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Abstract:
Out-of-sequence measurements treatment in tracking moving targets with heterogeneous sensors in

a Kalman filter framework has been a widely discussed topic in the fusion community within the last
years. Whereas most researchers focus on advanced algorithms to avoid the increase of system latency
and worst case execution time that arises if measurements are buffered, there still lacks research on the
comparison of these methods. The authors try to close this gap by analyzing the effect of buffering and
advanced algorithms on the covariance matrices of the state vector after it underwent a prediction to real
time.
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1 Introduction
Complex multi-sensor data fusion systems are the key technology to advanced driver assistance
systems in future automobiles. New features like adaptive cruise control with steering rec-
ommendation, lane departure warning, parking pilot, and automatic emergency brake will be
standard in the next car generation as electronic stability systems and anti lock braking systems
are at present.

The integration of multiple heterogeneous sensors like lidar, radar, and optical cameras
requires sophisticated methods of data communication and processing in order to achieve a
timely accurate real-time image of the environment.

When such different types of sensors are employed in a fusion application, the system engi-
neer has to consider different measurement frequencies and preprocessing times of each sensor
type. For example, a fast lidar sensor may deliver measurements from an instant tk, while the im-
age preprocessing of a camera is still calculating measurements belonging to a previous instant
tk−1. Thus, a fusion system will first receive a measurement belonging to instant tk and later a
measurement belonging to a previous instant tk−1. This out-of-sequence behavior is relevant,
especially when the preprocessing and communication times become significant compared to
the measurement periods.
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In this paper, we present and evaluate two approaches to this problem. The first one in-
volves buffering of messages until all measurements taken at previous instants have finished
their preprocessing. In the other approach, we use a general case of advanced algorithms (here
defined as the class of algorithms, that updates our environment model with every incoming
measurement, taking into account also out-of-sequence measurements).

The rest of the paper is structured as follows: Section 2 describes the problem statement.
Section 3 discusses related work for this research area. We analyze the buffering approach in
Section 4 and compare it to the advanced algorithms approach in Section 5. In Section 6 we
will give a short example and conclude the paper in Section 7.

2 Problem Statement
We regard a system consisting of two heterogeneous sensors tracking moving targets. The
achievable cycle time of a sensor depends on the complexity of the information preprocessing
and the chosen hardware. Moreover, the preprocessing time may depend on the actual recorded
measurements, and thus influence the cycle time. To achieve a constant cycle time, it is nec-
essary to define the period based on the worst case execution time of the preprocessing or to
design a preprocessing algorithm with anytime behavior. Such a preprocessing algorithm can
be stopped after a predefined time interval. For the sake of discussion, we will consider sensors
with constant cycle times.

Furthermore, we assume a possible out-of-sequence measurement (OOSM) problem [1, 2]
in our architecture. Typically, OOSM behavior is caused by an indeterministic transmission
system, where the transmission time of a message may vary so much that a message from a later
measurement may overtake a newer measurement. Such behavior is caused by transmission
protocols with many retries such as many Internet protocols (e. g., TCP/IP) or in networks with
dynamic routing (Internet, wireless sensor networks).

However, even if communication protocols with deterministic behavior, such as time-triggered
approaches like Flexray [3], TTCAN [4], TTP [5], or TTP/A [6] are used, the OOSM problem
may arise.

Figure 1 depicts a situation with OOSM problem independently from communication sys-
tem issues.
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Figure 1: Origin of out-of-sequence measurements (OOSM)

We assume a system consisting of two sensors with different preprocessing times and a
fusion center where the system state is updated by the newest measurement. As is depicted
in figure 1, sensor 2 overtakes the measurements from sensor 1. Thus, at several instants, the
fusion processor has received measurements from sensor 2 before a measurement from sensor
1, belonging to an earlier instant, arrives.



3 Related Work
Kaempchen et al. [7] discuss the maximum latency (here defined as the time difference between
the instant of the composition of the image representing the surrounding environment provided
by sensor fusion and the bygone instant where this image was true) that arises between measure-
ment recording and measurement fusion, when buffering is used to guarantee chronologically
ordered measurements. It is distinguished between situations where only knowledge of the
maximum measurement cycle times and situations where full knowledge of the measurement
cycle times is available.

The other way to solve the out-of-sequence measurements problem are advanced algorithms.
These algorithms deal with one-lag and multi-lag delays, filtering and tracking, linear and non-
linear systems as well as single-model and multi-model approaches.

We define tκ as the out-of-sequence measurement time stamp and tk as the time stamp of the
measurement which updated the fusion before the out-of-sequence measurement was received.

Larsen et al. present a suboptimal multi-lag filtering algorithm for linear systems [8]. If
a measurement is out-of-sequence, a correction term derived from the covariance matrices is
set up, which is updated every time step. As soon as the delayed measurement comes up, this
correction term is used to update the current state estimate with the delayed measurement.

Bar-Shalom presents an optimal one-lag tracking algorithm for linear systems [9]. The
delayed measurement is incorporated by computing the update of the state at time tk with the
residual of the out-of-sequence measurement and the retrodicted state to the time κ as well as
the covariance matrices between the states at tk and tκ . In [10] [11] Bar-Shalom et al. extend the
presented one-lag algorithm to deal with multi-lag out-of-sequence measurements by virtually
compressing the information of the updates between tκ and tk into one update. This approach is
further extended to a multi-model approach in [12].

Mallick et al. describe an extension to the algorithm presented in [9] toward a multi-lag,
single-model and a one-lag, multi-model approach [13]. In [14], Mallick et al. present a multi-
lag, single-model algorithm that includes data association, likelihood computation and hypoth-
esis management. After presenting a particle filter for out-of-sequence measurements treatment
in [15], Mallick and Marrs compare in [16] particle filter (algorithm from [17]) and Kalman
filter (algorithm from [18]), based on multi-lag filtering algorithms for linearized systems.

Orton and Marrs present the incorporation of out-of-sequence measurements with particle
filters [17] [19] [20].

Zhang describes an algorithm in [18] that is stated to be the general case of [9] and [13].
She further differentiates between globally optimal solutions and solutions optimal for the in-
formation basis, that is available at a certain instant. In [21], she extends the before mentioned
algorithms and establishes the connection to the work of Challa and Wang which will be dis-
cussed further down.

Maskel et al. present an approach similar to Zhang by trying to describe the algorithms as
specific approximations to an overall framework, being optimal respectively suboptimal for the
assumptions made and the information given [22].

Challa and Wang present an augmented state vector, that is a temporally staggered vector,
consisting of the present state and past states. This enables the sensor fusion to incorporate
measurements corresponding to past states in an optimal, elegant way but is computationally
enormous expensive [23] (optimal multi-lag filtering algorithm for linear systems). To over-
come the computationally expensive augmented state algorithm, Challa and Wang introduce
the iterated augmented state algorithm [24]. In [25], they additionally describe the use of these



algorithms in scenarios with clutter. Furthermore, Wang and Challa extend their algorithm to-
ward an interacting multiple-model approach in [26].

In [27], Anxi et al. present a unified suboptimal one-lag, multi-lag and mixed-lag (consider
a sequence with two out-of-sequence measurements 1 and 2 with tκ1 < tκ2 and tk1 > tk2) out-of-
sequence algorithm.

4 Latency due to Out of Sequence Measurements Treatment
by Buffering respectively Advanced Algorithms

We consider a system of two sensors that measure with constant cycle times a and b and a phase
shift between the starting points of a and b of the size c0. We assume that the processing time
for measurement fusion can be neglected. To generate a real-time image, the state has to be
predicted over the interval IRT−ST as shown in figure 2.
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Figure 2: Temporal estimation to generate cyclic output with buffering to treat OOSM

In figure 3, the effect of measurement preprocessing and buffering on IBUFF
RT−ST for syn-



chronous measuring (a = n · b, c0 = 0) and in figure 4 for asynchronous (c0 6= 0) measuring
is demonstrated.
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Figure 3: IBUFF
RT−ST with a = n ·b (n integer) and ci = 0
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Figure 4: IBUFF
RT−ST with a = n ·b (n integer) and ci = const.

The key idea is that every measurement must be stored in a buffer until all measurements
that are from an earlier time have finished their preprocessing. For sensor 1 this interval is
equal to the preprocessing time a whereas sensor 2 is additionally delayed by waiting for sensor
1 to finish its preprocessing. The time of the fusion state becomes equal to the measurement
recording time when a measurement has been processed in the fusion algorithm. The fraction
of the integral of IBUFF

RT−ST and the analysed interval time a are used to compare the synchronous
and the asynchronous case. In the case of a = n ·b (n integer) and c0 = 0, the minimum, mean
and maximum of IBUFF

RT−ST can be computed by

MIN
(
IBUFF
RT−ST

)
= b, (1)

IBUFF
RT−ST =

b2 + 1
2a2

a
(2)

and

MAX
(
IBUFF
RT−ST

)
= a. (3)



In the case of a = n ·b (n integer) and c0 6= 0 we get

MIN
(
IBUFF
RT−ST

)
= b, (4)

IBUFF
RT−ST =

bc0 +a(b− c0)+ 1
2a2

a
(5)

and

MAX
(
IBUFF
RT−ST

)
= a+b− c0. (6)

It is worth noting that IBUFF
RT−ST is not a steady function of b and c0 and only limc0→b IBUFF

RT−ST ,
but not limc0→0 IBUFF

RT−ST , leads from IBUFF
RT−ST with a = n · b (n integer) and c0 6= 0 to a = n · b (n

integer) and c0 = 0.
If we abandon the restriction that the cycle time of one sensor is a multiple of the cycle time

of the other sensor (a 6= n · b, n integer), the interval that has to be analysed becomes the least
common multiple of a and b (lcm(a,b)) (see figure 5).
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Figure 5: IBUFF
RT−ST with a 6= n ·b (n integer) and ci 6= const.

For the general case, the minimum, mean and maximum of IBUFF
RT−ST can be computed by

MIN
(
IBUFF
RT−ST

)
≥ b, (7)

IBUFF
RT−ST =

∑
lcm(a,b)/a
i=1

(
bci +a(b− ci)+ 1

2a2)
lcm(a,b)

(8)

with

ci =
{

ci−1 + da−ci−1
b eb−a if 0 6= ci−1 + da−ci−1

b eb−a
b if 0 = ci−1 + da−ci−1

b eb−a
(9)

and

MAX
(
IBUFF
RT−ST

)
≤ a+b. (10)



The same analysis can be done to compute MIN
(
(IBUFF

RT−ST )2), (IBUFF
RT−ST )2, MAX

(
(IBUFF

RT−ST )2)
and higher orders.

The advanced algorithms for out-of-sequence measurements treatment rely on the possi-
bility to update the state vector with an delayed measurement by estimating or computing the
correlation between the delayed measurement and the actual state. Therefore we can update the
state vector with every incoming measurement without further delay. The minimum, mean and
maximum of

(
IOOSM
RT−ST ′

)n can be computed by

MIN
(

IOOSM
RT−ST ′

)
= bn, (11)

IOOSM
RT−ST ′ =

(∫ b
0 (b+ x)n ·dx

)
b

(12)

and

MAX
(

IOOSM
RT−ST ′

)
= (2b)n. (13)

5 Comparison of the Predicted Covariance Matrices
If we want to compare the error covariance matrices of these two methods, we get

PBUFF
RT = F(IBUFF

RT−ST ) ·PBUFF
ST ·F(IBUFF

RT−ST )T +Q(IBUFF
RT−ST ) (14)

for buffering and

POOSM
RT = F(IOOSM

RT−ST ′) ·POOSM
ST ′ ·F(IOOSM

RT−ST ′)T +Q(IOOSM
RT−ST ′) (15)

for the advanced algorithms.
From the results gained in section 4, we can conclude that the mean of Q(IBUFF

RT−ST (n,n))
has to be bigger than the mean of Q(IOOSM

RT−ST ′(n,n)). On the other hand, it is clear, that the
mean of PBUFF

ST (n,n) must be smaller than POOSM
ST ′ (n,n). Under the assumption, that for a given

system a is known and Q(IBUFF
RT−ST (n,n)) and Q(IOOSM

RT−ST ′(n,n)) are polynomials, the means of
Q(IBUFF

RT−ST (n,n)) and Q(IOOSM
RT−ST ′(n,n)) can be easily calculated. As an analytical approach to

determine F(IBUFF
RT−ST ) ·PBUFF

ST ·F(IBUFF
RT−ST )T and F(IOOSM

RT−ST ′) ·POOSM
ST ′ ·F(IOOSM

RT−ST ′)T does not seem
reasonable, F(IBUFF

RT−ST ) ·PBUFF
ST ·F(IBUFF

RT−ST )T and F(IOOSM
RT−ST ′) ·POOSM

ST ′ ·F(IOOSM
RT−ST ′)T have to be

computed numerically for the considered system.

6 Example
As an example, a system with cycle time a = 160 ms, that is governed by the following expres-
sions:

F(tk) =
[

1 (tk+1− tk)
0 1

]
(16)



Q(tk, tk+1) =

[
(tk+1−tk)3

3
(tk+1−tk)2

2
(tk+1−tk)2

2 tk+1− tk

]
·q (17)

with q = 100m2

s3

H(tk) =
[

1 0
0 1

]
(18)

Rsensor1(tk) =

[
0.01m2 0

0 0.001m2

s2

]
(19)

and

Rsensor2(tk) =

[
0.1m2 0

0 0.01m2

s2

]
(20)

is considered.
With a = 160 ms, the maximum, mean and minimum of (IBUFF

RT−ST )3 as well as (IOOSM
RT−ST ′)3 are

plotted in figure 6 against b. Interesting is the fact that the minima and maxima of (IBUFF
RT−ST )3

are eye-catching for b with a = n ·b (n integer). This is due to the fact that ci = const. for b with
a = n ·b (n integer).
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Figure 6: Maximum, mean and minimum of (IBUFF
RT−ST )3 and (IOOSM

RT−ST ′)3 by variation over c0 for
a = 160 ms against b

We visualize the maximum, mean and minimum of PBUFF
RT (1,1) and POOSM

RT (1,1) as well as
PBUFF

ST (1,1) and POOSM
ST ′ (1,1)in figures 7 and 8.

It is worth noting, that for this example the PBUFF
RT (1,1) is bigger than POOSM

RT (1,1), whereas
it is vice versa for the state-time error covariance matrices. Furthermore, the characteristics
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of (IBUFF
RT−ST )3 and (IOOSM

RT−ST ′)3 can be found in figure 8 as well, which means that buffering is
preferably done in systems where a = n ·b (n integer) and sensors are triggerable.

This is due to the fact that, for buffering, the state is updated at fewer real-time instants than
for the advanced algorithms, whereas the information is richer. When it comes to the real-time
error covariance matrix, the prediction from state-time to real-time can, depending on q and F ,
over weigh this effect.

7 Conclusion
We have motivated the need for an out-of-sequence measurement treatment in sensor fusion
systems. Even when using a deterministic communication protocol, the out-of-sequence mea-
surements problem will arise when sensors have different cycle times.

We have shown how buffering and advanced algorithms depend on the cycle times of the
sensors and the possibility to synchronize the measurements. We have compared both ap-
proaches and have explained, how the preference of one approach depends on the underlying
model. We have hinted at the possibility, that the simple buffering approach can be competitive
to the advanced algorithms approach if the measurement cycles of sensors 1 and 2 follow the
equation a = n ·b (n integer) and the sensor measurements can be synchronized.

In further work we will analyse the effect of a sensor fusion processing time, that can no
longer be neglected.
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