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Abstract—In this paper we analyze the sensor and fusion
schedules of a time-triggered, Kalman filter based, multi-sensor
fusion system. The fusion system is used as an environmental
perception platform for advanced driver assistance systems and
delivers its service to a safety related application. As the applica-
tion demands cyclic updates with bounded accuracy, the influence
of the sensor and fusion schedules on the service accuracy is
analysed, which enables us to optimize the system without model
dependent simulations.

I. INTRODUCTION

Multi-sensor data fusion systems are the enabling technol-
ogy for advanced driver assistance systems. New features like
adaptive cruise control with active steering, lane departure
alert, parking pilot, and automatic emergency brake will be
standard in the next car generation as electronic stabilization
systems and anti lock braking systems are at present.

This paper deals with the optimization of a time-triggered,
Kalman filter based, sensor fusion system for driver assis-
tance systems consisting of two sensors, a bus system and
a fusion/prediction core. It tracks objects and is supposed to
deliver a real time image (model) of the environment at fixed
intervals with bounded accuracy to a safety related application.

The rest of the paper is structured as follows: In section II
the system set-up is described. In section III out of sequence
measurement (OOSM) treatment strategies are discussed. Sec-
tion IV discusses the overall system response time. We analyse
the system schedule in section V. In section VI a conclusion
is drawn.

II. SYSTEM DESCRIPTION

We consider a system with two identical sensors that mea-
sure the states of surrounding objects and transmit this infor-
mation via a time-triggered bus system to a fusion/prediction
core. The fusion/prediction core fuses the incoming informa-
tion and then predicts the fused object states to real time as
demanded by the safety related application (see figure 1). We
use the following definitions:
• the cycle time tC of a process is the time interval that this

process requires for completion of its service while the
start of two consecutive processes is tC apart

• the execution time tT of a process is the time interval in
which this process completes its service where the start
of two consecutive processes can be more than tT apart
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• the phase tP of a process is defined as the time interval
between the start of this process relative to the start of
the first cycle of sensor 1

bus system
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Fig. 1. Sensor fusion system

The two sensors have cycle times tsens1
C and tsens2

C that are
identical to their preprocessing times and therefore adjustable
by the choice of the speed of the sensor’s processor. They
deliver their measurement states~zsens1

tk and~zsens2
tk (with constant

covariance matrices Rsens1
tk and Rsens2

tk ) over a time-triggered
bus system to a fusion/prediction core. The bus system uses
time division multiple access (TDMA) with fixed cycle time
ttta
C (the bus is not exclusively used by the sensor fusion
system, hence the cycle time is assumed to be determined
by external constraints). At the fusion/prediction core the
information is processed in order to establish a robust image
of the environment.

In figure 2 all cycle times tC, process execution times tT
and phases tP, relative to sensor 1, of sensor preprocessing
(tsens1

C , tsens2
C , tsens

P ), measurement transmission (ttta
C , ttta1

P , ttta2
P )

and generation of the application update (t pre
C , t pre

T and t pre
P )

that are processed within the fusion system are visualized.
To process the incoming measurements at the fu-

sion/prediction core, we use a Kalman filter approach as
described in [1]. As the Kalman filter is a widely used and
well known algorithm for tracking moving targets, we will
only give a short overview of the notation used throughout
this paper. The estimated state vector of the tracked object
~̂x( tk−1| tk−1) is updated with measurements at discrete points
in time tk. The state prediction from tk−1 to tk is given by
~̂x( tk| tk−1) = F (tk− tk−1) · ~̂x( tk−1| tk−1). The predicted state
covariance matrix is computed as P( tk| tk−1) = F (tk− tk−1) ·
P( tk−1| tk−1) · (F (tk− tk−1))

T + Qtk−1 . The measurement up-
date of the predicted system state is ~̂x( tk| tk) = ~̂x( tk| tk−1) +
Ktk ·~νtk with Ktk = P( tk| tk−1) ·HT

tk ·
(
Htk P( tk| tk−1)HT

tk +Rtk

)−1,
~νtk =~ztk−~̂ztk and ~̂ztk = Htk ·~̂x(tk). The update of the covariance
matrix is given by P( tk| tk) =

(
I−Ktk ·Htk

) · P( tk| tk−1) ·(
I−Ktk ·Htk

)T +Ktk ·Rtk ·KT
tk . The fusion/prediction core pro-

cesses a measurement within t f us
T .
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Fig. 2. System schedule

III. OUT-OF-SEQUENCE MEASUREMENT TREATMENT

In multi-sensor tracking systems, information about the
same object can arrive out of sequence [2], [3], that means not
in chronological order. Often, OOSM behavior is caused by
an indeterministic transmission system, where the transmission
time of a message may vary so much that a message from a
later measurement may overtake a newer measurement. Such
behavior is caused by transmission protocols with many retries
such as many Internet protocols (e. g., TCP/IP) or in networks
with dynamic routing (Internet, wireless sensor networks).

However, even if communication protocols with determinis-
tic behavior, such as time-triggered approaches like flexray [4],
TTCAN [5], TTP [6], or TTP/A [7] are used, the OOSM
problem may arise.

Figure 3 depicts a situation with an OOSM problem that
is independent from communication system issues. Due to
different preprocessing times the indicated measurement from
sensor 2 is received earlier at the fusion core than the indicated
measurement from sensor 1 although the measurement from
sensor 2 is newer.
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Fig. 3. Origin of out-of-sequence measurements

As the Kalman filter in the form of [1] can not handle
OOSMs, architectural and algorithmic solutions have been
developed.

Kaempchen et al. [8] use a measurement buffer between bus
and fusion/prediction core. No measurement is delivered to the
fusion/prediction core, before all measurements that have been

sampled earlier have arrived at the buffer. Within the buffer
the measurements are sorted chronologically. Kaempchen et
al. further discuss the maximum latency (here defined as the
time difference between the instant of the composition of
the image representing the surrounding environment provided
by sensor fusion and the bygone instant where this image
was true) that arises between measurement recording and
measurement fusion. It is distinguished between situations
where only knowledge of the maximum measurement cycle
times and situations where full knowledge of the measurement
cycle times is available.

Another way to solve the OOSM problem are special algo-
rithms which will be called ”advanced algorithms” throughout
this paper. These algorithms deal with one-lag and multi-lag
delays, filtering and tracking, linear and non-linear systems
as well as single-model and multi-model approaches [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18] and enable us to use
the information of the faster sensor as soon as it is delivered
to the fusion/prediction core.

For sake of discussion we will only consider the buffering
approach as presented in [8] referred to as BUFF and the
OOSM treatment algorithm Al1 of [10] referred to as ADVA.

IV. SYSTEM RESPONSE TIME

As the application is safety related, it expects to periodically
receive (cycle time t pre

C ) real time object states with bounded
accuracy. Due to the fact that the fused states always lag
behind real time irrespective of the specific OOSM treatment
applied, this image of the environment has to be predicted
from state time tST to real time tRT . The state time is the
current time of the Kalman filter state and coincides with
the measurement time of the latest fused (non-OOSM) sensor
measurement, whereas real time is the actual physical time.
The real time covariance matrix of the state can be determined
by predicting the state time covariance matrix from state time
tST to real time tRT by P( tRT | tST ) = F (tRT − tST ) ·P( tST | tST ) ·
(F (tRT − tST ))T +QST .

As the dependence of F (tRT − tST ) and QST on the pre-
diction interval is well known for a given system, it is thus
possible to consider the effect of the system parameters and
the strategy for the treatment of OOSM (see also section III)
on the overall system response time (tRT −tST ) as well as state
time and real time covariance matrices of the state (P( tST | tST )
and P( tRT | tST )).

With the overall system response time as ∆t = tRT − tST ,
det(P( tRT | tST )) is given by

det(P( tRT | tST )) =

det(F(∆t) ·P( tST | tST ) ·F(∆t)>+QST ) =
det(P( tST | tST ))+∆t ·P( tST | tST )(1,1) ·q+

O
(
∆t2) (1)

This allows us to separate the influence of the sensor
schedules and the OOSM treatment, which affect the state
time covariance matrix P( tST | tST ), and the influence of the
bus, fusion and prediction schedules that affect the system



response time and such the covariance at real time P( tST | tST ).
From eq. 1 we see that, given det(P( tST | tST )), the leading
order increase of the covariance area at real time is linear in
∆t. As will be demonstrated in section V, the variations in
P( tST | tST ) are negligible and it then suffices to minimize ∆t
in order to maximize the fusion accuracy at real time.

V. SYSTEM SCHEDULE

First we simulate the entire system at a given point in
schedule parameter space. We use a simple dynamic system
and measurement model in the fusion/prediction core (see
appendix) and employ a Kalman filter (by linearization around
a setpoint) as opposed to an extended Kalman filter as our
estimation algorithm. As the computation of the covariance
matrices of a Kalman filter is completely independent of the
state and measurement vectors we need not input specific
measurements and are thus independent of the actual driving
situation. After convergence of the Kalman filter1 the max-
imum of det(P( tRT | tST )) is recorded. This constitutes one
iteration of the optimization (minimization of det(P( tRT | tST )))
over the regions of the schedule parameter space and we will
discuss both the area of the covariance ellipse at state time
det(P( tST | tST )) as well as at real time det(P( tRT | tST )).

As ttta
C and t pre

C are fixed (see sections II and IV), tsens1
C ,

tsens2
C , t f us

T and t pre
T are the only system parameters whose

modification changes the hardware of the system and affects
such the overall system costs. In contrast, tsens

P , ttta1
P , ttta2

P
and t pre

P can be modified without affecting the costs of the
system by simply changing software parameters. We assume
ttta
C to be sufficiently small and will neglect ttta

C , ttta1
P and ttta2

P
in the further. That means that the preprocessed information
is transmitted without further delay from the sensors to the
fusion core. For every configuration of tsens1

C , tsens2
C , t f us

T and
t pre
T , we choose tsens

P and t pre
P that minimize the maximum of

det(P( tRT | tST )) which has been computed numerically over
a simulation time of 10 seconds (tSim = 10 s) performed
with a simple dynamic system and measurement model (see

appendix). t pre
T is approximated by t pre

T ≈ t f us
T
3 . Note that all

temporal parameters are varied in 1 ms steps.
In figure 4 we visualize the state time and real time accuracy

for a given point in parameter space. We perceive, that the
difference between the buffering and advanced algorithms
approach for state time accuracy is negligible in comparison to
the effects that are caused by prediction from state time to real
time. Due to this the accuracy optimization can be achieved
by evaluation of the minimum (by variation of the parameter
space variables) of the maximum time difference between state
time and real time that occurs within one macro period (least
common multiple of all cycle-times) after the Kalman filter
has converged.

For the buffering approach, we can describe the maximum
of the interval tRT −tST (see figure 5) as maximum of the series
tBUFF
RT−ST l,m

1Convergence of the Kalman filter here means that the covariance matrices
have assumed a regular, periodic pattern. A constant steady state covariance
matrix cannot be expected since the Kalman filter receives measurements from
different sensors at different times.
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Fig. 4. State time and real time accuracy for tsens1
C = 130 ms, tsens2

C = 40 ms
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tBUFF
RT−ST l,m =



(m−1) t pre
C + t pre

T + t pre
P,l + tsens1

C +

(1−n)
(

tsens2
C − tsens

P,l−1

)
if 0≤ n < 2

(m−1) t pre
C + t pre

T + t pre
P,l +

tsens1
C +(2−n) tsens2

C − tsens
P,l−1

if 2≤ n

(2)

with

l = 1,2, . . . ,

⌊
tSim

tsens1
C

⌋
, (3)

m = 1,2, . . . ,

⌈
tsens1
C − t pre

P,l

t pre
C

⌉
, (4)

n =



min
(⌊

t pre
P,l

t f us
T

⌋
+(m−1)

⌊
t pre
C −t pre

T

t f us
T

⌋
;
⌈

tsens1
C −tsens

P,l−1
tsens2
C

⌉)
if tsens

P,l ≤ t pre
P,l − t f us

T +(m−1) t pre
C

min
(⌊

t pre
P,l

t f us
T

⌋
+(m−1)

⌊
t pre
C −t pre

T

t f us
T

⌋
;
⌈

tsens1
C −tsens

P,l−1
tsens2
C

⌉
+1
)

if tsens
P,l > t pre

P,l − t f us
T +(m−1) t pre

C

,

(5)



tsens
P,l = tsens

P,l−1 +

⌈
tsens1
C − tsens

P,l−1

tsens2
C

⌉
tsens2
C − tsens1

C (6)

and

t pre
P,l = t pre

P,l−1 +

⌈
tsens1
C − t pre

P,l−1

t pre
C

⌉
t pre
C − tsens1

C (7)

We consider the algorithmic overhead of the advanced
algorithms in comparison to the simple buffering approach
by adding a penalty term to t f us

T t f us ADVA
T = t f us

T + tOverhead
T

2

and can describe the maximum of the interval tRT − tST (see
figure 6) as maximum of the series tADVA

RT−ST o
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Fig. 6. tADVA
RT−ST o profile

tADVA
RT−ST o = t pre

T + t pre
P,o +min

(⌈
t f us
T

t pre
P,o

⌉
;2

)
tsens2
C (8)

with

o = 1,2, . . . ,

⌊
tSim

tsens2
C

⌋
(9)

and

t pre
P,o = t pre

P,o−1 + t pre
C −

⌊
t pre
P,o−1 + t pre

C

tsens2
C

⌋
tsens2
C (10)

Visualization of maxt (tRT − tST )BUFF = maxl,m

(
tBUFF
RT−ST l,m

)
and maxt (tRT − tST )ADVA = maxo

(
tADVA
RT−ST o

)
in figure 7 and

comparison to figure 4 confirmes the connection between
minimal prediction interval from state time to real time and
optimal worst-case accuracy as stated above.

VI. CONCLUSION

We have performed the optimization of a sensor fusion
system consisting of two sensors, a bus system and a fu-
sion/prediction core with respect to the schedule parameter
space (tsens1

C , tsens2
C , tsens

P , t pre
C , t pre

T and t pre
P ). The area of the

covariance ellipse was chosen as the optimization criterion. We
have shown that by a judicious choice of selected schedule

2tOverhead
T was empirically determined as tOverhead

T ≈ t f us
T .
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parameters that are adjustable at no or little cost the fusion
accuracy can be improved. The time interval between the
state time and the real time at which an application expects a
new image of the environment was identified as the dominant
factor on fusion accuracy. This means that for analytically
tractable OOSM algorithms such as the buffering or advanced
algorithms approach the optimization can be performed on
the basis of the explicit formulae (which we have provided)
without model dependent simulations.

APPENDIX

The example that is used in this paper corresponds to the
one used in [10]. It is governed by the state transition matrix

F(tk+1− tk) =
[

1 (tk+1− tk)
0 1

]
(11)

where the state consists of position and velocity of one
coordinate. The dynamical system is corrupted by a zero-
mean, white, discretized continuous time process noise with
covariance matrix Qtk

Qtk =

[
(tk+1−tk)3

3
(tk+1−tk)2

2
(tk+1−tk)2

2 tk+1− tk

]
·q (12)

with q = 0.5 m2

s3 being the power spectral density of the
continuous time process noise. The measurement matrix for
both sensors is

Hsensor1/2
tk =

[
1 0
0 1

]
(13)

i. e. both position and velocity are assumed to be measur-
able. The measurement noise of both sensors is characterized
by the diagonal covariance matrix

Rsensor1/2
tk =

[
1m2 0

0 0.1 m2

s2

]
. (14)
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