002304594366885253

22 gumbel l 0.9634153356519541 0.0035691706372364186

23 gumbel l 0.8781925334846985 0.008033100428903126

24 gumbel l 0.880076444212716 0.007348746894453678

25 gumbel l 0.5390299125061215 0.029026189080126642

26 cosine 0.9174576700168182 0.009996599791323852

27 hypsecant 0.9154379897466871 0.001985716379536679

28 t 0.862497906100369 0.004380951280221844

29 genlogistic 0.9904426741822332 0.00020417582289649301

30 genlogistic 0.9145607848204504 0.004286362540102615

31 johnsonsu 0.8577155510271587 0.015639107219258125

32 logistic 0.9568670919515789 0.00048548092600523874

33 logistic 0.9699372082406658 0.0067687241823444905

34 logistic 0.869541258200828 0.0018213612857060258

35 norm 0.9927893905884861 4.810579582638233e-05

36 johnsonsb 0.41347269668049436 0.013855126141793026

37 mielke 0.6162918421539887 0.02254579853768906

38 johnsonsu 0.8807851915227595 0.0021617832249472345

39 laplace 0.9593999629748642 0.0018213206624633743

40 gumbel l 0.794398350887153 0.007807995101161344

41 t 0.94329378397442 0.0032684283604215826

42 t 0.9029677316348466 0.0019352326836483402

43 johnsonsu 0.6499979788163011 0.0072649902279005585

44 johnsonsu 0.5374690241757711 0.00909830669989891

45 t 0.8877562278922329 0.0056480792834288415

46 johnsonsu 0.7947868163932238 0.007974199596783759

47 t 0.8828838219572928 0.005957322985256405

48 t 0.8945656809446928 0.01101917180823975

49 johnsonsu 0.938888126286908 0.000450928654775166

50 johnsonsu 0.31116767130984946 0.0028937829036628647

51 johnsonsu 0.3634217224405363 0.0041477779331493166

Table 4.14: Fitness distributions with highest probabilities for Light!
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Simulation ID Distribution Probability Variance

0 nakagami 0.9617778620630681 0.0022034024723984217

1 kstwobign 0.8076112746759581 0.020504629503767226

2 invgauss 0.9879434119107356 0.0004960603443985757

3 invgauss 0.974773357080098 0.00014949390355836894

4 invgamma 0.9741829714439085 0.0003347902935718133

5 �sk 0.9876688262879396 0.0011849128292761486

6 foldnorm 0.9800967453491569 0.001206238590510132

7 pearson3 0.8651120474145587 0.0043693254390830254

8 pearson3 0.991484959858993 0.0004568552145565321

9 alpha 0.929941390709897 0.0031886865899066114

10 gumbel l 0.9439925593026568 0.010346871230727011

11 triang 0.9877449862129872 0.0016202339016825984

12 logistic 0.9658299783249955 0.0012585407314876758

13 maxwell 0.9468977064255011 0.012506236386820765

14 pearson3 0.8761802868998224 0.004133135147760277

15 logistic 0.9714122242752623 0.00019767655217727903

16 �sk 0.9911273439542747 9.940043252892347e-05

17 gumbel r 0.9419338286603937 0.004072630531680844

18 �sk 0.9934261239435773 0.00021253441682410145

19 logistic 0.9194713307161462 0.008732093687188825

20 recipinvgauss 0.8800962520613735 0.004839900471339152

21 pearson3 0.8886334978235041 0.002351700439838416

22 recipinvgauss 0.8833203342379535 0.003688277824849833

23 kstwobign 0.8514902903938669 0.013322849806302864

24 alpha 0.99720244505233 6.035110971398484e-05

25 �sk 0.9284824507244573 0.006313445528118943

26 �sk 0.9522770003844694 0.0021188930420488012

27 johnsonsu 0.8653407156596093 0.007560727139426593

28 gumbel r 0.9924369247701756 0.000642660552944752

29 exponweib 0.9311900318859945 0.011306914479790356

30 �sk 0.9744461044737782 0.0007159568693076185

31 laplace 0.7984431453832084 0.0179269983186282

32 kstwobign 0.919768720145005 0.007941456793333917

33 �sk 0.8573661870047179 0.0015843209309802319

34 triang 0.8764614148840782 0.022512970498172857

35 frechet r 0.9939511034853605 0.0001067619306412006

36 loggamma 0.8649457604659332 0.0024778374770503646

37 beta 0.9993940998719016 6.703583160836755e-06

38 dweibull 0.9973200711580539 0.00012662304644292548

39 kstwobign 0.8968434761920221 0.003030950811692425

40 invgamma 0.9988570186729768 1.0483160438172558e-05

41 �sk 0.988627824888699 0.0004739124202708429

42 logistic 0.8881924650623545 0.0024446002790771528

43 invweibull 0.8984746782322913 0.013592484158370777

44 �sk 0.9790462961838704 0.0009768172991250056

45 laplace 0.9799000648878511 0.0008795266137496885

46 powerlognorm 0.9717785994788231 0.001601733279212662

47 maxwell 0.9924127517430433 0.000544515548733541

48 invgauss 0.9954404647913239 0.0002402348974152441

49 powerlognorm 0.8849309198574339 0.022029351575410437

50 genextreme 0.9909888313499238 0.0014655554493532993

51 �sk 0.9808173757784846 0.0005162387606615242

Table 4.15: Diversity distributions with highest probabilities for Light!
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4.3.2 Description of Distributions

The three most common distributions from the Light! problem are discussed in this
chapter. Formulas and graphs for Cumulative Distribution Function (CDF) and
Probability Density Function (PDF) are described as well. Parameters for each
distribution are varied and show how the shape of them will be changed. CDFs
are lettered with capital F(x) and PDFs with small f(x). Both functions have the
relation through derivative and integration. So the CDF of a distribution is de�ned
as the area of PDF. The area of a distribution equals between 0 and 1 because a
negative probability and higher than 1 is impossible.

4.3.2.1 Gumbel l

Equation 4.2 and Equation 4.3 describe CDF and PDF each as well. µ and β are
the parameters and x the abscissa. Graphical presentation of both equations are
visible in Figure 4.10 and Figure 4.11.

F (x;µ, β) = exp(−exp(−x− µ
β

)) (4.2)

f(x;µ, β) =
1

β
· exp(−x− µ

β
) · exp(−exp(−x− µ

β
)) (4.3)

Figure 4.10: Left sided Gumbel CDF
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Figure 4.11: Left sided Gumbel PDF

4.3.2.2 Fisk

Another frequently distribution from the statistical results is Fisk. Equation 4.4
and Equation 4.5 show the mathematical description with parameters α and β. x
represents the argument for x-axes. Figure 4.12 and Figure 4.13 show, how you can
set the graphical curve by adjusting β.

F (x;α, β) =
1

1 + ( x
α
)−β

=
( x
α
)−β

1 + ( x
α
)−β

=
xβ

aβ + xβ
(4.4)

where x > 0, α > 0, β > 0

f(x;α, β) =
(β
α
) · ( x

α
)β−1

(1 + ( x
α
)β)2

(4.5)
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Figure 4.12: Fisk CDF

Figure 4.13: Fisk PDF
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4.3.2.3 Logistic

In the logistic distribution. s shows the scale and µ as location of value in Equa-
tion 4.6 and Equation 4.7. Figure 4.14 shows the CDF and Figure 4.15 the PDF for
logistic distribution.

F (x;µ, s) =
1

1 + exp(−x−µ
s
)
=

1

2
+

1

2
· tanh(x− µ

2s
) (4.6)

f(x;µ, s) =
exp(−x−µ

s
)

s · (1 + exp(−x−µ
s
))2

=
1

s · (exp(x−µ
2s

) + exp(−x−µ
2s

))2
(4.7)

Figure 4.14: Logistic CDF

50



Figure 4.15: Logistic PDF

4.3.2.4 Discussion

By adjusting the parameters of each distribution you can set the width of PDF and
steepness of CDF. It is noticeable how the external shape changes. The Gumbel
distribution tends actually towards the left. If β gets increased, the shape of PDF
shows a stronger tendency. The same behavior, but right sided shows the Fisk
distribution. If β in this case gets increased, the curve has a more pointed shape
and gets narrower. Only the Logistic distribution shows a centralized behavior and
reminds more on the Gaussian distribution. s determines the height of curve and
the mean value µ is in all three situations 0.0. By knowing the distribution of
simulation results you can investigate the behavior of your simulations with the
modi�ed SSCEA2D in a statistical way. Of course many distributions are quite
similar with others, but you have to consider how many parameters your distribution
has. It makes a di�erence, if two or four parameters are necessary for a distribution
and how high the probability is. Both has to be considered for correctly identifying
a distribution. Once a distribution has been identi�ed correctly, it gives us the
possibility to predict the success of evolving an intended result with an EA.
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4.4 Soccer tournament

In this section are the results from all soccer simulations from Table 4.2 applied
for a tournament. From each ID, the best solution was selected and everyone plays
against every team. 16 teams are present and all scores are visible in Table 4.16.
The number of soccer matches for a full tournament can be calculated with the
formula below as follows:

N = n · (n− 1) · 1
2

(4.8)

N is the sum of matches and n shows the number of teams in Equation 4.8. In
this case, the result equals 120 with 16 teams.
For a realistic simulation, each team consists of 11 players, but an abridged playing
time of 180s. When during this time-span a goal will be shot, this team wins the
actual match. If the ball gets for example stuck by the soccer players or no goal will
be shot in general and the time-span is over, the match ends in a draw.

Team Points Team Points

1A 4 1B 3
2A 4 2B 1
3A 0 3B 0
4A 3 4B 5
5A 7 5B 0
6A 0 6B 0
7A 5 7B 4
8A 5 8B 1

Table 4.16: Points table for soccer teams

The results in Table 4.16 show how often each team has won in the tournament.
Seed 12345 reached more goals than seed 11111 (however with random neighbor-
hood). With this comparison is proved, that not only obstacles and high diversity
in�uence the soccer team. Even the seed and which kind of neighborhood are essen-
tial. Also we can see with these results less goals with grid neighborhood. Team 3A
and 3B were not good playing teams because the high diversity and large amount of
obstacles a�ected the intelligence of each player and nobody considered what hap-
pens left and right. So if they lost the ball, they ran by and did not try to get the
ball again.

52



Chapter 5

Conclusions and outlook

This master thesis deals with the existing SSCEA2D with new modi�cations. Pur-
pose of these experiments was for researching new and high e�cient solutions in
SOSs. For structuring the essential parts in this research, several research ques-
tions have been set up. In the following are the responding answers and solutions
discussed. The research questions are repeated as follows:

1. How do �tness and diversity change by rectangular grid?
It depends on the population size (width, height, area) and which kind of
neighborhood (grid or random) is used in the simulation. We cannot con�rm,
that a larger height or width by same population size improves or impairs the
evolution. More important is, how many simulations and how many seeds were
used. Grid neighborhoods have always a di�erent evolution behavior by square
and adjusting width/height. Neighbors, whose are set randomly show by same
population size (without obstacles) the same �tness and diversity values.

2. Do integrated obstacles in�uence the evolution in the grid?
Yes. Obstacles play specially in grid neighborhoods a signi�cant role. The
higher the percentage of obstacles inside the grid is integrated, the scattering
in absolute �tness increases and the average diversity as well. We noticed these
properties in both problems. Population size is not immediately the same if
obstacles are integrated and have to be always considered.

3. Which conditions yield the highest �tness and/or average diversity?
Not only the population size and integrated obstacles in�uence the evolution.
Also a initial condition (seed) can reach high �tness and average diversity
solutions. In our case we found out, that the simulation run 6 with 5x15 grid
(11 obstacles) gets the maximum �tness. Simulation 3 and 34 give the closest
results for average diversity (FMN and TLNN). Simulation 8 has the lowest
scattering and highest median for FMN and by TLNN are the runs 47 and 48
with these properties.
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4. Does the new developed system work more e�ciently compared to
the existing algorithm?
Yes. Obstacles can clearly a�ect the evolution in SSCEA2D. By adjusting
width and height a higher or lower �tness/diversity can expected. With ob-
stacles we are able to increase the diversity very strongly because of individual
restrictions (more di�erent solutions cause high diversity).

5. How is the resulting distributed?
Since a large proportion of distributions are very similar, the number of pa-
rameters was taken into account for each simulation. The fewer parameters,
the more likely this distribution is. The reason for this assumption is that
with several parameters it would be easier to replicate this mathematical dis-
tribution. Also the probability of each distribution was considered. If the
probability was high enough and the number of parameters kept as low as
possible, then this distribution was chosen. In the simulations of this master
thesis the left-sided Gumbel, Fisk and Logistic were most frequently evaluated.

It follows that the methods and representations in FREVO have potential for
evolving SOSs. Through this advanced development of EA we have new possibilities
for developing SOSs with SSCEA2D. This master thesis gave an insight into this
matter and potential for further developments in this area.
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Appendix A

Setting obstacles, patterns,

parameters and plotting diversity

1 package CEA2D;
2
3 import java.util.Hashtable;
4
5 // import net.jodk.lang.FastMath;
6 import core.XMLFieldEntry;
7 import utils.NESRandom;
8
9 /∗∗

10 ∗ Storage of parameters for {@link CEA2D} method.
11 ∗
12 ∗ @author Sergii Zhevzhyk
13 ∗/
14 public class Parameters {
15
16 /∗∗
17 ∗ number of representations in the population
18 ∗/
19 public int POPULATIONSIZE;
20 /∗∗
21 ∗ mode how the neighborhood of a member is de�ned
22 ∗/
23 public int NEIGHBOURHOODMODE;
24 /∗∗
25 ∗ number of generations
26 ∗/
27 public int GENERATIONS;
28 /∗∗
29 ∗ interval between two intermediate saves
30 ∗/
31 public int SAVEINTERVAL;
32
33 /∗∗
34 ∗ de�nes the shape of the curve which represents the correlation between the
35 ∗ rank of the �tness in the Neighborhood and the severity of the mutation.
36 ∗ This curve has the formula f=100∗r^a. Where f is the severity of mutation, a
37 ∗ is MUTATIONSEVERITYCURVE and r is the rank of the �tness in the neighborhood
38 ∗ divided by the number of neighbors
39 ∗/
40 public int NUMBEROFNEIGHBORS;
41
42 /∗∗
43 ∗ de�nes how many Members are elite. The percentage of elite−members is
44 ∗ probably not that high because if a member is elite is not calculated over
45 ∗ the whole �eld but only in his neighborhood. And so it is possible, that a
46 ∗ member is above this percentage in the neighborhood of one of his neighbours
47 ∗ but not in his own
48 ∗/
49 public �oat PERCENTELITE;
50
51 /∗∗
52 ∗ de�nes how many Generations an elite−member must exist
53 ∗/
54 public int MINIMUMLIFETIMEELITE;
55
56 /∗∗
57 ∗ de�nes the severity of the mutation</br>
58 ∗ 0 ...... representation does not change</br>
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59 ∗ 100 .. a totally new representation is generated
60 ∗/
61 public �oat MUTATIONSEVERITY;
62
63 /∗∗
64 ∗ de�nes the probability of the mutation</br>
65 ∗ 0 ...... representation does not change</br>
66 ∗ 1 .. everything changes
67 ∗/
68 public �oat MUTATIONPROBABILITY;
69
70 /∗∗
71 ∗ de�nes how many representations that are not elite create a mutation of a
72 ∗ random elite−neighbor
73 ∗/
74 public int PERCENTMUTATEELITE;
75
76 /∗∗
77 ∗ de�nes how many representations that are not elite create an o�spring with
78 ∗ a random elite−neighbor
79 ∗/
80 public int PERCENTXOVERELITE;
81
82 /∗∗
83 ∗ The method which is using the current parameters
84 ∗/
85 private CEA2D method;
86
87 public Parameters(CEA2D method) {
88 if (method == null) {
89 throw new NullPointerException();
90 }
91
92 this.method = method;
93 }
94
95 // rectangular grid for representation
96 public int POPULATIONFIELDSIZE_HEIGHT;
97 public int POPULATIONFIELDSIZE_WIDTH;
98
99 // obstacles in the grid for harder evolution

100 public int OBSTACLE_PATTERN;
101 public int OBSTACLES;
102
103 /∗∗
104 ∗ Initialize parameters from method's properties
105 ∗
106 ∗ @param properties properties of the method
107 ∗/
108 public void initialize (Hashtable<String, XMLFieldEntry> properties) {
109 // Get properties
110
111 // de�ne the length of the population grid
112 XMLFieldEntry pop_height = properties.get("populationsize_height");
113 POPULATIONFIELDSIZE_HEIGHT = Integer.parseInt(pop_height.getValue());
114
115 // de�ne the width of the population grid
116 XMLFieldEntry pop_width = properties.get("populationsize_width");
117 POPULATIONFIELDSIZE_WIDTH = Integer.parseInt(pop_width.getValue());
118
119 XMLFieldEntry neighborhoodmode = properties.get("neighbourhoodmode");
120 NEIGHBOURHOODMODE = Integer.parseInt(neighborhoodmode.getValue());
121
122 XMLFieldEntry generations = properties.get("generations");
123 GENERATIONS = Integer.parseInt(generations.getValue());
124
125 XMLFieldEntry saveint = properties.get("saveinterval");
126 SAVEINTERVAL = Integer.parseInt(saveint.getValue());
127
128 XMLFieldEntry percentelite = properties.get("percentelite");
129 PERCENTELITE = Integer.parseInt(percentelite.getValue());
130
131 XMLFieldEntry mutationseverity = properties.get("mutationseverity");
132 MUTATIONSEVERITY = Float.parseFloat(mutationseverity.getValue());
133
134 XMLFieldEntry mutationprobability = properties.get("mutationprobability");
135 MUTATIONPROBABILITY = Float.parseFloat(mutationprobability.getValue());
136
137 XMLFieldEntry percentmutateelite = properties.get("percentmutateelite");
138 PERCENTMUTATEELITE = Integer.parseInt(percentmutateelite.getValue());
139
140 XMLFieldEntry percentxoverelite = properties.get("percentxoverelite");
141 PERCENTXOVERELITE = Integer.parseInt(percentxoverelite.getValue());
142
143 // prede�ned obstacle−patterns
144 XMLFieldEntry obstacle_pattern = properties.get("obstacle−pattern");
145 OBSTACLE_PATTERN = Integer.parseInt(obstacle_pattern.getValue());
146
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147 // number of obstacles
148 XMLFieldEntry random_obstacles = properties.get("random obstacles");
149 OBSTACLES = Integer.parseInt(random_obstacles.getValue());
150
151 // calculate the area of the grid
152 POPULATIONSIZE = (int) POPULATIONFIELDSIZE_HEIGHT ∗ POPULATIONFIELDSIZE_WIDTH;
153
154 }
155
156 /∗∗
157 ∗ Gets the generator of random numbers
158 ∗
159 ∗ @return the instance of {@link NESRandom} class for generating of random
160 ∗ numbers
161 ∗/
162 public NESRandom getGenerator() {
163 NESRandom generator = method.getRandom();
164 if (generator == null) {
165 throw new NullPointerException();
166 }
167 return generator;
168 }
169 }

Listing A.1: Parameters.java
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1 package CEA2D;
2
3 import java.util.ArrayList;
4 import java.util. Iterator ;
5 import java.util.List ;
6
7 import org.dom4j.Document;
8 import org.dom4j.Node;
9

10 import CEA2D.Member.replaceFunction;
11 import net.jodk.lang.FastMath;
12 import utils.NESRandom;
13 import core.AbstractRepresentation;
14 import core.ComponentXMLData;
15
16 /∗∗
17 ∗ The class population represents the whole population for the evolutionary
18 ∗ algorithm SSEA2D. It contains all the representations and the function to
19 ∗ evolve a new generation.
20 ∗
21 ∗ @author Thomas Dittrich
22 ∗/
23
24 public class Population {
25
26 Member[] members;
27 Parameters parameters;
28 long randomNeighborhoodSeed;
29 private ComponentXMLData representation;
30 private int inputnumber;
31 private int outputnumber;
32
33 private double numElite;
34 private double numMutate;
35 private double numXOver;
36 private double numRenew;
37
38 private double e�ectivityElite ;
39 private double e�ectivityMutate;
40 private double e�ectivityXOver;
41 private double e�ectivityRenew;
42
43 public double getNumElite() {
44 return numElite;
45 }
46
47 public double getNumMutate() {
48 return numMutate;
49 }
50
51 public double getNumXOver() {
52 return numXOver;
53 }
54
55 public double getNumRenew() {
56 return numRenew;
57 }
58
59 public double getE�ectivityElite() {
60 return e�ectivityElite ;
61 }
62
63 public double getE�ectivityMutate() {
64 return e�ectivityMutate;
65 }
66
67 public double getE�ectivityXOver() {
68 return e�ectivityXOver;
69 }
70
71 public double getE�ectivityRenew() {
72 return e�ectivityRenew;
73 }
74
75 int [][] obs_pattern;
76
77 /∗∗
78 ∗
79 ∗ @param representation ComponentXMLdata which is used to create the Members.
80 ∗ If this constructor is called in a subclass of
81 ∗ AbstractRepresentation the variable representation
82 ∗ should be handed over
83 ∗ @param parameters Instance which holds the properties for each member.
84 ∗/
85 public Population(ComponentXMLData representation, Parameters parameters, int inputnumber, int outputnumber,
86 CEA2D cea2d) {
87 this.parameters = parameters;
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88 this.representation = representation;
89 this.inputnumber = inputnumber;
90 this.outputnumber = outputnumber;
91
92 cea2d.createObstaclePattern();
93 obs_pattern = cea2d.getObstaclePattern();
94 int nummembers = 0;
95
96 for (int x = 0; x < parameters.POPULATIONFIELDSIZE_WIDTH; x++) {
97 for (int y = 0; y < parameters.POPULATIONFIELDSIZE_HEIGHT; y++) {
98 if (obs_pattern[x][y] != 1000) {
99 obs_pattern[x][y] = nummembers++;

100 }
101 }
102 }
103
104 members = new Member[nummembers];
105
106 for (int i = 0; i < members.length; i++) {
107 members[i] = new Member(representation, parameters, inputnumber, outputnumber);
108 }
109
110 if (parameters.NEIGHBOURHOODMODE == 1) {
111 SetGridneighborhood();
112 } else if (parameters.NEIGHBOURHOODMODE == 2) {
113 randomNeighborhoodSeed = parameters.getGenerator().getSeed();
114 SetRandomneighborhood(8);
115 } else {
116 SetGridneighborhood();
117 }
118 }
119
120 public Population(ComponentXMLData representation, Parameters parameters, int inputnumber, int outputnumber,
121 ArrayList<AbstractRepresentation> population, Document doc) {
122 this.parameters = parameters;
123 this.inputnumber = inputnumber;
124 this.outputnumber = outputnumber;
125
126 // members = new Member[parameters.POPULATIONFIELDSIZE_HEIGHT ∗
127 // parameters.POPULATIONFIELDSIZE_WIDTH];
128 members = new Member[population.size()];
129 for (int i = 0; i < members.length; i++) {
130 members[i] = new Member(population.get(i), parameters);
131 }
132
133 // get population root node
134 Node dpopulations = doc.selectSingleNode("/frevo/populations");
135 // get population size
136 List<?> npops = dpopulations.selectNodes(".//population");
137 Iterator<?> it = npops.iterator();
138 while (it.hasNext()) {
139 Node pop = (Node) it.next();
140 this.randomNeighborhoodSeed = pop.numberValueOf("./@randomNeighborhoodSeed").longValue();
141 }
142
143 if (parameters.NEIGHBOURHOODMODE == 1) {
144 SetGridneighborhood();
145 } else if (parameters.NEIGHBOURHOODMODE == 2) {
146 SetRandomneighborhood(8);
147 } else {
148 SetGridneighborhood();
149 }
150 }
151
152 /∗∗
153 ∗ Returns an ArrayList of IRepresentations which contains all the
154 ∗ IRepresentations of the Members
155 ∗
156 ∗ @return ArrayList of IRepresentation
157 ∗/
158
159 public ArrayList<AbstractRepresentation> getMembers() {
160 ArrayList<AbstractRepresentation> m = new ArrayList<AbstractRepresentation>();
161
162 for (Member me : members) {
163 m.add(me.rep);
164 }
165
166 return m;
167 }
168
169 /∗∗
170 ∗ Evolves the IRepresentation of every member according to the evolution−rules
171 ∗/
172 public void evolve(Step step) throws Exception {
173 NESRandom rand = parameters.getGenerator();
174
175 // get di� to all neighbors
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176 for (int i = 0; i < members.length; i++) {
177 members[i]. di� = 0;
178 int j = 0;
179 double di� = 0.0;
180 for (Member n : members[i].neighbors) {
181 if (n.rep.getFitness() >= members[i].rep.getFitness()) {
182 di� += members[i].rep.di�To(n.rep);
183 j++;
184 }
185 }
186 members[i]. di� = j > 0 ? di� / j : 0.0;
187 }
188
189 AbstractRepresentation[] newmembers = new AbstractRepresentation[members.length];
190 numElite = 0;
191 numMutate = 0;
192 numXOver = 0;
193 numRenew = 0;
194 int numEliteElite = 0;
195 int numMutateElite = 0;
196 int numXOverElite = 0;
197 int numRenewElite = 0;
198
199 for (int i = 0; i < members.length; i++) {
200 members[i].rep.setFitness(members[i].rep.getFitness() + ((double) i + 1) / 1e6);
201 }
202
203 for (int i = 0; i < members.length; i++) {
204 switch (members[i].getCreatedBy()) {
205 case ELITE:
206 numElite++;
207 break;
208 case MUTATE:
209 numMutate++;
210 break;
211 case XOVER:
212 numXOver++;
213 break;
214 case RENEW:
215 numRenew++;
216 break;
217 }
218
219 ArrayList<AbstractRepresentation> neighborhood = new ArrayList<AbstractRepresentation>();
220
221 for (Member n : members[i].neighbors) {
222 neighborhood.add(n.rep);
223 }
224 neighborhood.add(members[i].rep);
225
226 step.getRanking().sortCandidates(neighborhood, step.getProblemData(), rand);
227
228 int rankneighborhood = neighborhood.indexOf(members[i].rep);
229 �oat re = parameters.PERCENTELITE / 100.0f;
230 int rankelite = (int) FastMath.rint(neighborhood.size() ∗ re);
231
232 AbstractRepresentation[] elite = new AbstractRepresentation[rankelite];
233
234 for (int j = 0; j < rankelite; j++) {
235 elite [ j ] = neighborhood.get(j);
236 }
237
238 if ( rankelite > 0 && (rankneighborhood < rankelite
239 || members[i].rep.getFitness() == elite[ rankelite − 1].getFitness ())) {
240
241 newmembers[i] = members[i].rep;
242
243 switch (members[i].getCreatedBy()) {
244 case ELITE:
245 numEliteElite++;
246 break;
247 case MUTATE:
248 numMutateElite++;
249 break;
250 case XOVER:
251 numXOverElite++;
252 break;
253 case RENEW:
254 numRenewElite++;
255 break;
256 }
257 members[i].setCreatedBy(replaceFunction.ELITE);
258
259 } else {
260 int geneticoperationrand = rand.nextInt((int) (100 − parameters.PERCENTELITE));
261 if (geneticoperationrand < parameters.PERCENTMUTATEELITE) {
262 if ( rankelite > 0)
263 newmembers[i] = elite[rand.nextInt(rankelite )]. clone ();
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264 else
265 newmembers[i] = members[i].rep;
266 newmembers[i].mutate(parameters.MUTATIONSEVERITY, parameters.MUTATIONPROBABILITY, 1);
267 members[i].setCreatedBy(replaceFunction.MUTATE);
268 } else if (geneticoperationrand < parameters.PERCENTXOVERELITE + parameters.PERCENTMUTATEELITE) {
269 newmembers[i] = members[i].rep.clone();
270 if ( rankelite > 0)
271 newmembers[i].xOverWith(elite[rand.nextInt(rankelite)], 1);
272 else
273 newmembers[i].xOverWith(neighborhood.get(rand.nextInt(neighborhood.size())), 1);
274 members[i].setCreatedBy(replaceFunction.XOVER);
275 } else {
276 newmembers[i] = representation.getNewRepresentationInstance(inputnumber, outputnumber,
277 parameters.getGenerator());
278 members[i].setCreatedBy(replaceFunction.RENEW);
279 }
280 }
281 }
282
283 // copy the new members into the population
284 for (int i = 0; i < members.length; i++) {
285 members[i].rep = newmembers[i];
286 }
287 for (int i = 0; i < members.length; i++) {
288 // System.out.println("Zeile 400, i: " + i);
289 if (members[i].rep.isEvaluated()) {
290 members[i].rep.setFitness(members[i].rep.getFitness() − ((double) i + 1) / 1e6);
291
292 }
293
294 }
295 e�ectivityElite = numElite == 0 ? 0 : ((double) numEliteElite) / ((double) numElite);
296 e�ectivityMutate = numMutate == 0 ? 0 : ((double) numMutateElite) / ((double) numMutate);
297 e�ectivityXOver = numXOver == 0 ? 0 : ((double) numXOverElite) / ((double) numXOver);
298 e�ectivityRenew = numRenew == 0 ? 0 : ((double) numRenewElite) / ((double) numRenew);
299
300 }
301 /∗∗
302 ∗ Sets the neighbors for every member. The Neighbors of a member are those
303 ∗ which are adjacent in the grid
304 ∗/
305 public void SetGridneighborhood() {
306 // add width and height for rectangular grids
307 int �eldheight = parameters.POPULATIONFIELDSIZE_HEIGHT;
308 int �eldwidth = parameters.POPULATIONFIELDSIZE_WIDTH;
309
310 for (int x0 = 0; x0 < �eldwidth; x0++) {
311 for (int y0 = 0; y0 < �eldheight ; y0++) {
312 for (int x1 = −1; x1 <= 1; x1++) {
313 for (int y1 = −1; y1 <= 1; y1++) {
314 if (x1 != 0 || y1 != 0) {
315 int x = (x0 + x1 + �eldwidth) % �eldwidth;
316 int y = (y0 + y1 + �eldheight) % �eldheight ;
317
318 if (obs_pattern[x0][y0] != 1000 && obs_pattern[x][y] != 1000) {
319 members[obs_pattern[x0][y0]].neighbors.add(members[obs_pattern[x][y]]);
320 }
321 }
322 }
323 }
324 }
325 }
326 }
327 /∗∗
328 ∗ Sets the neighbors for every member. The Neighbors of a member are selected
329 ∗ by random
330 ∗/
331 public void SetRandomneighborhood(int numberofneighbors) {
332 int �eldheight = parameters.POPULATIONFIELDSIZE_HEIGHT;
333 int �eldwidth = parameters.POPULATIONFIELDSIZE_WIDTH;
334
335 NESRandom localRandom = new NESRandom(randomNeighborhoodSeed);
336 for (int x0 = 0; x0 < �eldwidth; x0++) {
337 for (int y0 = 0; y0 < �eldheight ; y0++) {
338 for (int i = 0; i < numberofneighbors; i++) {
339 int randValue = localRandom.nextInt(members.length);
340
341 if ((obs_pattern[x0][y0] != 1000) && (obs_pattern[x0][y0] != randValue))
342 members[obs_pattern[x0][y0]].neighbors.add(members[randValue]);
343 }
344 }
345 }
346 }
347 }

Listing A.2: Population.java
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1 package CEA2D;
2
3 import java.awt.Color;
4 import java.awt.GridLayout;
5 import java.text.DecimalFormat;
6 import java.util.ArrayList;
7 import java.util.Hashtable;
8 import java.util. Iterator ;
9 import java.util.List ;

10
11 import javax.swing.JFrame;
12
13 import main.FrevoMain;
14
15 import org.dom4j.Document;
16 import org.dom4j.DocumentFactory;
17 import org.dom4j.Element;
18 import org.dom4j.Node;
19
20 import utils.NESRandom;
21 import utils.StatKeeper;
22 import core.AbstractMethod;
23 import core.AbstractRanking;
24 import core.AbstractRepresentation;
25 import core.ComponentType;
26 import core.ComponentXMLData;
27 import core.PopulationDiversity;
28 import core.ProblemXMLData;
29 import core.XMLFieldEntry;
30 import core.XMLMethodStep;
31 import frevoutils.JGridMap.Display;
32 import frevoutils.JGridMap.JGridMap;
33
34 /∗∗
35 ∗ The class SSEA2D (Spatially Structured Evolutionary Algorithm 2D) is a
36 ∗ evolutionary algorithm that considers only the neighbors of every
37 ∗ representation to decide if the representation remains in the next
38 ∗ generation, mutates, creates an o�spring with another representation or is
39 ∗ replaced by a totally new representation. The representations are arranged in
40 ∗ a two dimensional grid, where every representation has 8 neighbors.
41 ∗
42 ∗ @author Thomas Dittrich
43 ∗
44 ∗/
45 public class CEA2D extends AbstractMethod {
46
47 /∗∗
48 ∗ Parameters of the method for current experiment
49 ∗/
50 private Parameters parameters;
51
52 private StatKeeper b�tness;
53 private StatKeeper numSimulations;
54
55 // Statistics about population diversity
56 private StatKeeper diversity;
57 private StatKeeper maxDiversity;
58 private StatKeeper minDiversity;
59 private StatKeeper standardDeviation;
60
61 private StatKeeper numElite;
62 private StatKeeper numMutate;
63 private StatKeeper numXOver;
64 private StatKeeper numRenew;
65
66 private StatKeeper e�ectivityElite ;
67 private StatKeeper e�ectivityMutate;
68 private StatKeeper e�ectivityXOver;
69 private StatKeeper e�ectivityRenew;
70
71 private Population pop;
72
73 private double min�tness;
74
75 private boolean iniOK = false;
76
77 Display gridFrame;
78 JGridMap �tnessgrid;
79
80 public �nal static Color gray = new Color(153, 153, 153); // gray color for obstacles
81 public �nal static Color white = new Color(255, 255, 255); // de�ne white color
82 public �nal static Color black = new Color(0, 0, 0); // de�ne black color
83
84 public int [][] obstacle_array;
85
86 /∗ Constructs a new SSEA2D object ∗/
87 public CEA2D(NESRandom random) {
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88 super(random);
89 parameters = new Parameters(this);
90 }
91
92 public int [][] getObstaclePattern() {
93 return obstacle_array;
94 }
95
96 public void createObstaclePattern() {
97 // de�ne patterns for obstacles (at least 10∗10 grid for case 1, 2 and 3!)
98
99 obstacle_array = new int[parameters.POPULATIONFIELDSIZE_WIDTH][parameters.POPULATIONFIELDSIZE_HEIGHT];

100
101 switch (parameters.OBSTACLE_PATTERN) {
102
103 case 1:
104 if (parameters.POPULATIONFIELDSIZE_WIDTH >= 10 && parameters.POPULATIONFIELDSIZE_HEIGHT >= 10) {
105 for (int i = 0; i < 7; i++) {
106 obstacle_array[i ][0] = 1000;
107 }
108 for (int i = 1; i < 6; i++) {
109 obstacle_array[i ][1] = 1000;
110 }
111 for (int i = 2; i < 5; i++) {
112 obstacle_array[i ][2] = 1000;
113 }
114 obstacle_array [3][3] = 1000;
115
116 for (int i = 5; i < 10; i++) {
117 obstacle_array[i ][9] = 1000;
118 }
119 for (int i = 6; i < 9; i++) {
120 obstacle_array[i ][8] = 1000;
121 }
122 obstacle_array [7][7] = 1000;
123 }
124
125 else {
126 for (int i = 0; i < parameters.POPULATIONFIELDSIZE_WIDTH; i++) {
127 for (int j = 0; j < parameters.POPULATIONFIELDSIZE_HEIGHT; j++) {
128 obstacle_array[i ][ j ] = 0;
129 }
130 }
131 }
132 break;
133
134 case 2:
135 // de�ne obstacle pattern 2
136 if (parameters.POPULATIONFIELDSIZE_WIDTH >= 10 && parameters.POPULATIONFIELDSIZE_HEIGHT >= 10) {
137 for (int i = 0; i < 10; i++) {
138 obstacle_array[i ][5] = 1000;
139 }
140 }
141
142 else {
143 for (int i = 0; i < parameters.POPULATIONFIELDSIZE_WIDTH; i++) {
144 for (int j = 0; j < parameters.POPULATIONFIELDSIZE_HEIGHT; j++) {
145 obstacle_array[i ][ j ] = 0;
146 }
147 }
148 }
149 break;
150
151 case 3:
152 if (parameters.POPULATIONFIELDSIZE_WIDTH >= 10 && parameters.POPULATIONFIELDSIZE_HEIGHT >= 10) {
153 for (int i = 0; i < 6; i++) {
154 for (int j = 0; j < 4; j++) {
155 obstacle_array[j ][ i ] = 1000;
156 }
157 }
158
159 for (int i = 6; i < 10; i++) {
160 for (int j = 5; j < 10; j++) {
161 obstacle_array[j ][ i ] = 1000;
162 }
163 }
164 } else {
165 for (int i = 0; i < parameters.POPULATIONFIELDSIZE_WIDTH; i++) {
166 for (int j = 0; j < parameters.POPULATIONFIELDSIZE_HEIGHT; j++) {
167 obstacle_array[i ][ j ] = 0;
168 }
169 }
170 }
171
172 break;
173
174 case 4:
175 default:
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176 for (int r = 0; r < parameters.OBSTACLES; r++) {
177 NESRandom rand = parameters.getGenerator(); // de�ne random numbers for randomly distributed obstacles
178 int obs_x = 0; // random numbers for rows
179 int obs_y = 0; // random numbers for columns
180
181 do {
182 obs_x = rand.nextInt(parameters.POPULATIONFIELDSIZE_WIDTH);
183 obs_y = rand.nextInt(parameters.POPULATIONFIELDSIZE_HEIGHT);
184
185 } while (obstacle_array[obs_x][obs_y] == 1000);
186
187 obstacle_array[obs_x][obs_y] = 1000;
188 }
189 break;
190 }
191 }
192
193 public void initialize () {
194 parameters. initialize (getProperties ());
195
196 // show �tness grid if in GUI mode
197 if (FrevoMain.isFrevoWithGraphics()) {
198 // initialize �tness grid
199 if (gridFrame == null) {
200 gridFrame = new Display(1, 1, "Spatial Fitness");
201 // gridFrame = new Display(parameters.POPULATIONFIELDSIZE_LENGTH,
202 // parameters.POPULATIONFIELDSIZE_WIDTH, "Spatial Fitness");
203 gridFrame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
204 gridFrame.setLocation(0, 0);
205 }
206 if ( �tnessgrid == null) {
207 �tnessgrid = new JGridMap(parameters.POPULATIONFIELDSIZE_WIDTH ∗ 20,
208 parameters.POPULATIONFIELDSIZE_HEIGHT ∗ 20, parameters.POPULATIONFIELDSIZE_WIDTH,
209 parameters.POPULATIONFIELDSIZE_HEIGHT, 2);
210
211 // a condition, if we have more obstacles than in the area
212 if (parameters.OBSTACLES >= parameters.POPULATIONFIELDSIZE_HEIGHT
213 ∗ parameters.POPULATIONFIELDSIZE_WIDTH) {
214 System.out.println("Number of obstacles is too high for the de�ned grid !");
215 System.out.println(
216 "Please enter next time a lower number than populationsize_length ∗ populationsize_width!");
217 parameters.OBSTACLES = 0;
218 System.out.println("Obstacles in the grid : " + parameters.OBSTACLES);
219 return;
220 }
221
222 else {
223 System.out.println("Obstacles in the grid : " + parameters.OBSTACLES);
224 }
225
226 // initialize color scale for �tness
227 // 0...white
228 // 1...red
229 // 50...yellow
230 // 99...green
231 // 1000...gray
232
233 for (int i = 0; i < 100; i++) {
234 int r = 0;
235 int g = 0;
236
237 if ( i < 50) {
238 r = 255;
239 g = i ∗ 255 / 50;
240 } else {
241 r = 255 − (i − 50) ∗ 255 / 50;
242 g = 255;
243 }
244
245 int color = r ∗ 65536 + g ∗ 256;
246
247 �tnessgrid .addColorToScale(i, new Color(color));
248 }
249 �tnessgrid .addColorToScale(1000, gray); // de�ne gray color for obstacles
250
251 }
252
253 gridFrame.setLayout(new GridLayout(1, 1));
254 gridFrame.add(�tnessgrid);
255 gridFrame.pack();
256 gridFrame.setVisible(true);
257 }
258 }
259
260 @Override
261 public void runOptimization(ProblemXMLData problemData, ComponentXMLData representationData,
262 ComponentXMLData rankingData, Hashtable<String, XMLFieldEntry> properties) {
263
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264 // initialize evolution
265 initialize ();
266
267 pop = new Population(representationData, parameters, problemData.getRequiredNumberOfInputs(),
268 problemData.getRequiredNumberOfOutputs(), this);
269
270 createStatistics ();
271
272 try {
273 Step step = new Step(problemData, rankingData);
274
275 // Iterate through generations
276 for (int generation = 0; generation < parameters.GENERATIONS; generation++) {
277
278 step.setGeneration(generation);
279
280 if (!evolve(step)) {
281 break;
282 }
283 }
284
285 } catch (InstantiationException e1) {
286 e1.printStackTrace();
287 } catch (Exception e) {
288 e.printStackTrace();
289 }
290
291 // indicate �nal progress
292 setProgress(100);
293
294 // closes the window which holds the �tness grid
295 if (FrevoMain.isFrevoWithGraphics()) {
296 if (gridFrame != null) {
297 gridFrame.dispose();
298 }
299 �tnessgrid = null;
300 gridFrame = null;
301 }
302 }
303
304 @Override
305 public void continueOptimization(ProblemXMLData problemData, ComponentXMLData representationData,
306 ComponentXMLData rankingData, Hashtable<String, XMLFieldEntry> properties, Document doc) {
307 // initialize evolution
308 initialize ();
309
310 // record the best �tness over the evolution
311 Node dpopulations = doc.selectSingleNode("/frevo/populations");
312 double best_�tness = Double.parseDouble(dpopulations.valueOf("./@best_�tness"));
313 int lastGeneration = Integer.parseInt(dpopulations.valueOf("./@generation"));
314 long randomseed = Long.parseLong(dpopulations.valueOf("./@randomseed"));
315 getRandom().setSeed(randomseed);
316
317 // load initial population(s)
318 ArrayList<ArrayList<AbstractRepresentation>> loadedPops = loadFromXML(doc);
319 if (loadedPops.size() != 1) {
320 System.err.println("Couldn't restore population from XML �le");
321 return;
322 }
323
324 pop = new Population(representationData, parameters, problemData.getRequiredNumberOfInputs(),
325 problemData.getRequiredNumberOfOutputs(), loadedPops.get(0), doc);
326
327 createStatistics ();
328
329 try {
330 // evolve the whole population
331 Step step = new Step(problemData, rankingData);
332 pop.evolve(step);
333 step.setBestFitness(best_�tness );
334
335 // Iterate through generations
336 for (int generation = lastGeneration + 1; generation < parameters.GENERATIONS; generation++) {
337
338 step.setGeneration(generation);
339
340 if (!evolve(step)) {
341 break;
342 }
343 }
344
345 } catch (InstantiationException e1) {
346 e1.printStackTrace();
347 } catch (Exception e) {
348 e.printStackTrace();
349 }
350
351 // indicate �nal progress
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352 setProgress(100);
353
354 // closes the window which holds the �tness grid
355 if (FrevoMain.isFrevoWithGraphics()) {
356 gridFrame.dispose();
357 �tnessgrid = null;
358 gridFrame = null;
359 }
360 }
361
362 private boolean evolve(Step step) throws Exception {
363 // set progress
364 setProgress((�oat) step.getGeneration() / (�oat) parameters.GENERATIONS);
365
366 boolean doSave = false;
367
368 AbstractRanking ranking = step.getRanking();
369 // evaluates all members and calculates the best �tness
370 ArrayList<AbstractRepresentation> memberrepresentations = pop.getMembers();
371
372 int numSims = ranking.sortCandidates(memberrepresentations, step.getProblemData(),
373 new NESRandom(generator.getSeed()));
374
375 b�tness .add(memberrepresentations.get(0).getFitness());
376
377 if (memberrepresentations.get(0).getFitness() > step.getBestFitness()) {
378 step.setBestFitness(memberrepresentations.get(0).getFitness());
379 doSave = true;
380 }
381
382 numSimulations.add(numSims);
383
384 PopulationDiversity diversityCalc = new PopulationDiversity(pop.getMembers());
385 diversity .add(diversityCalc.getAverageDiversity());
386 maxDiversity.add(diversityCalc.getMaxDiversity());
387 minDiversity.add(diversityCalc.getMinDiversity());
388 standardDeviation.add(diversityCalc.getStandardDeviation());
389
390 numElite.add(pop.getNumElite());
391 numMutate.add(pop.getNumMutate());
392 numXOver.add(pop.getNumXOver());
393 numRenew.add(pop.getNumRenew());
394
395 e�ectivityElite .add(pop.getE�ectivityElite ());
396 e�ectivityMutate .add(pop.getE�ectivityMutate());
397 e�ectivityXOver.add(pop.getE�ectivityXOver());
398 e�ectivityRenew.add(pop.getE�ectivityRenew());
399
400 if (FrevoMain.isFrevoWithGraphics()) {
401 // shows the �tness of the whole population as a grid of
402 // colors, where red means bad �tness and green means good
403 // �tness
404 update�tnessgrid ();
405 }
406
407 // save periodically
408 if ((parameters.SAVEINTERVAL != 0) && (step.getGeneration() % parameters.SAVEINTERVAL == 0)) {
409 doSave = true;
410 }
411
412 // save last generation
413 if (step.getGeneration() == parameters.GENERATIONS − 1) {
414 doSave = true;
415 }
416
417 String �tnessstring ;
418 if (step.getProblemData().getComponentType() == ComponentType.FREVO_PROBLEM) {
419 �tnessstring = " (" + step.getBestFitness() + ")";
420 } else {
421 // multiproblem
422 �tnessstring = "";
423 }
424
425 long currentActiveSeed = getRandom().getSeed();
426 String �leName = getFileName(step.getProblemData(), step.getGeneration(), �tnessstring);
427 Element xmlLastState = saveResults(step.getGeneration());
428 xmlLastState.addAttribute("best_�tness", String.valueOf(step.getBestFitness()));
429 // save the last state of evaluation
430 XMLMethodStep state = new XMLMethodStep(�leName, xmlLastState, this.seed, currentActiveSeed);
431 setLastResults(state );
432
433 if (doSave) {
434 FrevoMain.saveResult(�leName, xmlLastState, this.seed, currentActiveSeed);
435 }
436
437 if (step.getBestFitness() >= step.getMaxFitness()) {
438 // �ll up remaining space in statkeeper with last value
439 if ( b�tness .length() != parameters.GENERATIONS) {
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440 int dif = parameters.GENERATIONS − b�tness.length();
441 double lastvalue = b�tness.getValues().get( b�tness .length() − 1);
442 for (int i = 0; i < dif; i++) {
443 b�tness .add(lastvalue);
444 }
445 }
446
447 return false;
448 }
449
450 if (handlePause()) {
451 // closes the window which holds the �tnessgrid
452 if (gridFrame != null)
453 gridFrame.dispose();
454 �tnessgrid = null;
455 gridFrame = null;
456 return false;
457 }
458
459 // mutates all members of the population according to the
460 // speci�ed mutation rules (only if it's not the last
461 // generation)
462 if (step.getGeneration() != parameters.GENERATIONS − 1) {
463 pop.evolve(step);
464 }
465
466 return true;
467 }
468
469 private String getFileName(ProblemXMLData problemData, int generation, String �tnessstring) {
470 DecimalFormat fm = new DecimalFormat("000");
471
472 return problemData.getName() + "_g" + fm.format(generation) + �tnessstring;
473 }
474
475 private static ArrayList<AbstractRepresentation> createList(Node nd) {
476 ArrayList<AbstractRepresentation> result = new ArrayList<AbstractRepresentation>();
477
478 ComponentXMLData representation = FrevoMain.getSelectedComponent(ComponentType.FREVO_REPRESENTATION);
479
480 try {
481 List<?> npops = nd.selectNodes("./∗");
482 Iterator<?> it = npops.iterator();
483 int size = npops.size();
484 int currentIndex = 0;
485 while (it.hasNext()) {
486 // set loading progress
487 FrevoMain.setLoadingProgress((�oat) currentIndex / size);
488
489 Node net = (Node) it.next();
490 size−−;
491 if ( size % 10 == 0)
492 size = size + (2 ∗ 2 − 4);
493 AbstractRepresentation member = representation.getNewRepresentationInstance(0, 0, null);
494 member.loadFromXML(net);
495 result .add(member);
496
497 currentIndex++;
498 }
499 } catch (Exception e) {
500 e.printStackTrace();
501 }
502
503 return result;
504 }
505
506 /∗∗ Saves all population data to a new XML element and returns it. ∗/
507 public Element saveResults(int generation) {
508 Element dpopulations = DocumentFactory.getInstance().createElement("populations");
509
510 dpopulations.addAttribute("count", String.valueOf(1));
511 dpopulations.addAttribute("generation", String.valueOf(generation));
512 dpopulations.addAttribute("randomseed", String.valueOf(this.getSeed()));
513
514 Element dpop = dpopulations.addElement("population");
515 dpop.addAttribute("randomNeighborhoodSeed", String.valueOf(pop.randomNeighborhoodSeed));
516
517 // sort candidates with decreasing �tness
518 ArrayList<AbstractRepresentation> members = pop.getMembers();
519
520 for (AbstractRepresentation n : members) {
521 n.exportToXmlElement(dpop);
522 }
523
524 return dpopulations;
525 }
526
527 @Override
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528 public ArrayList<ArrayList<AbstractRepresentation>> loadFromXML(Document doc) {
529 // �nal list to be returned
530 ArrayList<ArrayList<AbstractRepresentation>> populations = new ArrayList<ArrayList<AbstractRepresentation>>();
531
532 // get population root node
533 Node dpopulations = doc.selectSingleNode("/frevo/populations");
534
535 // get number of current generation
536 int currentGeneration = Integer.parseInt(dpopulations.valueOf("./@generation"));
537
538 // get population size
539 List<?> npops = dpopulations.selectNodes(".//population");
540 Iterator<?> it = npops.iterator();
541 while (it.hasNext()) {
542 Node pop = (Node) it.next();
543 ArrayList<AbstractRepresentation> pops = createList(pop);
544 populations.add(pops);
545 }
546 // Load the number of generations
547 XMLFieldEntry gensize = getProperties().get("generations");
548 if (gensize != null) {
549 int generations = Integer.parseInt(gensize .getValue());
550 // TODO check max �tness also
551 // set boolean value which shows possibility of continuation of experiment
552 // if maximum number of generations hasn't been reached.
553 setCanContinue(currentGeneration + 1 < generations);
554 }
555
556 return populations;
557 }
558
559 /∗∗
560 ∗ displays the �tness of the actual population in a Grid
561 ∗/
562
563 public void update�tnessgrid() {
564 // determine maximum and minimum �tness
565 ArrayList<AbstractRepresentation> rep = pop.getMembers();
566 double max�tness = rep.get(0).getFitness();
567 if (! iniOK) {
568 min�tness = rep.get(0).getFitness ();
569 }
570 for (AbstractRepresentation r : rep) {
571 if (r .isEvaluated()) {
572 if (r .getFitness() > max�tness) {
573 max�tness = r.getFitness ();
574 } else if (r .getFitness() < min�tness) {
575 min�tness = r.getFitness ();
576 }
577 }
578 }
579
580 // normalize �tness between 0 and 100
581 double k = 100.0 / (max�tness − min�tness);
582 double d = −(min�tness ∗ k);
583 // System.out.println("H: " + parameters.POPULATIONFIELDSIZE_HEIGHT + " W: " +
584 // parameters.POPULATIONFIELDSIZE_WIDTH);
585 // int [][] �tnessarray = new
586 // int[parameters.POPULATIONFIELDSIZE_WIDTH][parameters.POPULATIONFIELDSIZE_HEIGHT];
587
588 // 3−dimensional array for the �tness grid and obstacle grid
589 int [][][] three_dim = new int[parameters.POPULATIONFIELDSIZE_WIDTH][parameters.POPULATIONFIELDSIZE_HEIGHT][2];
590
591 for (int y = 0; y < parameters.POPULATIONFIELDSIZE_HEIGHT; y++) {
592 for (int x = 0; x < parameters.POPULATIONFIELDSIZE_WIDTH; x++) {
593 if (pop.obs_pattern[x][y] != 1000)
594 if (rep.get(pop.obs_pattern[x][y]).isEvaluated()) {
595 int norm�tness = (int) (rep.get(pop.obs_pattern[x][y]).getFitness() ∗ k + d);
596
597 three_dim[x][y][0] = norm�tness;
598 �tnessgrid .repaint ();
599 }
600
601 else {
602 three_dim[x][y][0] = 0;
603 }
604 else
605 three_dim[x][y][1] = pop.obs_pattern[x][y];
606 }
607 }
608 // show normalized �tness in �tness grid
609 �tnessgrid .setData(three_dim);
610 �tnessgrid .repaint ();
611 iniOK = true;
612 }
613
614 private void createStatistics () {
615 // b�tness = new StatKeeper(true, "Best Fitness ("+ FrevoMain.getCurrentRun() +
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616 // ")", "Generations");
617 b�tness = new StatKeeper(true, "Best �tness", "Generations");
618
619 numSimulations = new StatKeeper(true, "numSimulations" + FrevoMain.getCurrentRun(), "Generations");
620
621 diversity = new StatKeeper(true, "Diversity", "Generations");
622 maxDiversity = new StatKeeper(true, "Max. diversity", "Generations");
623 minDiversity = new StatKeeper(true, "Min. diversity", "Generations");
624 standardDeviation = new StatKeeper(true, "Deviation", "Generations");
625
626 numElite = new StatKeeper(true, "number of Elite", "Generations");
627 numMutate = new StatKeeper(true, "number of Mutation", "Generations");
628 numXOver = new StatKeeper(true, "number of XOver", "Generations");
629 numRenew = new StatKeeper(true, "number of Renew", "Generations");
630
631 e�ectivityElite = new StatKeeper(true, "e�ektivity of Elite", "Generations");
632 e�ectivityMutate = new StatKeeper(true, "e�ektivity of Mutation", "Generations");
633 e�ectivityXOver = new StatKeeper(true, "e�ektivity of XOver", "Generations");
634 e�ectivityRenew = new StatKeeper(true, "e�ektivity of Renew", "Generations");
635
636 // Collect best �tness
637 FrevoMain.addStatistics(b�tness , true);
638
639 // Collect diversity
640 FrevoMain.addStatistics(diversity , true);
641 }
642 }

Listing A.3: CEA2D.java
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Appendix B

Reading text �les for generating

boxplots

1 import matp lo t l ib . pyplot as p l t
2
3 f1 = open( "my_file1 . txt " , " r " )
4 data1 = [ ]
5 for l i n e in f 1 :
6 data1 . append ( f loat ( l i n e ) )
7 f1 . c l o s e ( )
8
9 f2 = open( "my_file2 . txt " , " r " )

10 data2 = [ ]
11 for l i n e in f 2 :
12 data2 . append ( f loat ( l i n e ) )
13 f2 . c l o s e ( )
14
15 data_to_plot = [ data1 , data2 ]
16
17 f i g , ax = p l t . subp lo t s ( )
18 ax . boxplot ( data_to_plot )
19
20 p l t . x l ab e l ( 'My_x_values ' )
21 p l t . y l ab e l ( 'My_y_values ' )
22 p l t . t i t l e ( 'My Box p l o t s ' )
23 p l t . show ( )

Listing B.1: boxplot.py
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Appendix C

New parameters for FREVO

interface

1 <?xml version="1.0" encoding="UTF−8"?>
2 <!DOCTYPE zion SYSTEM "..//IComponent.dtd">
3
4 <icomponent>
5 <con�g>
6 <entry key="classdir" type="STRING" value="CEA2D/CEA2D" />
7 <entry key="classname" type="STRING" value="CEA2D.CEA2D" />
8 <entry key="name" type="STRING" value="CEA2D" />
9 <entry key="description" type="STRING"

10 value="2−dimensional cellular Evolutionary Algorithm (cEA). The
11 cells /candidates are aligned on a NxN torus surface.
12 Note: If you wish a prede�ned obstacle pattern, please enter '1',
13 '2' or '3' in 'obstacle−pattern' (choose for them at least a
14 10∗10 grid, please !).' random−obstacles' means, that you can
15 enter a certain number of obstacles and they will be placed
16 randomly (even 0, so no obstacles). Enter for this mode '4'
17 in 'obstacle−pattern'. The grid−size for 'random−obstacles'
18 is not criticle ."></entry>
19 <entry key="image" type="STRING" value="CEA2D.png" />
20 <entry key="tags" type="STRING" value="CEA2D TAG" />
21 </con�g>
22 <properties>
23 <propentry key="generations" type="INT" value="200" />
24 <!−−− <propentry key="populationsize" type="INT" value="10" />−−>
25 <propentry key="populationsize_width" type="INT" value="10" />
26 <propentry key="populationsize_height" type="INT" value="10" />
27 <propentry key="obstacle−pattern" type="INT" value="0" />
28 <propentry key="random obstacles" type="INT" value="0" />
29 <propentry key="neighbourhoodmode" type="INT" value="1" />
30 <propentry key="saveinterval" type="INT" value="0" />
31 <propentry key="mutationseverity" type="FLOAT" value="0.3f" />
32 <propentry key="mutationprobability" type="FLOAT" value="1" />
33 <propentry key="percentmutateelite" type="INT" value="59" />
34 <propentry key="percentelite" type="INT" value="11" />
35 <propentry key="percentxoverelite" type="INT" value="30" />
36 </properties>
37 </icomponent>

Listing C.1: CEA2D.xml
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