
BAKKALAUREATSARBEIT

Graphical Development Environment
for Embedded Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Bakkalaureus der Technischen Informatik

unter der Leitung von

Univ.Ass. Dipl.-Ing. Dr.techn. Wilfried Elmenreich

Institut für Technische Informatik 182

durchgeführt von

Philipp Jahn und Thomas Polzer

Matr.-Nr. 0325871, 0325077

Wien, Baden

Wien, im September 2006 .

Graphical Development Environment
for Embedded Systems

A new tool, Graphical Microcontroller Programing (GMP), for program-
ming embedded systems graphically is presented in this thesis. The main
goal at the moment is to focus on 8-bit AVR controllers. Current graphical
development tools in this area have certain advantages and disadvantages.
We want to stress them out and show our design approach. As a result
of this thesis, we have developed a tool (GMP) to provide a dynamically
model-based approach, which should allow advanced users to build their
own libraries for certain controllers, and help novice users in getting started
with the programming of microcontrollers.

i

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Structure of the Thesis . 3

2 Concepts and Challenges 4

3 Related Work 5
3.1 GRAPE . 5
3.2 Eclipse, EMF, and GEF . 6

3.2.1 Eclipse modelling Framework (EMF) 6
3.2.2 Graphical Editing Framework (GEF) 7

3.3 TimeSys TimeStorm Integrated Development Environment (IDE) 7
3.4 TimeSys TimeStorm Linux Development Suite 8
3.5 TinyTD . 8
3.6 Generic Modeling Environment (GME) and GRATISII 9
3.7 Simulink . 11
3.8 LabVIEW . 13
3.9 LEGO MINDSTORMS NXT 15
3.10 Algorithmic builder . 17
3.11 Avidicy AVR C Compiler . 17
3.12 IAR Systems MakeApp and visualSTATE 20
3.13 Comparison and Summary . 23

3.13.1 Categorization . 24
3.13.2 Comparison Table . 25

4 Design Approach 26

5 Implementation 29
5.1 Details . 29
5.2 Installation . 31

6 Results and Discussion 34

7 Conclusion 35

A Appendix 36
A.1 Codegenerator Wait . 36
A.2 Codegenerator Ror . 37

ii

A.3 Codegenerator Interval . 38
A.4 Codegenerator Port . 41

Bibliography 46

iii

1 Introduction

The main issue of this thesis is to program embedded systems by means of
a graphical development environment. We will focus especially on simple low
cost 8-bit microcontrollers like the Atmel AVR series. We want to analyze
existing tools like the Generic Modeling Environment (GME) in combination
with GRATIS II, which provides a generic graphical environment, a parser and
a code generator for TinyOS. We also want to take a look on special AVR tools
as well as extensive and powerful products like Simulink and LabVIEW that
might be able to be adopted for our task.

The reason for this research is to avoid the intrinsic complexity of program-
ming embedded systems for implementing standard tasks on microcontroller
systems. This should be possible per drag and drop without writing a single
line of code. The big challenge is, that we need a fully dynamic environment
to be flexible enough to implement more complex components and not being
restricted to a limited number of possible applications or being limited to one
type of microcontroller.

Since the major part of microchips are used within embedded systems and
not for general purpose computers1, we assume that a tool which simplifies the
process of developing embedded systems will have a major impact on produc-
tivity.

1.1 Motivation and Objectives

Nowadays it becomes more and more important to speed up the development
processes in all branches of business to be competitive in commerce. Especially
embedded system development processes are more important and more com-
plex than ever before. A graphical development environment would be able to
abstract the development from the embedded target and make it possible for
the developer to focus on the developing process rather than the internals of
the target. Historically there have not been any graphical tools in this area.
At the very beginning machine code was written. The next step was to use an
assembler language to specify the applications. Today there are a lot of good

1http://www.embedded.com/1999/9905/9905turley.htm

1

1 Introduction 1.1 Motivation and Objectives

C compilers for microcontrollers available, so you can write C code without
generating too much overhead. In the last few years some basic approaches
for easier development with different kinds of graphical programming aspects
came up, which we will present in the next chapter [vH04b, vH04a].

The crucial points in the field of embedded systems are limited memory, small
or non existent long term storage, changing the target systems, debugging and
testing. If you want to use a certain operating system (OS) you first have to
check if the target system has enough memory, adept the OS and optimize the
code for size. If you change the target system you might have to reconfigure
all input and output ports and change the setup of the peripherals. The most
difficult part in embedded system development is debugging and testing within
the limited capabilities of the controllers. Normally you have to work with
outputs over a serial line, LEDs or use an oscilloscope or logic analyzer to
figure out where to find the problems of your program. Often only one wrongly
set bit can lead to an error that is very hard to track. If you are using an
OS you can take advantage of stable and tested libraries but the development
is still very complex. Very often you depend on vendor specific tools, which
makes the code unportable. There are also some controllers which do not have
enough memory or have some other limitations, making it impossible to use
any OS [vH04a].

All these complex tasks can be easily solved by experts in this area. Our
objective is to develop a software which makes it easier to develop, debug and
test embedded software. Today’s personal computers are not feasible to be used
in an office without a graphical user interface (GUI). Although the real power
of the software is the OS itself and not the GUI, it is the graphical part which
makes it possible for users to handle certain tasks easier, faster and with much
less initial training. Since the same is true for developing embedded system
software with graphical tools we can use this platform to eliminate much of the
complexity of the development process [vH04c, vH04a].

This complexity originates in the numerous steps you have to go through
developing an embedded application. Normally you use an editor to write
the source code into multiple files. These files must be compiled into object
files and linked together with additional libraries. The result is an executable
which have to be downloaded to the target. It is followed by debugging and
testing. Additionally these steps are repeated in multiple iterations. There are
some programs like make under Unix, which helps to automate and unify the
compilation process through a centrally controlled Makefile. But still you have
to get used to the handling of Makefiles, which becomes more and more difficult
with increasing complexity of the applications. Nevertheless, the make tool is
seen as an early milestone in simplifying the creation of embedded applications.

We want to help developers to focus on their projects and the features of the

2

1 Introduction 1.2 Structure of the Thesis

embedded application. We believe that a graphical environment is the easiest
way for it. Such an environment should be easy to understand, intuitively
handled and easy to configure. Furthermore it is often necessary to optimize
the code not only for speed, but primarily for size. Another requirement is the
possibility to change the desired target architecture easily.

1.2 Structure of the Thesis

The thesis is structured as follows: Chapter 2 gives an introduction to the
concepts of our research and shows some different basic approaches that are
currently available. An overview of those different approaches is listed in Chap-
ter 3 and they are compared to our requirements. In Chapter 4 and 5 we explain
our chosen design approach and our implementation. Chapter 6 describes the
results and success of our research. The thesis finally ends with Chapter 7 as a
conclusion and outlook to future research in the field of graphical development
environment for embedded systems.

3

2 Concepts and Challenges

We want to provide a graphical development environment for embedded sys-
tems. It should be possible to easily use the components provided by a micro-
controller (for example: Timer, I/O-Ports, ADC, Interrupts, ...). This compo-
nents should be available in a palette and dragged and dropped into the editor.
The contents of this palette should be dynamically. This means, that it will
be possible to add new components without changing the application code.
Therefore it is necessary to have a dynamic model. Components are connected
together using connections between certain input and output ports. Two kind
of connections are available (data and event connections). They represent the
data and control flow in the embedded application.

Out of this graphical design we have to generate code which will be down-
loaded to the target controller. We have to choose between two basic ap-
proaches. The first one is to generate code for a certain embedded operating
system, like Embedded Linux. Therefore, we have to download the code and
the binaries of the operating system to the target. The other approach is to
generate simple C code. This code is compiled into machine code and down-
loaded to the target. Thus, existing tool chains based on C code can be used
to compile and download the program to the target system.

Other basic questions are:

• Should the components be developed statically or dynamically? The later
would provide a modular approach and facilitate professionals to widen
the components palette by defining super blocks or developing specific
components they need for certain tasks or microcontrollers.

• Using an event driven approach seems much more intuitive for the users
than a time driven one.

• Another point is the implementation of state machines and the usage of
object oriented code. This questions will be handled in future work only.

• Is it possible to use this concept also for distributed embedded systems?
An important question is, if it is possible to implement a TTP/A based
distributed application using the graphical development environment.
This question will also be handled in the future.

4

3 Related Work

Because of the many aspects that work together in this thesis we give a wide
overview of different environments which helps speed up the development pro-
cess in the field of embedded systems.

3.1 GRAPE

There are not many references for this tool, but we found a news entry on
the internet which linked to a company named grapesys in Israel. We contact
Ori Idan, one of the developers, and he said that GRAPE is unfortunately not
under development any more. Because it seemed to be very close to our objec-
tives, we describe the main principle of this tool. GRAPE was an Graphical-
programming tool for 8-bit microcontrollers. Those were the features supported
by GRAPE [Ltd02]:

• Shortened software development time, reducing time to market of new
products

• full graphical development system, including a graphical editor, compiler
and code generator

• Graphical simulator for debugging

• Expandable library of predefined modules

• Code generator for: Motorola HC08, PIC-16Cxxx, PIC-16Fxxx and 8051
derivatives

The tool is described as easy-to-use graphical programming tool, where you
only have to draw a block diagram of the application. The software compiles it
directly to the target microcontroller’s machine code and optimize it [Ltd02].

Co-Founder and CEO of D. S. Grape, Ori Idan, commented in 2002: ”This
new tool integrates the entire software production process under one convenient
framework. We expect that GRAPE will enable hardware engineers and soft-
ware developers to easily and efficiently generate microcontroller applications
[Ltd02].”

5

3 Related Work 3.2 Eclipse, EMF, and GEF

During our conversation with Mr. Ori Idan he told us some more important
details of their approaches: ”We did not use any OS in 8 bit microcontrollers
as there is not enough memory for an OS image. We did not use C either, we
directly created the machine code of the target controller, this allowed us for the
optimization we needed for memory size.”

3.2 Eclipse, EMF, and GEF

Eclipse itself is not a Graphical Development Environment (GDE) and not
directly involved in the graphical development process, but there exists several
plug-ins we can use for modelling and editing graphically. For example, EMF
and GEF which are explained in the next sections.

Eclipse is an open source community whose projects are focused on provid-
ing a vendor-neutral open development platform and application frameworks
for building software. The Eclipse Foundation is a not-for-profit corporation
formed to advance the creation, evolution, promotion, and support of the Eclipse
Platform and to cultivate both an open source community and an ecosystem
of complementary products, capabilities, and services. As it says in the Pur-
poses section of the Foundation’s Bylaws: The purpose of Eclipse Foundation
Inc.,(the ”Eclipse Foundation”), is to advance the creation, evolution, promo-
tion, and support of the Eclipse Platform and to cultivate both an open source
community and an ecosystem of complementary products, capabilities, and ser-
vices. Eclipse has formed an independent open eco-system around royalty-free
technology and a universal platform for tools integration. Eclipse based tools
give developers freedom of choice in a multi language, multi platform, multi
vendor environment. Eclipse provides a plug-in based framework that makes it
easier to create, integrate and utilize software tools, saving time and money.
By collaborating and exploiting core integration technology, tool producers can
leverage platform reuse and concentrate on core competencies to create new de-
velopment technology. The Eclipse Platform is written in the Java language and
comes with extensive plug-in construction toolkits and examples. It has already
been deployed on a range of development workstations including Linux, HP-UX,
AIX, Solaris, QNX, Mac OS X and Windows based systems [www.eclipse.org].

3.2.1 Eclipse modelling Framework (EMF)

EMF is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. From a model speci-
fication described in XMI, EMF provides tools and runtime support to produce

6

3 Related Work3.3 TimeSys TimeStorm Integrated Development Environment (IDE)

a set of Java classes for the model, a set of adapter classes that enable view-
ing and command-based editing of the model, and a basic editor. Models can
be specified using annotated Java, XML documents, or modeling tools like Ra-
tional Rose, then imported into EMF. Most important of all, EMF provides
the foundation for interoperability with other EMF-based tools and applications
[www.eclipse.org/emf].

3.2.2 Graphical Editing Framework (GEF)

GEF allows developers to create a rich graphical editor from an existing applica-
tion model. GEF consists of 2 plug-ins. The org.eclipse.draw2d plug-in provides
a layout and rendering toolkit for displaying graphics. The developer can then
take advantage of the many common operations provided in GEF and/or extend
them for the specific domain. GEF employs an MVC (model-view-controller)
architecture which enables simple changes to be applied to the model from the
view [www.eclipse.org/gef].

GEF is completely application neutral and provides the groundwork to build
almost any application, including but not limited to: activity diagrams, GUI
builders, class diagram editors, state machines, and even WYSIWYG text edi-
tors [www.eclipse.org/gef].

3.3 TimeSys TimeStorm Integrated Development
Environment (IDE)

The TimeStorm IDE is a collection of plug-ins for Eclipse that can be easily
integrated into the framework. The reason to decide for Eclipse is the open-
ness, flexibility and extensibility, so it is possible that other companies can
take advantages of already developed plug-ins and concentrate on their special
task. TimeStorm IDE is not an example of a GDE but it has to be mentioned
because it is the connective link between developing with different types of pro-
grams (editor, debugger, download-tool, test routines, shells, make, etc.) and
a GDE. They see the IDE as the next leap after the make tool, which helps to
automate the development process. They focusing on one consistent, graphical
interface in all phases of this process. So they provide plug-ins for compilation,
deployment, debugging, testing within the same graphical interface. The plug-
ins accordingly to Eclipse seems to be one single application, that serves as
control center for the whole development process to increase the productivity
of software developing, especially in the field of embedded systems [vH04a].
Some of the basic features of the TimeStorm IDE are [vH04a]:

7

3 Related Work 3.4 TimeSys TimeStorm Linux Development Suite

• A central directory, called workspace, which contains all files and config-
urations for that project

• Selecting and changing the used toolchain at any stage of the project,
that makes it easy to develop on multiple embedded systems.

• Automatically generating and maintaining the Makefiles, which could be
a very complex task for larger projects.

• Integrate custom commands and so override default behavior of automa-
tion processes provided by TimeStorm IDE.

• One application that can be used for all stages of the development cycle.

• Using different Run/Launch configurations for different targets, debug-
ging, monitoring and testing.

3.4 TimeSys TimeStorm Linux Development Suite

The TimeStorm Linux Development Suite provides the integration of cross-
compilers, simple execution, debugging configurations and also automate trans-
ferring applications to the target board. TimeStorm uses embedded Linux as
operating system on the targets. Linux is the operating system of choice of most
new embedded development projects. Because of the many Linux distributions
that are available today, TimeStorm did not choose a particular distribution
but can handle distributions from any vendor. It is also possible to customize
your embedded Linux distribution with the help of graphical tools. TimeStorm
provides graphical development tools for kernel configuration, driver develop-
ment, file system configuration, and testing. Eclipse in combination with some
plug-ins sets a new level of standardization, flexibility, robustness, reliability
and productivity in developing embedded system [vH04b, vH04c].

3.5 TinyTD

TinyTD is like TimeStorm IDE an Eclipse-based IDE for developing TinyOS
applications. It was supported by a IBM Eclipse Innovation Award because of
some of the following features [SBD05]:

• Highlighting of nesC code [GLvB+03]

• Code navigation

• Code completion

• A component browser

8

3 Related Work 3.6 Generic Modeling Environment (GME) and GRATISII

• A configuration view

• Support for multiple TinyOS source trees

• Automatic build support

• Fully integrated TinyOS compiler toolchain

3.6 Generic Modeling Environment (GME) and
GRATISII

People at the Vanderbilt University developed a graphical environment for
model-based development of TinyOS applications under the name GRATIS
II (Graphical Development Environment for TinyOS) [LD03]. It is a fully
functional modeling, code generation, verification and parsing environment,
which is based on GME [LMB+01].

GME allows to create and configure domain-specific modeling and pro-
gram synthesis environments and generates inputs to Commercial Off-The-
Shelf (COTS) analysis tools. The technology behind GME are metamodels,
that specifies the modeling paradigm of the application domain. Because of
domains without a large potential market, GME serves as a design environ-
ment that can be configured for a wide range of domains. Therefore, you need
a generic concept which provides sufficient abstraction for this task. The ad-
vantage is obvious in only programming once such an environment and than
configure it to your needs by ourself. Metamodels in GME that are specify-
ing the modeling paradigm automatically generates the target-specific envi-
ronment, which itself is used to build the metamodels. In this environment
you can build domain models that are stored in a model database. Out of
this database the application or input for different COTS are generated. To
provide a powerful generic tool, GME can build large-scale, complex models.
Models may includes Atoms, References, Connections, Constraints, and Sets
and can be instantiated like classes in an object-oriented language. So it is
easy to reuse and maintenance models in the whole hierarchy and build indi-
vidual libraries for your domain. The technology behind all this is the Unified
Modeling Language (UML) for the syntactic definitions of the metamodeling
paradigm. Constraints are used to specify static semantics using the Object
Constraint Language (OCL). For further details take a look at [LMB+01].

During another project at the Vanderbilt University called NEST (Network
Embedded Systems Technology) several middleware services, tools and appli-
cations were developed as add-ons for GME. Add-ons can cooperate with GME
using some or all events that are generated of GME. So you can extend the
capabilities of GME, without modifying itself, writing your own add-on. One

9

3 Related Work 3.6 Generic Modeling Environment (GME) and GRATISII

Figure 3.1: GRATIS II environment

add-on created by NEST was GRATIS II. GRATIS II is using TinyOS and
nesC for generating code for embedded systems. GRATIS II can automatically
parse the entire TinyOS tree and the corresponding graphical models to gen-
erate the code for the OS and the application. They developed this add-on for
GME because of their research-field of large-scale distributed processing nodes
with limited resources and tightly coupled sensors and actuators. Because of
those strict constraints you have to use a thin application-specific operating
system and middleware layers. GRATIS II is a model-based approach for de-
veloping applications based on TinyOS. It provides fully functional modeling,
code generation and parsing based on GME [LD03].

We will give now a basic technical overview of GRATIS II. GME is used
to create the metamodel for the graphical modeling language of GRATIS II.
Furthermore OCL is used to set constraints for the models to keep them valid.
The whole TinyOS v1.x source tree is already converted to graphical models
through an effective parser add-on and can be viewed in the tree-browser. The
parser can also optimize the generated library with cleanup, which means if
there are inconsistencies in the files the parser will try to handle those errors
as gracefully as possible. The second objective of the parser is auto placement,
which means he tries to separate and organize all used, provided interfaces, con-

10

3 Related Work 3.7 Simulink

figurations and other nesC elements. Another add-on is the code generator for
generating the complete application, which includes all necessary glue source-
code files and also a Makefile, out of the models including the constraints of
course. With GRATIS II you have an good graphical overview about all parts
of TinyOS. You can also parse your own nesC (*.nc) files into a corresponding
representation in GME [LD03].

3.7 Simulink

Simulink, provided by MathWorks, is a platform for model-based design com-
bined with multidomain simulation. It includes an interactive graphical editor
for assembling and managing intuitive block diagrams per drag and drop. Con-
nections stand for mathematical relationships between the blocks. Simulink is
based on MATLAB to have access to a huge number of tools for algorithm
development, data visualization, data analysis, and access and numerical com-
putation. Simulink provides hierarchical modeling by using subsystems, data
management and model analysis and diagnostics tools to check the consistency
of the model and ensure data integrity. Dynamic blocks like integration and
unit delay, algorithmic blocks like sum and look up tables and structural blocks
such as mux switches, and signal and bus selectors. More than 1000 blocks are
available but you can also define your own blocks, including handwritten code,
and import some add-ons, which makes Simulink a very powerful simulation
tool. With hierarchical modeling you have the chance to choose the level of
details of your model. Add more and more details if you want to implement
your model. With control signals you can conditionally execute subsystems
dynamically or even use the add-on Stateflow to model event-driven systems.
Within the Model Explorer you can quickly set and change attributes of cer-
tain blocks or re purpose a model by selecting different data sets. For example,
possible data types are single, double, singed, unsigned 8, 16 or 32 bit integers,
fixedpoint, and Boolean. After your model is finished you can first and fore-
most simulate the dynamic behavior and view the results live. You can also
set information to be mind during simulation. The results can be analyzed and
visualized by viewing signals with the display and scopes of Simulink. There is
a graphical debugger to diagnose unexpected behavior in the model. Simulink
also provides tools for testing and validating your models. They help generat-
ing test conditions or check outputs of a block regarding to some constraints
you set. The C code generator is not directly included with Simulink but
comes in on add-on called Real-Time Workshop [Mat04d]. Real-Time Work-
shop generates ANSI/ISO C code and executables of all kind of models like
developing and testing algorithms. The code is incrementally generated by us-
ing the model blocks and can be used for many real-time and non-real-time

11

3 Related Work 3.7 Simulink

applications. It is completely integrated into the Simulink environment. You
can select and configure the target with the Model Explorer and save multi-
ple configuration sets. Single-tasking and multitasking operating systems are
supported as well as bare-board environments (without OS). You can create
different kind of codes according to your field of application (efficient real-time
execution, generate multiple instances of model code through dynamic mem-
ory allocation, etc.). For large-scale applications it is possible to generate code
only for specific blocks or parts of the model to reduce the generation build
times. Another part is code optimization. Real-Time Workshop provides the
following kinds of code-efficiency [Mat04b]:

• Code reuse

• Expression folding

• Signal storage reuse

• Dead path elimination

• Parameter inlining

• Single-precision math libraries

The Real-Time Workshop Embedded Coder 4 generates production code for
embedded systems. The most essential part in the field of embedded systems
is to generate a exceptionally compact and fast code, also for on-target rapid
prototyping boards, microprocessors and real-time operating systems (RTOS).
To support targets with or without a RTOS in single, multitasking or asyn-
chronous mode, the code must be target-independent. To improve the usability
the code will be optimized and verified [Mat04c]. There are some add-ons for
specific embedded targets to download the code directly to the microcontroller.
After downloading it automatically begins execution in real time. It is possible
to test and validate the code with Processor-in-the-Loop (PIL) testing. For
example the MPC5xx [Mat04a] or TI C2000 [Mat06].

MATLAB and Simulink creates virtual environments based on system mod-
els, which are graphically developed using block diagrams. They are primarily
used for dynamic system simulations and are becoming more and more the
mainstream also in the field of automotive control systems. The V850 Inte-
grated Development Environment works in conjunction with MATLAB to im-
prove the development efficiency of control systems of automobiles and more.
It uses the Real-Time Workshop Embedded Coder to generate auto-code (C
source code automatically generated from a model in this case out of MAT-
LAB and Simulink). The V850 IDE then automates the entire build process
to download the code on the evaluation board. This all happens with a one-
button-click. You can also customize the build process and debugger or simu-
lation/emulation tools can be automatically started [NEC06].

12

3 Related Work 3.8 LabVIEW

Figure 3.2: Simulink environment [NEC06]

3.8 LabVIEW

LabVIEW is a graphical development platform for design, control, and test
provided by National Instruments. In 2003, LabVIEW expanded their product
onto PDAs and FPGAs. 2005, they headed on towards the embedded area
and DSPs. The newest attainment is a next step in cooperating projects with
LEGO MINDSTORMS NXT.

• Complex tasks are visually broken down into insightful block diagrams

• A sequence of operations is logically captured in a flowchart-like manner

• Supported development platforms are Windows, Mac and Linux

• Supported target platforms are PCs, PDAs, real-time devices and em-
bedded microprocessors

In LabVIEW you are programming code with a graphical user interface per
drag and drop of different components called Virtual Instruments (VI) like
measurement-objects, push-buttons, sliders, lamp indicators, graphs, etc. Con-
figuration of those components works with property pages to set functionality
and appearance. You can define the order of the VIs by wiring them together

13

3 Related Work 3.8 LabVIEW

and set the data flow. There are lots possibilities for debugging like showing
the actual data flow, comment out code and Step-functions. Further you can
create executables, shared libraries (DLLs) and installers.

LabVIEW can be used to acquire, analyze and present data. Examples for
acquiring and analyzing are data acquisition, motion control, industrial commu-
nication, frequencies analysis, digital filtering, statistics, calculus, Fast Fourier
Transform, differential equations and simulate signal. For presenting data there
exists user interface objects, 3D object modeling, extensive charting and graph-
ing utilities and also remote viewing and controlling of your application. You
can create HTML and XML output and use third-party tools like MATLAB,
Simulink, Maple, Word, Excel, etc. There are a lot of toolkits and modules
available. For example signal processing, control design, simulation, instrument
control, image acquisition, motion and vision, distributed monitoring, testing,
etc.

You can also speed up the development process through reusable function
libraries for hard real-time tasks 1.

LabVIEW provides several modules for special parts of development. The
most interesting one within the scope of this thesis is the NI LabVIEW Em-
bedded Development Module. It main features are [Nat05]:

• High-level graphical programming

• Lots of VIs for numerical analysis, signal processing, control, communi-
cations I/O driver and general-purpose logic

• Embedded Project Manager for target processors platforms

• debugging programs interactively from the front panel and block diagram

• Build in OCDI (on-chip debugging interface) for connection via JTAG,
BDI, etc.

• Code generator for any 32-bit microprocessor toolchain/target

Developing with this module goes in two steps. The first is using the Project
Manager for selecting a third-party toolchain and OS. The second step is to
develop the embedded application graphically. You can automate the build
process and build an executable by simply running the application. This exe-
cutable can be simulate using WindRiver VxSim or download it directly onto
the target. If your application is running on the target system you can send
and receive data using a interactive front-panel on your PC or debug it using
graphical block-diagrams. The advantage of this full-function graphical lan-
guage is that also non experts at C-based programming can develop embedded
systems application very easily [Nat05].

1http://www.ni.com/swf/labview/us/tour.htm

14

3 Related Work 3.9 LEGO MINDSTORMS NXT

In cooperation with Analog Devices Inc. - National Instruments released in
April 2006 a new module as extension for the graphical dataflow development
environment - NI LabVIEW Embedded Module for ADI Blackfin Processors. It
supports off-the-shelf measurement and control hardware for design, simulation,
rapid prototyping, implementation, validation and verification of embedded
systems all within one graphical development platform. It is a next step of
an out-of-the-box, integrated solution for solving real-world problems within
less time and without the need of professional, experienced embedded system
programmers [Ins06].

Erik Goethert, design engineer at Bosten Engineering says: ”Using NI Lab-
VIEW Embedded technology, we have one tool to take the system model to
hardware-in-the-loop for testing and prototyping all the way to the chip. This
means we spend less time learning the details and syntax of traditional low-level
tools and more time improving our designs.”

Again math, analysis and signal processing functions are included as well as
integrated I/O for video and audio DACs, ADCs and CODECs and of course
real-time, interactive debugging [Ins06]. Dr. Fred Martin, assistant professor
at the University of Massachusetts Lowell says about this productive learn-
ing environment: ”LabVIEW Embedded technology makes robotics program-
ming accessible to people who would not otherwise be able to create embedded
systems. It gives users an alternative to programming in C. The LabVIEW
graphical programming model is especially powerful for signal flow and signal
processing applications and is much better than textual languages, especially
for embedded design.”

3.9 LEGO MINDSTORMS NXT

Although being a non-industrial, consumer electronic product, LEGO MIND-
STORMS is the best example of simplifying embedded systems programming.
The system is completely based on the LabVIEW graphical programming de-
veloping environment for automated measurement and control systems. The
big difference is the simple, intuitive user interface of LEGO MINDSTORMS
which allows also young people or novices programming embedded systems - in
this case robots. The target group for LEGO MINDSTORMS is stated 10+.
For simplicity reasons the system is not as powerful as LabVIEW but you can
drag and drop blocks and features to react to sensors, give orders to actors and
easily set the properties of each block. Depending on your MINDSTORM set
there are touch sensors, sound sensor, light sensors, ultrasonic sensors, rotation
sensors, lamps, gear motors available. With one click you can download and
run the application on your NXT robot via USB or Bluetooth [MIN06].

15

3 Related Work 3.9 LEGO MINDSTORMS NXT

Figure 3.3: MINDSTORMS environment 1

Figure 3.4: MINDSTORMS environment 2

16

3 Related Work 3.10 Algorithmic builder

Figure 3.5: MINDSTORMS environment 3

3.10 Algorithmic builder

Algorithmic builder is a development environment providing simulation, debug-
ging and chip programming of AVR microcontrollers. You enter the program
as a flowchart with a tree-like structure and can use assembler level and macro
level as well as multi-byte signed values. On the other hand there is no support
for high level languages. It is easy to configure the chosen microcontroller and
use the in-system programmer to download your program directly onto the chip.
Before downloading you can simulate your program. It is also possible to use an
On-Chip MONITOR to display the actual state of the microcontroller at pre-
defined breakpoints. Again with the visualization the probability of errors will
be reduced and, thus, development time will be shortened [http://algrom.net/].

3.11 Avidicy AVR C Compiler

Forest Electronic Developments (FED) offers AVIDICY as a front end devel-
opment of AVR projects. In the application designer you can drag elements
from a palette like timers, displays, ports, etc. and drop it on the processor.
Further on you see the chosen processor with his pins, properties like oscillator
frequency and can easily connect for example a port-element to the desired

17

3 Related Work 3.11 Avidicy AVR C Compiler

Figure 3.6: Algorithm Builder environment

pin. You can change the properties of each element by simple drop down lists,
check-boxes etc. If a element uses events (interrupts), like a timer-overflow
or the finished receiving of a byte over the serial interface, AVIDICY calls it
Occurrences. In the property view you can enter the name of the function,
which should be executed if the event occurs. The main application, initial-
ization code and the main loop are automatically generated like initialization
of timers, displays, ports, the bodies for functions of event-occurrences. But
those functions have to be written by the user in C. So it is expected that users
are familiar with programming in C.

Out of those C code files the machine code will be generated through the
included FED AVR C Compiler. Another part of AVIDICY is AVRDESIM
– a powerful simulation environment for AVR processors. For example view
and change values of registers, ports, memory locations, set breakpoints, view
number of processor machine cycles which have been executed, highest count
reached by the watchdog timer, determine the execution of a certain block of
code, use run, step and single step simulation and using stimulus and injection
files to set a special state of your application only to mention a few features.

18

3 Related Work 3.11 Avidicy AVR C Compiler

Figure 3.7: Avidicy environment 1

There is also a waveform analyzer (logic analyzer) of all pins of the processor
available. After compiling you can start the debugger with external device sim-
ulation and test your application before downloading on the processor [Abb03].

The structure of the generated application is basically the following [Abb03,
p. 26]:

void main()

{

Initialization of registers , elements , ...

Enable Interrupts

Call function UserInitialise () // USER CODE HERE

while (1)

{

For Each Occurrence

{

Test Occurrence Flag

}

Call functions associated with Occurrences

Call any Element functions which are to be called regularly

Call function UserLoop () // USER CODE HERE

}

}

19

3 Related Work 3.12 IAR Systems MakeApp and visualSTATE

Figure 3.8: Avidicy environment 2

3.12 IAR Systems MakeApp and visualSTATE

IAR MakeApp helps you design and implement device drivers for microcon-
trollers through visual development tools to speed up this process. IAR
MakeApp is for free and supports processors of Atmel, Philips and Renesas
but it is only available for windows platforms. The used devices like microcon-
trollers, external devices and IP blocks are configured with a CAD-like drawing
editor. The components are displayed graphically and the colour of the pins
tells you if they are currently in use or not.

With a simple point-and-click mechanism you can generate device drivers for
the supported microprocessors and external devices in ANSI C, which includes
initialization, runtime control and interrupt handling functions. If you use IP
blocks from the component library on the right side IAR MakeApp will generate
source code as well for it. From this it follows that the values of the special
function registers are calculate and set automatically according to the chosen
properties. For each configurable component you can set those properties with
the help of property dialogs. In the case of resource conflicts or illegal settings
(illegal minimum, maximum values, duplicated use of multiplexed port pins or
mutual exclusion features) the accurate rule checking mechanism flags those by

20

3 Related Work 3.12 IAR Systems MakeApp and visualSTATE

Figure 3.9: IAR MakeApp environment

alarm icons.

On the left side, in the project explorer, you see a tree view of all components,
their modules, generated source files and functions, available in the current
project. Supported peripherals:

• CPU - Bus control and memory

• INTC - Interrupt controller

• WDT - Watchdog timer

• I/O - I/O ports

• TMR - Timers, counters

• SPI - Serial peripheral interface

• USART - Universal synch/asynch serial communication

• TWI - Two-wire serial interface

• ACOMP - Analog comparator

• ADC - Analog to digital converter

21

3 Related Work 3.12 IAR Systems MakeApp and visualSTATE

Figure 3.10: IAR MakeApp properties

The generated source code will be modified and optimized with the included
code generator depending on your specified configurations to generate efficient
and well-tested source code. Those output files will be ready to be used by our
application software. Alongside the source code generation a extensive project
report in HTML format will be created, which includes detailed information
about chip resources (SFRs, pins, interrupts, ...), configurations, generated
device driver functions, etc. But there are much more possibilities of automat-
ically file generation. For example low-level SFR bit-field access macro files,
high-level device driver functions, assembly source files, C source files, linker
files, binary files, documentary, libraries and executables. You can also gen-
erate IAR visualSTATE integration files which will be mentioned in the next
paragraph [www.iar.com/makeapp] [Sys01] [Tutorial user.pdf Seite 21ff IAR
MakeApp].

22

3 Related Work 3.13 Comparison and Summary

visualSTATE is a graphical state machine design tool based on UML which
is also suited for smaller development projects. It is based on a model-driven
design and can be used during the whole development process. The visual-
ization of the state machine makes it much easier to find logical mistakes and
discuss with others about the design. It can contain more than one state ma-
chine which itself can be hierarchical. VisualSTATE verifies the design model
and finds unreachable states, dead end states, live lock states, unused states,
etc. Through a simulation you can visually validate your design and do regres-
sion testing and coverage testing before downloading on the target. But even
on the target you can debug your design with RealLink. By pressing a single
button you can convert your graphical design into a C or C++ implementation
accordingly to your Atmel AVR processor and choose using a RTOS or not.
The generated C/C++ code is very compact and reliable, comparable to hand-
written code and can be tested very intensive. Integrating visualSTATE into
ALTIA Faceplate allows you to create a GUI prototype very easily. And again
an automatic creation of the documentation is supported [Sys05b, Sys05a].

The generated source files can be imported as a whole project into the IAR
Embedded Workbench IDE to be edited. It also integrates the IAR C/C++
compiler, assembler, linker and C-SPY debugger. For more details take a look
at [Sys06].

3.13 Comparison and Summary

To sum it up and show the differences between the applications presented in
this section, we want to do a categorization and add a table to stress out some
differences.

As we have seen in the examined applications it is important to have an envi-
ronment where everything is build in, like TimeSys IDE and TinyTD. GRATIS
II serves as good example on how to build a graphical model-based environ-
ment.

TinyTD, GRATIS II and LabVIEW are using some kind of operating system
which makes it easy to develop an application executable on a wide range of
microcontrollers. But it is better to be flexible deciding whether to use an OS
or not like Real-Time Workshop is.

LabVIEW Embedded Module should be able to program any 32-bit micro-
controller but currently does not support 8-bit processors. Like Simulink and
MATLAB it is very powerful but in consequence rather complex and expensive.

Concerning usability the outstanding example is LEGO MINDSTORMS
NXT because of its intuitive programming capabilities.

23

3 Related Work 3.13 Comparison and Summary

Simulink, LabVIEW, Algorithm builder, Avidicy and IAR Systems MakeApp
provide more or less good testing, simulating and debugging capabilities.
Therefore, the environment must be tightly coupled to the target system. For
example Algorithm builder has a good balance of features which are nice to
have and keeping a good overview on what is happening. For example, if
changing the target CPU the application will map as many features as possible
automatically and displays the remaining conflicts. The property settings are
very intuitive and accordingly to your properties the Special Function Registers
(SFRs) are set (Timers, Prescalers set in ms, CPU speed, initializations, ...).
But the big disadvantages is that programming is only supported in a macro-
level assembler. Changing this macro-level to a model-based block approach
is necessary to support people in programming microcontrollers who are not
experts in any program language.

3.13.1 Categorization

We can categorize the applications to simplify embedded system development
into the following types:

1. Using a collection of different development tools manually (editor, com-
piler, linker, ...) or in an automated toolchain (e.g. make).

2. Using an integrated development environment (IDE) to control the whole
development process with one framework. (e.g. TimeStorm IDE and
TinyTD, or in general .net or Eclipse).

3. Using a graphical development environment (GDE) with all necessary
tools in one framework:

• But still have to write some code. (e.g. Algorithmic builder, Avidicy
AVR C Compiler, IAR System MakeApp).

• For analyzing and simulating. (e.g. MATLAB, Simulink).

• For generating code for microcontrollers with some kind of running
Operating System (OS) for embedded mostly 32-bit microcontrollers
(e.g. GRATIS II which is based on GME and TinyOS, LabVIEW
Embedded Development Module, LEGO MINDSTORMS NXT).

• For generating code without using an OS for small microcontrollers.
(e.g. the Real-Time Workshop add-on for Simulink).

24

3 Related Work 3.13 Comparison and Summary

3.13.2 Comparison Table

Name Provider Cost / Li-
censes

Output Add hand
written
Code

Supported
Devel-
opment
Platforms

Supported
Target
Platforms

GRAPE grapesys,
Israel

n/a any-
more

machine
code

yes n/a Motorola
HC08,
PIC-
16Cxxx,
PIC-
16Fxxx,
8051
derivates

GRATIS
II

Vanderbilt
University

open
source

nesC n/a Windows,
Linux us-
ing Wine,
MAC OS
?

processors
sup-
porting
TinyOS

Simulink MathWorks 15-day
trial,
student
version:
$ 99,–,
commer-
cial use: $
2.800,–

only ana-
lyzing and
simulating

yes all n/a

Real-Time
Workshop
Embed-
ded Coder

MathWorks no trial
version,
no student
version,
commer-
cial use: $
5.000,–

code for
Embed-
ded OS or
machine
code

yes Windows,
Mac OS,
Linux

n/a

LabVIEW National
Instru-
ments

different
levels
starting
from $
1.249,–
up to $
4.249,–

object ori-
ented de-
velopment

yes Windows,
Mac OS,
Linux

n/a

25

3 Related Work 3.13 Comparison and Summary

Name Provider Cost / Li-
censes

Output Add hand
written
Code

Supported
Devel-
opment
Platforms

Supported
Target
Platforms

LabVIEW
Em-
bedded
Module

National
Instru-
ments

$ 11.299,– code for
Embed-
ded OS

yes n/a any 32-bit
processor

LEGO
MIND-
STORMS
NXT

LEGO,
National
Instru-
ments

$ 249,– n/a no Windows,
Macintosh

32-bit
ARM7
micropro-
cessor

Algorithm
builder

n/a free machine
code

yes Windows Atmel
processors

Avidicy
AVR C
Compiler

Forest
Electronic
Devel-
opment
(FED)

about $
75,–

C code yes Windows AVR fam-
ily

IAR
System
MakeApp

IAR Sys-
tem

free C code yes Windows Atmel,
Philips
and Re-
nesas
processors

26

4 Design Approach

We decided to develop a new tool, called Graphical Microcontroller Programing
Environment(GMP). We want to support the following items, starting with a
focus onto 8-bit AVR controllers:

• Simplifying the development process of embedded systems:

– Avoid intrinsic complexity.

– Non professionals should be able to program embedded systems.

– No writing of any line of code.

– Intuitive programming using graphical models.

– The possibility to implement standard tasks as well as complex com-
ponents.

– Changing the target system easily.

• Speed up and focus onto the development process.

• Building an abstraction from the embedded target and target OS.

• Using a graphical environment.

• Using a dynamic model.

First of all we decided to use Eclipse as development platform like TimeStorm
did because of it is cross platform compatibility and because it is opensource.
So we got a stable, well tested framework for our development. Together with
EMF and GEF it provides a powerful opensource platform including a modeling
framework and a rich graphical editor. We did not choose GME, because it
is written in C++ for Windows only. It runs in Linux using Wine1, but we
decided that this is not enough to build a new tool onto it. On the other
hand, Eclipse is becoming the platform of choice in various areas of software
development. Of course a lot of companies develop plugins for their processors
only and accordingly to their special application needs (like Windriver, QNX,
TimeSys, ...), but we want to go a step further. Our approach is to build a
tool for developing programs for various kinds of embedded systems. Although
we start with a specialization onto 8-bit microcontrollers of the AVR family,
we want to be able to adopt to all kinds of microcontrollers. That makes it

1http://de.wikipedia.org/wiki/WINE_Is_Not_an_Emulator

27

4 Design Approach

necessary to have a dynamic model. The user has to be able to add his own
controller descriptions on the fly to this model.

The next question is whether to choose an underlying OS or not. GRATIS
II for example uses TinyOS or also LabVIEW Embedded Module generates C
code for the chosen OS. With Real-Time Workshop you have the possibility to
use or not to use an OS running on the processor. So the goal should be to
use an OS if the user wants to. Since the 8-bit controllers have very limited
resources and normally does not support any OS we decided to not use an OS
for now.

The main goal of this thesis is to simplify the system level design of the
embedded development process. We are developing an expert-in-a-box solu-
tion which can be extended by experts but provide an easy and intuitive user
interface giving non-professionals the chance to easily create microcontroller
programs. As it started with programming machine code, followed by Assem-
bler and nowadays by C, we now come to a point which makes it possible for
people to write programs for microcontrollers without writing a single line of
code.

Integrated Development Environments (like TimeStorm IDE) create a con-
nective link between writing, debugging, analyzing, downloading, and testing
with different tools. An IDE integrate all necessary tools into one framework.
For us it is important to provide such a framework which enables you to pro-
gram your microcontroller with a model-based approach using a graphical in-
terface mainly consisting of blocks and connections. Because microcontroller
software is increasing in scale and complexity the development process must
be more efficient, faster and cheaper. This contains the ability to easily change
the target architecture, automatically find logical mistakes, resource conflicts
(if a too small controller is chosen), and design errors.

Therefore we need a mechanism to map blocks and connections of the graphi-
cal program to the target hardware. This mapping should support the following
items:

• Fast change of the target architecture

• Support for user specific block libraries

• Including the mapping of superblocks (= multiple blocks merged to a
bigger one)

• Support for user specific hardware libraries including code-generators

• Automated search for inconsistencies and resource conflicts

The building process should be started using only one mouse click. It should
generate the C code out of the graphical program, using a C compiler to compile

28

4 Design Approach

it into machine code, and download the generated binary to the target. The
whole toolchain should be adoptable by the user.

Our design approach is based on libraries and code generators which only
have to be written and developed once and can be reused. This avoids the need
to recreate the same functionality again in each new design. You also do not
need to know which bits and ports have to be set in a certain way and read the
manuals again and again. To customize the blocks to the needs of the current
application a properties view is used. With it you can set the behavior of each
block. You only need professionals for developing that blocks and libraries for
a microcontroller but afterwards users with a far lesser educational level can
develop the applications. It should be possible to write the libraries for each
available microcontroller.

Since implementing such a dynamic, powerful system needs a lot of work,
we have decided to start with a small amount of blocks and a profound model-
based design and dynamic environment. This tool can be expanded later with
additional features like debugging, analyzing, downloading and testing capa-
bilities.

29

5 Implementation

In this chapter we want to present the details of our implementation. We will
start with all necessary tools you have to install to run the Graphical Micro-
controller Programing Environment(GMP) followed by an short instruction on
how to use it.

5.1 Details

We use Eclipse as platform because of the powerful plug-ins EMF and GEF.
We use EMF to define our meta model including the meta information of our
blocks and connections. We differ between data and event connections. Based
on this model the different blocks are defined and grouped into libraries. Each
library is saved within an XML file. This files must comply to a XML-schema
and are loaded by the graphical environment and displayed within a palette.
The editor is based on GEF since this simplifies the development of a graphical
editor. Another point why we use EMF and GEF is, that they are developed in
a manner that they can be easily used together. The GEF based editor serves
as the viewer for our model. This model is also saved as XML file.

One of the most important properties of our implementation is flexibility.
As already mentioned before this includes the block libraries. Furthermore
it is possible to easily change the target hardware. This is possible because
we use dynamic hardware libraries. Each library includes the definition of a
microcontroller family with all its MCUs. The hardware library also includes
the code generators.

Let us now have a deeper look to the block libraries. It is possible to define
as many libraries as you want. Furthermore each library can contain as many
blocks as desired. As an example we present the current version of our default
library. It consits of a XML file containing the basic information on the blocks:

<?xml version="1.0" encoding="UTF -8"?>

<lib >

<eventBlock name="OutPort">

<inEventAnchor name="init" defaultInit="true"/>

<inEventAnchor name="write">

<inDataAnchor name="data"/>

</inEventAnchor >

30

5 Implementation 5.1 Details

<outDataAnchor name="current"/>

</eventBlock >

<eventBlock name="Wait">

<inEventAnchor name="init" defaultInit="true"/>

<inEventAnchor name="wait">

<inDataAnchor name="duration"/>

</inEventAnchor >

</eventBlock >

<dataPathBlock name="Ror">

<inDataAnchor name="input"/>

<outDataAnchor name="result"/>

</dataPathBlock >

<eventBlock name="Interval">

<inEventAnchor name="init" defaultInit="true">

<inDataAnchor name="interval"/>

</inEventAnchor >

<outEventAnchor name="ready"/>

</eventBlock >

</lib >

Another optional file can be added to the library directory containing display
information like icons and block captions:
title=Default Library

OutPort.title=Output Port

OutPort.icon=

OutPort.init.title=Init

OutPort.write.title=Write

OutPort.write.data.title=Data

OutPort.current.title=Current Value

Wait.title=Busy Wait

Wait.init.title=Init

Wait.icon=

Wait.wait.title=Start

Wait.wait.duration.title=Duration

Ror.title=Rotate Right

Ror.icon=

Ror.input.title=Input

Ror.result.title=Result

Interval.title=Interval

Interval.icon=

Interval.init.title=Init

Interval.init.interval.title=Duration

Interval.ready.title=Event

We have now seen how the block libraries are defined. They are needed to
create the basic models. The next step is the mapping to the actual target
hardware. The mapping is based on the hardware libraries. We have added a
simple example for one MCU of the AVR family. First we specify the properties
common to all MCUs of the family in a general XML file:
<mcu id="avr_general">

<component lib="at.ac.tuwien.vmars.gmp.default_lib" id="OPORT">

<require type="port" subtype="direction:o" count="*"/>

</component >

<component lib="at.ac.tuwien.vmars.gmp.default_lib" id="Interval">

31

5 Implementation 5.2 Installation

<require type="port" count="1"/>

</component >

</mcu >

The controller specific information is contained in another XML file:

<mcu id="atmega128" parent="avr_general">

<component type="timer" id="TIMER0" subtype="width :8"/>

<component type="timer" id="TIMER1" subtype="width :16"/>

<package="qfp64">

<component type="port" id="PORTA" count="8" subtype="direction

:io"/>

<component type="port" id="PORTB" count="8" subtype="direction

:io"/>

<component type="port" id="PORTC" count="8" subtype="direction

:io"/>

<component type="port" id="PORTD" count="8" subtype="direction

:io"/>

<component type="port" id="PORTE" count="8" subtype="direction

:io"/>

</package >

</mcu >

As you can see, each block is associated with a generator in the hardware
library. The code for some example generates can be found in appendix A.1.

5.2 Installation

To run our application you have to install eclipse together with the plug-ins
EMF and GEF which are all available at the eclipse-homepage:

• www.eclipse.org

• www.eclipse.org/emf

• www.eclipse.org/gef

The next step is to import our code into your workbench and launch it as
Eclipse Application. In the newly opened Eclipse instance create a new project
and add two new simple files, one model file with the ending .gmp and one map-
ping file with the same name and the ending .mapping. When double clicking
the model file it should normally be opened by the GMP Editor. If not, right
click the file and choose Open With-GMP Editor. From the palette on the right
side of the editor you can drag and drop blocks into it and draw connections
between the blocks. By right click on a component you can duplicate its input
anchors if necessary. To display the properties view choose Window - Show
View - Other in the menu and select Properties from the category General.
In the newly displayed view you can view and change the properties of the
selected block (name, value, bus width, initialization order, ...).

32

5 Implementation 5.2 Installation

Figure 5.1: GMP editor with components palette

By double clicking the mapping file the mapping editor is opened. In the
mapping file you can specify which hardware resources you want to use for your
application. The resources needed by your model are automatically displayed
in a table. After mapping all resources you can press the ”‘Generate Code”’
button to create your application code. Currently this code is printed to the
console of the eclipse application that started GMP.

33

5 Implementation 5.2 Installation

Figure 5.2: Mapping file of GMP

34

6 Results and Discussion

The most important part of the Graphical Microcontroller Programing Environ-
ment (GMP) is the dynamic model based approach. It should allow advanced
users to build their own libraries for a certain processors, and should enable
novice users to start programming their microcontrollers without writing a sin-
gle line of code. Another important point is, that the created application is
independent of the target platform. The target hardware is selected in the last
step of the development phase. This enables you to change the MCU from a 8-
bit architecture to an 32-bit one, by only changing the mapping. Furthermore
the mapping functionality helps you mapping your application by automati-
cally choose the components suitable to your needs and by detecting conflicts
in the mapping like Algorithm builder does.

TimeSys IDE and TinyTD are examples of an environment where everything
is build into one tool. Since they are based on Eclipse we decided to use it as
well. We took GRATIS II as example for building a graphical model-based
environment, but we choose EMF and GEF as basis for our implementation
because of their platform independence.

We started with an implementation which does not use an underlying operat-
ing system. This is a big difference to the other tools like TinyTD, GRATIS II
and LabVIEW. In the future we want to be as flexible as Real-Time Workshop
when it comes to using an OS or not.

LabVIEW Embedded Module and Simulink are very powerful but in con-
sequence rather complex and expensive. Therefore the usability of our tool
should be as intuitive for the user as LEGO MINDSTORMS NXT.

Simulink, LabVIEW, Algorithm builder, Avidicy and IAR Systems MakeApp
provide more or less good testing, simulating and debugging capabilities. Dur-
ing this thesis it was not possible to implement any of this features. But since
their importants in embedded design it is a big goal for the future to add this
features in a sufficient extend.

As a long time goal it should be realistic to implement the possibility to create
state machines and even distributed embedded systems based for example on
TTP/A.

35

7 Conclusion

With the Graphical Microcontroller Programing Environment(GMP) we want
to help novices to get into to field of programing embedded systems without
writing any line of code. Another important goal is to help advanced users to
simplify, speed up and focus on their development process. Therefore GMP
abstracts from the embedded target and OS and uses a graphical environment
based on a dynamic model. This model can be used to build own libraries
and develop standard tasks but also more complex components. The mapping
functionality of GMP makes changing the target CPU no big issue.

The current implementation proves, that our approach is implementable and
useable. The current version can be seen as prototype. The next steps will be
the implementation of more components, the implementation of more target
independence, adding a wider range of target systems, building in graphical
debugging capabilities and add the functionality to develop distributed systems.
Those steps will be turned into practice in following projects and a master
thesis.

36

A Appendix

A.1 Codegenerator Wait

package at.ac.tuwien.vmars.gmp.atmega_lib.generators;

import java.util.LinkedList;

import java.util.List;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Entry;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Mapping;

import at.ac.tuwien.vmars.gmp.model.partlibrary.EventBlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.interfaces.McuType;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.BaseBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.EventBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.InEventAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.OutDataAnchor;

public class WaitGenerator extends EventBlockGenerator

{

public WaitGenerator(McuType mcu)

{

super(mcu);

}

public void generate(EventBlock block , Mapping mapping , List <String > output ,

List <String > prototypes)

{

prototypes.add("void start" + block.getName () + "(" + getDatatypeForWidth

(((InEventAnchor)block.getInEventAnchor("wait").getAnchors ().get(0)).

getInDataAnchor("duration").getWidth ()) + " duration);");

output.add("void start" + block.getName () + "(" + getDatatypeForWidth (((

InEventAnchor)block.getInEventAnchor("wait").getAnchors ().get (0)).

getInDataAnchor("duration").getWidth ()) + " duration)");

output.add("{");

output.add("\tuint8_t i;");

output.add("\tfor(i = 0; i < duration; i++)");

output.add("\t\t_delay_ms (1);");

output.add("}");

}

public String getEventAnchorConnectData(InEventAnchor anchor)

{

if(anchor.getDefinition ().getName ().equals("init"))

; // Not needed on this plattform

else if(anchor.getDefinition ().getName ().equals("wait"))

return "start" + anchor.getContainer ().getBlock ().getName ();

else

;// TODO: Error Handling

return null;

}

37

A Appendix A.2 Codegenerator Ror

private String getDatatypeForWidth(int width)

{

if (width <= 0)

throw new RuntimeException (); // TODO: Errorhandling

else if (width <= 8)

return "uint8_t";

else if (width <= 16)

return "uint16_t";

else if (width <= 32)

return "uint32_t";

else

throw new RuntimeException (); // TODO: Errorhandling

}

public String getDataAnchorConnectData(OutDataAnchor anchor)

{

return null;

}

public List <Entry > deserializeEntries(BaseBlock block)

{

List <Entry > entries = new LinkedList <Entry >();

return entries;

}

}

A.2 Codegenerator Ror

package at.ac.tuwien.vmars.gmp.atmega_lib.generators;

import java.util.LinkedList;

import java.util.List;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Entry;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Mapping;

import at.ac.tuwien.vmars.gmp.model.partlibrary.BlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.DatapathBlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.interfaces.McuType;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.BaseBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.DatapathBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.OutDataAnchor;

public class RorGenerator extends DatapathBlockGenerator

{

public RorGenerator(McuType mcu)

{

super(mcu);

}

public void generate(DatapathBlock block , Mapping mapping , List <String >

output , List <String > prototypes)

{

int width = block.getInDataAnchor("input").getWidth ();

prototypes.add(getDatatypeForWidth(width) + " calculate" + block.getName ()

+ "(" + getDatatypeForWidth(width) +" value);");

output.add(getDatatypeForWidth(width) + " calculate" + block.getName () + "

(" + getDatatypeForWidth(width) +" value)");

output.add("{");

output.add("\tvalue = value >> 1;");

output.add("\tif(value == 0)");

38

A Appendix A.3 Codegenerator Interval

output.add("\t\tvalue = " + (1 << (width - 1)) + ";");

output.add("\treturn value;");

output.add("}");

}

public String getDataAnchorConnectData(OutDataAnchor anchor)

{

if(anchor.getDefinition ().getName ().equals("result"))

{

String result = "calculate" + anchor.getBlock ().getName () + "(";

OutDataAnchor source = ((DatapathBlock)anchor.getBlock ()).

getInDataAnchor("input").getConnection ().getSource ();

try

{

BlockGenerator generator = getMcu ().getGenerator ().getGenerator(source

.getBlock ().getDefinition ());

result += generator.getDataAnchorConnectData(source);

}

catch(Exception ex)

{

ex.printStackTrace ();

// TODO: Handle Exception

}

result += ")";

return result;

}

else

return null;

}

private String getDatatypeForWidth(int width)

{

if (width <= 0)

throw new RuntimeException (); // TODO: Errorhandling

else if (width <= 8)

return "uint8_t";

else if (width <= 16)

return "uint16_t";

else if (width <= 32)

return "uint32_t";

else

throw new RuntimeException ();

}

public List <Entry > deserializeEntries(BaseBlock block)

{

List <Entry > entries = new LinkedList <Entry >();

return entries;

}

}

A.3 Codegenerator Interval

package at.ac.tuwien.vmars.gmp.atmega_lib.generators;

import java.util.LinkedList;

import java.util.List;

39

A Appendix A.3 Codegenerator Interval

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Entry;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Mapping;

import at.ac.tuwien.vmars.gmp.model.mapping.metadata.MappingFactory;

import at.ac.tuwien.vmars.gmp.model.partlibrary.BlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.EventBlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.interfaces.McuType;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.BaseBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.EventBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.EventConnection;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.InDataAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.InEventAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.OutDataAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.OutEventAnchor;

public class IntervalGenerator extends EventBlockGenerator

{

public IntervalGenerator(McuType mcu)

{

super(mcu);

}

public void generate(EventBlock block , Mapping mapping , List <String > output ,

List <String > prototypes)

{

try

{

int width = ((InEventAnchor)block.getInEventAnchor("init").getAnchors ().

get (0)).getInDataAnchor("interval").getWidth ();

prototypes.add("void init" + block.getName () + "(" + getDatatypeForWidth(

width) + " interval);");

output.add("void init" + block.getName () + "(" + getDatatypeForWidth(width

) + " interval)");

output.add("{");

output.add("\tTCCR1B = (1 << WGM12) | (1 << CS12) | (1 << CS10);");

output.add("\tOCR1A = interval;");

output.add("\tTIMSK |= (1 << OCIE1A);");

output.add("}");

output.add("SIGNAL(SIG_OUTPUT_COMPARE1A)");

output.add("{");

OutEventAnchor anchor = block.getOutEventAnchor("ready");

List <EventConnection > connections = anchor.getConnection ();

int maxPosition = anchor.getMaxPosition ();

for (int i = 0; i <= maxPosition; i++)

{

for (EventConnection connection : connections)

{

InEventAnchor targetAnchor = connection.getTarget ();

if (targetAnchor.getPosition () == i)

{

EventBlockGenerator targetGenerator = getMcu ().getGenerator ().

getEventBlockGenerator(targetAnchor.getContainer ().getBlock ().

getDefinition ());

String out = "\t" + targetGenerator.getEventAnchorConnectData(

targetAnchor) + "(";

boolean first = true;

for (InDataAnchor dataAnchor : (List <InDataAnchor >) targetAnchor.

getInDataAnchors ())

{

if (dataAnchor.getConnection () == null)

out += ((first) ? "" : ", ") + "0x" + Integer.toHexString(

dataAnchor.getConstantValue ()).toUpperCase ();

else

{

40

A Appendix A.3 Codegenerator Interval

OutDataAnchor outDataAnchor = dataAnchor.getConnection ().

getSource ();

BlockGenerator generator2 = getMcu ().getGenerator ().getGenerator

(outDataAnchor.getBlock ().getDefinition ());

out += generator2.getDataAnchorConnectData(outDataAnchor);

}

first = false;

}

out += ");";

output.add(out);

}

}

}

output.add("}");

}

catch(Exception ex)

{

ex.printStackTrace ();

// TODO: Handle Exception

}

}

public String getDataAnchorConnectData(OutDataAnchor anchor)

{

return null;

}

public String getEventAnchorConnectData(InEventAnchor anchor)

{

if (anchor.getDefinition ().getName ().equals("init"))

return "init" + anchor.getContainer ().getBlock ().getName ();

return null;

}

private String getDatatypeForWidth(int width)

{

if (width <= 0)

throw new RuntimeException (); // TODO: Errorhandling

else if (width <= 8)

return "uint8_t";

else if (width <= 16)

return "uint16_t";

else if (width <= 32)

return "uint32_t";

else

throw new RuntimeException (); // TODO: Errorhandling

}

public List <Entry > deserializeEntries(BaseBlock block)

{

List <Entry > entries = new LinkedList <Entry >();

Entry entry = MappingFactory.eINSTANCE.createEntry ();

entry.setLibraryBlock(block);

entry.setTitle("Timer");

entry.setMappingKey("timer");

entry.setBlockTypeKey("timer");

entries.add(entry);

return entries;

}

}

41

A Appendix A.4 Codegenerator Port

A.4 Codegenerator Port

package at.ac.tuwien.vmars.gmp.atmega_lib.generators;

import java.util.HashMap;

import java.util.HashSet;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Set;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Entry;

import at.ac.tuwien.vmars.gmp.model.mapping.interfaces.Mapping;

import at.ac.tuwien.vmars.gmp.model.mapping.metadata.MappingFactory;

import at.ac.tuwien.vmars.gmp.model.partlibrary.EventBlockGenerator;

import at.ac.tuwien.vmars.gmp.model.partlibrary.interfaces.McuType;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.BaseBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.EventBlock;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.InDataAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.InEventAnchor;

import at.ac.tuwien.vmars.gmp.model.runtime.interfaces.OutDataAnchor;

public class PortGenerator extends EventBlockGenerator

{

public PortGenerator(McuType mcu)

{

super(mcu);

}

public void generate(EventBlock block , Mapping mapping , List <String >

output , List <String > prototypes)

{

generateInit(block , mapping , output , prototypes);

generateEnable(block , mapping , output , prototypes);

generateCurrent(block , mapping , output , prototypes);

}

private void generateCurrent(EventBlock block , Mapping mapping , List <

String > output , List <String > prototypes)

{

InDataAnchor dataAnchor = ((InEventAnchor) block.

getInEventAnchor("write").getAnchors ().get (0)).

getInDataAnchor("data");

int width = dataAnchor.getWidth ();

prototypes.add(getDatatypeForWidth(width) + " get" + block.

getName () + "Current ();");

output.add(getDatatypeForWidth(width) + " get" + block.getName

() + "Current ()");

output.add("{");

output.add("\tuint8_t portValue;");

output.add("\t" + getDatatypeForWidth(width) + " value = 0;");

for (String portName : getUsedPortNames(mapping))

{

buildCurrentValue(width , portName , getUsedPortIndices(

mapping , portName), output);

output.add("\treturn value;");

}

output.add("}");

}

private void generateInit(EventBlock block , Mapping mapping , List <

42

A Appendix A.4 Codegenerator Port

String > output , List <String > prototypes)

{

InDataAnchor dataAnchor = ((InEventAnchor) block.

getInEventAnchor("write").getAnchors ().get (0)).

getInDataAnchor("data");

int width = dataAnchor.getWidth ();

prototypes.add("void init" + block.getName () + "();");

output.add("void init" + block.getName () + "()");

output.add("{");

for (String portName : getUsedPortNames(mapping))

{

int ddr = 0;

Map <Integer , Integer > mappings = getUsedPortIndices(

mapping , portName);

for (Integer portIndex : mappings.keySet ())

{

if (mappings.get(portIndex) < width)

ddr += (int) Math.pow(2, portIndex);

}

output.add("\tDDR" + portName + " |= 0x" + Integer.

toHexString(ddr).toUpperCase () + ";");

}

output.add("}");

}

private void generateEnable(EventBlock block , Mapping mapping , List <

String > output , List <String > prototypes)

{

InDataAnchor dataAnchor = ((InEventAnchor) block.

getInEventAnchor("write").getAnchors ().get (0)).

getInDataAnchor("data");

int width = dataAnchor.getWidth ();

prototypes.add("void output" + block.getName () + "(" +

getDatatypeForWidth(width) + " data);");

output.add("void output" + block.getName () + "(" +

getDatatypeForWidth(width) + " data)");

output.add("{");

output.add("\tuint8_t portValue;");

for (String portName : getUsedPortNames(mapping))

{

int portMask1 = 0xFF;

int portMask2 = 0;

Map <Integer , Integer > mappings = getUsedPortIndices(

mapping , portName);

for (Integer portIndex : mappings.keySet ())

{

if (mappings.get(portIndex) < width)

{

portMask1 -= (int) Math.pow(2,

portIndex);

portMask2 += (int) Math.pow(2,

portIndex);

}

}

output.add("\tportValue = PORT" + portName + " & 0x" +

Integer.toHexString(portMask1).toUpperCase () + ";")

;

buildPortValue(width , getUsedPortIndices(mapping ,

portName), output);

output.add("\tPORT" + portName + " = portValue;");

}

output.add("}");

43

A Appendix A.4 Codegenerator Port

}

private String getDatatypeForWidth(int width)

{

if (width <= 0)

throw new RuntimeException (); // TODO: Errorhandling

else if (width <= 8)

return "uint8_t";

else if (width <= 16)

return "uint16_t";

else if (width <= 32)

return "uint32_t";

else

throw new RuntimeException (); // TODO: Errorhandling

}

private Set <String > getUsedPortNames(Mapping mapping)

{

Set <String > ports = new HashSet <String >();

for (Entry entry : (List <Entry >) mapping.getEntries ())

{

if(entry.getBlockTypeKey ().equals("port"))

{

int dotIndex = entry.getHardwareBlock ().getKey ().indexOf(".");

ports.add(entry.getHardwareBlock ().getKey ().substring (0, dotIndex));

}

}

return ports;

}

private Map <Integer , Integer > getUsedPortIndices(Mapping mapping ,

String portName)

{

Map <Integer , Integer > ports = new HashMap <Integer , Integer >();

for (Entry entry : (List <Entry >) mapping.getEntries ())

{

if(entry.getBlockTypeKey ().equals("port"))

{

int dotIndex = entry.getHardwareBlock ().getKey ().indexOf(".");

if (entry.getHardwareBlock ().getKey ().

substring (0, dotIndex).equals(portName))

{

int dotIndex2 = entry.getMappingKey ().indexOf(".");

ports.put(Integer.parseInt(entry.

getHardwareBlock ().getKey ().

substring(dotIndex + 1)), Integer.

parseInt(entry.getMappingKey ().

substring(dotIndex2 + 1)));

// TODO: Errorhandling for non

integers

}

}

}

return ports;

}

private void buildPortValue(int width , Map <Integer , Integer > mappings ,

List <String > output)

{

44

A Appendix A.4 Codegenerator Port

for (Integer portIndex : mappings.keySet ())

{

if (mappings.get(portIndex) < width)

{

int shift = mappings.get(portIndex) -

portIndex;

if (shift < 0)

output.add("\tportValue |= (data & (1

<< " + mappings.get(portIndex) + "))

 << " + (-1 * shift) + ";");

else if (shift > 0)

output.add("\tportValue |= (data & (1

<< " + mappings.get(portIndex) + "))

 >> " + shift + ";");

else

output.add("\tportValue |= data & (1

<< " + mappings.get(portIndex) + ");

");

}

}

}

private void buildCurrentValue(int width , String portName , Map <Integer

, Integer > mappings , List <String > output)

{

output.add("\tportValue = PORT" + portName + ";");

for (Integer portIndex : mappings.keySet ())

{

if (mappings.get(portIndex) < width)

{

int shift = mappings.get(portIndex) -

portIndex;

if (shift < 0)

output.add("\tvalue |= (portValue & (1

 << " + portIndex + ")) >> " + (-1 *

shift) + ";");

else if (shift > 0)

output.add("\tvalue |= (portValue & (1

 << " + portIndex + ")) << " + shift

+ ";");

else

output.add("\tvalue |= portValue & (1

<< " + portIndex + ");");

}

}

}

public String getEventAnchorConnectData(InEventAnchor anchor)

{

if (anchor.getDefinition ().getName ().equals("init"))

return "init" + anchor.getContainer ().getBlock ().

getName ();

else if (anchor.getDefinition ().getName ().equals("write"))

return "output" + anchor.getContainer ().getBlock ().

getName ();

else

; // TODO: Errorhandling

return null;

}

public String getDataAnchorConnectData(OutDataAnchor data)

45

A Appendix A.4 Codegenerator Port

{

return "get" + data.getBlock ().getName () + "Current ()";

}

public List <Entry > deserializeEntries(BaseBlock block)

{

List <Entry > entries = new LinkedList <Entry >();

if(block instanceof EventBlock)

{

InDataAnchor dataAnchor = ((InEventAnchor) ((EventBlock)block).

getInEventAnchor("write").getAnchors ().get (0)).getInDataAnchor("data")

;

int width = dataAnchor.getWidth ();

for(int i=0; i < width; i++)

{

Entry entry = MappingFactory.eINSTANCE.createEntry ();

entry.setLibraryBlock(block);

entry.setTitle("Pin " + i);

entry.setMappingKey("" + i);

entry.setBlockTypeKey("port");

entries.add(entry);

}

}

return entries;

}

}

46

Bibliography

[Abb03] Robin Abbott. AVIDICY Rapid Application development for the
AVR Microcontroller - Demonstration Manual. Forest Electronic
Developments, Hampshire, 2003. Comes with the demo download
of AVIDICY AVR-C.

[GLvB+03] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In Proceedings of Programming
Language Design and Implementation, June 2003. Available at
http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf.

[Ins06] National Instruments. NI LabVIEW Embedded De-
sign Platform Now Available for Analog Devices Blackfin
Processors. Technical report, April 2006. Available at
http://digital.ni.com/worldwide/bwcontent.nsf/web/

all/EABD67E44E43F4828625713F005CDED6.

[LD03] Akos Ledeczi and Sebestyen Dora. GRATIS II. 2003. Available
at http://www.isis.vanderbilt.edu/projects/nest/gratis/

index.html.

[LMB+01] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason
Garrett, Charles Thomason, Greg Nordstrom, Jonathan Sprinkle,
and Peter Volgyesi. The generic modeling environment. In Work-
shop on Intelligent Signal Processing, Nashville, USA, May 2001.
Available at http://www.isis.vanderbilt.edu/Projects/gme/

GME2000Overview.pdf.

[Ltd02] D. S. Grape Ltd. First commercial version of the grape embedded
system development tool announced. April 2002. Available at
http://www.us.design-reuse.com/news/news3047.html.

[Mat04a] Mathworks. Embedded Target for Motorola MPC555 - De-
ploy embedded code onto the Motorola MPC555. 2004. Avail-
able at http://www.mathworks.com/mason/tag/proxy.html?

dataid=4413&fileid=20677.

[Mat04b] Mathworks. Real-Time Workshop 6.1 - Generate opti-
mized, portable, and customizable code from Simulink mod-

47

Bibliography Bibliography

els. 2004. Available at http://www.mathworks.com/mason/tag/

proxy.html?dataid=4429&fileid=20594.

[Mat04c] Mathworks. Real-Time Workshop Embedded Coder 4 - Gen-
erate production code for embedded systems. 2004. Avail-
able at http://www.mathworks.com/mason/tag/proxy.html?

dataid=4412&fileid=21768.

[Mat04d] Mathworks. Simulink 6 - Simulation and model-based de-
sign. 2004. Available at http://www.mathworks.com/mason/tag/
proxy.html?dataid=4429&fileid=20594.

[Mat06] Mathworks. Embedded Target for the TI TMS320C2000 DSP
Platform 2 - Deploy embedded code onto TI C2000 proces-
sors. 2006. Available at http://www.mathworks.com/mason/tag/
proxy.html?dataid=7146&fileid=31156.

[MIN06] LEGO MINDSTORMS. How LEGO MINDSTORMS NXT Works.
2006. Available at http://www.ni.com/academic/mindstorms/

works.htm.

[Nat05] National Instruments. Labview for embedded development.
Technical report, 2005. Available at http://www.ni.com/pdf/

products/us/2005-5554-821-101-LO.pdf.

[NEC06] NEC. The V850 Integrated Development Environment in Con-
junction with MATLAB: Improving the Development Efficiency of
Control Systems for Automobiles and More. In NEC Electronics,
volume 53, February 2006. Available at http://www.necel.com/

en/channel/vol_0053/vol_0053_1.html.

[SBD05] Janos Sallai, Gyorgy Balogh, and Sebestyen Dora. Tinydt. 2005.
Available at http://www.tinydt.net/.

[Sys01] IAR Systems. IAR MakeApp User Guide. IAR Systems, August
2001. Comes with the demo download of IAR MakeApp.

[Sys05a] IAR Systems. IAR visualSTATE for Atmel AVR - visual pro-
gramming tool dedicated for Atmel AVR. 2005. Available at
ftp://ftp.iar.se/WWWfiles/avr/ds-VSAVR.pdf.

[Sys05b] IAR Systems. State machines for embedded systems. 2005. Avail-
able at ftp://ftp.iar.se/WWWfiles/vs/DS-VS-2005-1.pdf.

[Sys06] IAR Systems. Iar embedded workbench for the atmel avr micro-
controllers. 2006. Available at ftp://ftp.iar.se/WWWfiles/avr/
DS-EWAVR-420.pdf.

48

Bibliography Bibliography

[vH04a] William von Hagen. Application development with eclipse-
based ides. LinuxDevices, June 2004. Available at http://

linuxdevices.com/articles/AT4905486769.html.

[vH04b] William von Hagen. Next-generation embedded linux develop-
ment tools for high reliability and mission-critical applications.
Embedded Computing Design, July 2004. Available at http:

//www.embedded-computing.com/articles/id/?1935.

[vH04c] William von Hagen. Simplifying embedded linux development with
graphical tools. LinuxDevices, June 2004. Available at http://

linuxdevices.com/articles/AT4574262276.html.

49

