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Abstract

This paper relates to systems for target tracking by fus-
ing measurements from heterogeneous sensors. The
measurements are corrupted by systematic errors such
as offsets in the value domain and the fusion being
complicated due to an Out-of-Sequence measurements
problem. We present an example where the offsets of
measurements from two sensors are equally large and
have opposite algebraic signs. We show that the timely
concentrated fusion of measurements according to a
simple buffering approach is better suited for diminish-
ing the unwanted effects of systematic errors than the
scattered fusion which results from immediately fusing
Out-of-Sequence measurements by sophisticated Out-
of-Sequence measurement fusing algorithms.

1. Introduction

Many papers on Kalman filtering suggest to use the
Kalman filter solely in scenarios where the fused mea-
surements are corrupted by zero mean Gaussian dis-
tributed errors. However due to the lack of feasible al-
ternatives, the Kalman filter is applied to a wide variety
of scenarios including the fusion of measurements that
are corrupted by systematic errors such as offsets.

This corruption of measurements by offsets is an
often observed problem in ground target tracking using
sensors that emit radiation and derive information such
as position and speed of a moving object by analyzing
the reflected radiation (e.g. radars or laser scanners).
Said offsets can be be caused by reflection points mov-

∗M. Koplin (née Mauthner) is with the Technical University of
Vienna, 182 Institut fuer technische Informatik, Treitlstraße 3, 1040
Vienna, Austria (e-mail: e0427797@student.tuwien.ac.at)

†W. Elmenreich is with the Alpen-Adria-Universität Klagenfurt,
Institut für Vernetzte und Eingebettete Systeme, Universitätsstraße
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ing on the surface of an object. As the shape of the
object itself can often only roughly be estimated, the
change of location of the reflection point on the object’s
surface can not be modeled.

In order to increase the fusion system robustness
against such systematic errors it is feasible to use mul-
tiple heterogeneous sensors that will presumably not be
affected over a long time period by the same systematic
error.

A problem that is often observed in such multi-
sensor fusion systems is that of Out-of-Sequence mea-
surements (OOSMs). The OOSM problem arises as
the original Kalman filter algorithm can only deal with
chronologically ordered measurements which makes
it impossible to fuse OOSMs. In order to handle
OOSMs, highly sophisticated Kalman filter based al-
gorithms that can cope with not chronologically or-
dered measurements (ADVA) have been developed dur-
ing recent years. A less sophisticated alternative is to
use a Kalman filter based buffering approach (BUFF)
wherein non-OOSMs are delayed until the awaited
OOSM is available.

In order to compare the ADVA approach with the
BUFF approach in regard to their robustness to mea-
surements that are corrupted by systematic errors such
as offsets in the value domain we analyze an exemplary
scenario.

The remainder of this paper is organized as follows.
Section 2 presents the simulation environment, i.e. a ba-
sic fusion system, the Kalman filter algorithm (for no-
tational consistency only) and the temporal constraints
taken into account. Section 3 discusses the OOSM
problem and algorithms that have been developed dur-
ing recent years in order to overcome said problem.
Section 3 further defines which OOSM fusing algo-
rithm is used in the simulation environment. Section 4
presents results obtained using the simulation environ-
ment for the exemplary scenario and section 5 analyzes
said results. The paper is concluded in section 6.
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2. Simulation Environment

In [1–4] Mauthner et al. studied the feasibility
of time-triggered sensor fusion with the focus on de-
riving an optimal temporal and algorithmic parameter
set using a simulation environment wherein all assump-
tions of basic Kalman filtering were met. Therein it is
shown that the ADVA approach for fusing OOSMs usu-
ally outmatches the BUFF approach. In order to make
the papers’ results comparable to this paper, the same
time-triggered simulation environment dealing with the
tracking of objects for use in safety related driver as-
sistance systems as in papers [2–4] is used. This sim-
ulation environment is repeated here solely for conve-
nience and notational consistency throughout the paper.

We consider a system with two heterogeneous sen-
sors that measure the kinematic states of surrounding
objects and transmit these measurements via a time-
triggered bus system to a fusion/prediction core. The fu-
sion/prediction core fuses the incoming measurements
and then periodically predicts the fused object states
from state time (ST ) to real time (RT ) in order to pro-
vide an update for a safety related application (see fig-
ure 1).

The prediction interval (RT−ST ) is therefore equal
to the time that elapses while a measurement is gener-
ated by preprocessing a snapshot of the surrounding en-
vironment, transmitted as a message over the bus sys-
tem to the fusion/prediction core and fused with the ob-
ject states stored on the fusion/prediction core.

bus system

sensor 1

sensor 2

fusion/
prediction
core

application

Figure 1. Target tracking system

Figure 2 depicts the timing parameters for a process
within our sensor fusion system. We use the following
abbreviations in order to describe the timing parameters
of all processes:

• the cycle time tC of a process is the time interval
that this process requires for completion of its ser-
vice while the start of two consecutive processes is
tC apart

• the execution time tT of a process is the time in-
terval in which this process completes its service

Figure 2. Timing model of a process

Figure 3. System schedule

where the start of two consecutive processes can
be more than tT apart

• the phase tP of a process is defined as the time in-
terval between the start of this process relative to
the start of the first cycle of sensor 1

In figure 3 the system schedule is visualized.
Therein, time intervals in which a sensor or the fu-
sion/prediction core are active (tT ) are indicated by bars.
Furthermore the process cycle times (tC) and phases (tP)
are indicated for each process. Figure ?? shows all cycle
times tC, process execution times tT and phases tP (rel-
ative to sensor 1), of sensor preprocessing (tsens1

C , tsens2
C ,

tsens
P ), measurement transmission (ttta

C , ttta1
P , ttta2

P ) and
prediction of the application update (t pre

C , t pre
T and t pre

P )
that are assumed to be fixed and are referred to as the
system schedule throughout the paper. The fusion pro-
cess itself which is characterized by the time needed to
fuse a measurement t f us

T (t f us/IS
T for In-Sequence mea-

surements (ISMs) and t f us/OOS
T for OOSMs) will be ex-

ecuted whenever measurements are available at the fu-
sion/prediction core and resources are available as in-
dicated by the dashed line whose gaps result from the
fact that the fusion/prediction core also needs resources
for prediction of the application update indicated by the
line below said line.

To process the incoming measurements at the fu-
sion/prediction core, we use a Kalman filter as de-



scribed in [5] and for processing the OOSM we use an
ADVA approach as defined at the end of section 3 or an
BUFF approach. As the Kalman filter is a widely used
and well-known algorithm for tracking moving targets,
we will only give a short overview of the notation used
throughout this paper.

The estimated state vector of the tracked object
~̂x( tk−1| tk−1) is updated with measurements at dis-
crete points in time tk. The state prediction from
tk−1 to tk is given by ~̂x( tk| tk−1) = F (tk− tk−1) ·
~̂x( tk−1| tk−1). The predicted state covariance matrix is
computed as P( tk| tk−1) = F (tk− tk−1) ·P( tk−1| tk−1) ·
(F (tk− tk−1))

T +Qtk−1 . The measurement update of the
predicted system state is ~̂x( tk| tk) = ~̂x( tk| tk−1)+Ktk ·~νtk

with Ktk = P( tk| tk−1) ·HT
tk ·

(
Htk P( tk| tk−1)HT

tk +Rtk

)−1,
~νtk =~ztk −~̂ztk and~̂ztk = Htk ·~̂x(tk). The update of the co-
variance matrix is given by P( tk| tk) =

(
I−Ktk ·Htk

) ·
P( tk| tk−1) ·

(
I−Ktk ·Htk

)T + Ktk · Rtk · KT
tk . The fu-

sion/prediction core processes a measurement within
t f us
T .

3. Out-of-Sequence Measurement Treat-
ment

In multi-sensor target tracking systems, measure-
ments of two sensors which provide information about
the same object can arrive Out-of-Sequence (OOS) [6,
7], that means not in chronological order. Often, OOS
behavior is caused by an indeterministic transmission
system, where the transmission time of a message may
vary so much that a message from a later measurement
may overtake a newer measurement. Such behavior is
caused by transmission protocols with many retries or in
networks with dynamic routing (Internet, wireless sen-
sor networks).

However, even if communication protocols with
deterministic behavior, such as time-triggered ap-
proaches like Flexray [8], TTCAN [9], TTP [10], or
TTP/A [11] are used, the OOSM problem may arise.

Figure 4 depicts a situation with an OOSM prob-
lem that is independent from communication system is-
sues. Due to different preprocessing times the indicated
measurement from sensor 2 is received earlier at the
fusion/prediction core than the indicated measurement
from sensor 1 although the measurement from sensor 2
is more recent.

As the Kalman filter in the form of [5] can not
handle OOSMs, architectural and algorithmic solutions
have been developed which will be called advanced al-
gorithms (ADVA) throughout this paper.

Please note that tκ represents the OOSM time
stamp and tk represents the time stamp of the informa-
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Figure 4. Origin of out-of-sequence measure-
ments

tion which updated the fusion before the OOSM was
received.

Larsen et al. present a suboptimal multi-lag filter-
ing algorithm for linear systems [12]. If information
is OOS, a correction term derived from the covariance
matrices is set up, which is updated every time step. As
soon as the delayed information comes up, this correc-
tion term is used to update the current state estimate
with the delayed information.

Bar-Shalom presents an optimal one-lag tracking
algorithm for linear systems [13]. The delayed infor-
mation is incorporated by computing the update of the
state at time tk with the residual of the OOSM and the
retrodicted state to the time κ as well as the covariance
matrices between the states at tk and tκ . In [14,15] Bar-
Shalom et al. extend the presented one-lag algorithm
to deal with multi-lag OOSMs by virtually compress-
ing the information of the updates between tκ and tk
into one update. This approach is further extended to
a multi-model approach in [16].

Mallick et al. describe an extension to the algo-
rithm presented in [13] toward a multi-lag, single-model
and a one-lag, multi-model approach [17]. In [18],
Mallick et al. present a multi-lag, single-model algo-
rithm that includes data association, likelihood compu-
tation and hypothesis management. After presenting a
particle filter for OOSM processing in [19], Mallick and
Marrs compare particle filter (algorithm from [20]) and
Kalman filter (algorithm from [21]), based on multi-lag
filtering algorithms for linearized systems, in [22].

Orton and Marrs present the incorporation of
OOSMs with particle filters [20, 23, 24].

Zhang describes an algorithm in [21] that is stated
to be the general case of [13] and [17]. She further dif-
ferentiates between globally optimal solutions and solu-
tions optimal for the information given. In [25], she ex-
tends the before mentioned algorithms and establishes
the connection to the work of Challa and Wang which
will be discussed further down.



Maskel et al. present an approach similar to Zhang
by trying to describe the algorithms as specific approxi-
mations to an overall framework, being optimal respec-
tively suboptimal for the assumptions made and the in-
formation given [26].

Challa and Wang present an augmented state vec-
tor, that is a temporally staggered vector, consisting of
the present state and past states. This enables the infor-
mation fusion to incorporate measurements correspond-
ing to past states in an optimal, elegant way but is com-
putationally enormous expensive [27] (optimal multi-
lag filtering algorithm for linear systems). To over-
come the computationally expensive augmented state
algorithm, Challa and Wang introduce the iterated aug-
mented state algorithm [28]. In [29], they additionally
describe the use of these algorithms in scenarios with
clutter. Furthermore, Wang and Challa extend their al-
gorithm toward an interacting multiple-model approach
in [30].

In [31], Anxi et al. present a unified suboptimal
one-lag, multi-lag and mixed-lag advanced algorithms
(consider a sequence with two OOSMs 1 and 2 with
tκ1 < tκ2 and tk1 > tk2).

For sake of discussion we will only consider the
OOSM processing algorithm Al1 of [15] referred to as
ADVA as it is best suited for the presented exemplary
scenario.

4. Simulation

In our simulation we track the one-dimensional
motion of a target by fusing measurements of two het-
erogeneous sensors that provide measurements of the
x-position of the target. The used system model can be
represented by

F (tk− tk−1) =
[

1 tk− tk−1
0 1

]
(1)

and

Qtk−1 =

[
(tk−tk−1)3

3
(tk−tk−1)2

2
(tk−tk−1)2

2 tk− tk−1

]
·q (2)

with q = 0.5 m2

s3 being the power spectral density of
the continuous time process noise. The measurements
of the two sensors are zsens1

tk = v0 · tk + offsetsens1 and
zsens2

tk = v0 ·tk +offsetsens2 with v0 = 2 m
s , offsetsens1 = 2m

and offsetsens2 =−2m. As solely the x-position is mea-
sured, the transformation matrices between state space
and measurement space are

Hsens1/2
tk =

[
1 0

]
(3)

Figure 5. Overview: real time x-position (x-out)
and speed (v-out) estimated by ADVA respec-
tively BUFF approach with offsetsens1 = 2m and
offsetsens2 =−2m

Figure 6. Close-up: real time x-position (x
out) estimated by ADVA respectively BUFF ap-
proach with offsetsens1 = 2m and offsetsens2 =−2m

The measurement noise of both sensors is charac-
terized by their variances

Rsens1/2
tk = 1m2 (4)

The temporal evolution of the simulation environ-
ment is defined by tsens1

C = 180ms, tsens2
C = 80ms, ttta

C =
5ms, ttta1

T = 1ms, ttta1
P = 1ms, tsens

P = 0ms, tsens
P = 0ms,

ttta2
P = 2ms, ttta2

T = 1ms, t f us/IS
T = 5ms, t f us/OOS

T = 8ms,
t pre
C = 30ms, t pre

T = 2ms, t pre
P = 0ms

Figure 5 depicts the fusion results for x-position
and speed of the target which have been predicted to
RT for the ADVA and the BUFF approach. When re-
garding a close-up of said results as depicted in fig-
ure 6 and figure 7 the estimated x-position and the esti-
mated speed of the target, it is obvious that the ADVA
approach applied to OOSMs achieves a weaker result
than the BUFF approach as the average speed and the
average x-position of the target in the ADVA approach
is further away from the real values indicated by the
straight lines than in the BUFF approach.



Figure 7. Close-up: real time speed (v out) es-
timated by ADVA respectively BUFF approach
with offsetsens1 = 2m and offsetsens2 =−2m

Figure 8. Close-up: real time x-position (x
out) estimated by ADVA respectively BUFF ap-
proach with offsetsens1 = 2m and offsetsens2 = 2m

Please note that when both offsets have the same
algebraic sign and the same numeric values (e.g.
offsetsens1 = 2m and offsetsens2 = 2m) the performance
of the fusion is for the given scenario independent from
the chosen OOSM processing approach as can be seen
in figure 8.

5. Discussion

The reason for the effect shown in figures 5 to 7
can be understood when recognizing the temporal evo-
lution of the state vector as depicted in figure 9. In the
ADVA approach the fusion of measurements is evenly
spread over RT (indicated by an arrow) whereas the fu-
sion of measurements in the BUFF approach is concen-
trated around the time instant (indicated by an ellipse)
where the OOSM arrives at the fusion/prediction core.
This concentration has the effect that a degradation of
the fusion result due to an not modeled systematic error
might soon after its generation be diminished by either
measurements without this error or even compensated
by measurements that suffer the same effect but have an

Figure 9. Close up: state time x-position (x) es-
timated by ADVA respectively BUFF approach
and measured x-position (z)

opposite algebraic sign as the offsets in our example.
This concentration of fusion steps around certain

instants is advantageous as it minimizes the time when
the filter state is heavily corrupted.

6. Conclusions

In this paper we have presented an example for a
Kalman filter based fusion system which is supplied
with measurements being corrupted by systematic er-
rors such as offsets in the value domain. We have shown
that buffering the ISM measurements achieves better re-
sults than fusing the OOSM with sophisticated OOSM
algorithms. We believe that this example is part of a
class of target tracking systems which employ multiple
heterogeneous sensors where the concentration of fus-
ing measurements around given instants in time is most
suitable for exploiting measurement redundancy.
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