
Design of Self-organizing Systems Using Evolutionary Methods

István Fehérvári and Wilfried Elmenreich (Faculty Mentor)
Institute for Networked and Embedded Systems / Mobile Systems Group

University of Klagenfurt
Klagenfurt, Austria

Email: {ifeherva,wilfried.elmenreich}@uni-klu.ac.at

Abstract — Having many advantages, self-organizing systems
could mean a solution for intelligent group behavior. Until now
there is no general methodolgy how to design and control these
systems. In this paper we examine a genetic approach for gener-
ating group behavior. Related research proved that it is possible
to create sensor based robot control program using genetically
evolved ANNs. Extending this concept, we propose a method for
designing self-organizing systems by extending this concept to co-
operative behavior among the individuals.

I. INTRODUCTION

The power of evolutionary methods was shown in many
applications where the implementation of artificial intelli-
gence was necessary. As an example genetic algorithms
(and so genetic programming) were used in simple and
more complex games as proposed by Hauptman and Sip-
per [1]. Another approach is using neural networks to build
programs capable of learning. Following this idea adap-
tive robot control can be developed at the hardware level
for practical motion [2] or taking one step further by evolv-
ing neural networks in a genetic manner to get a complete
control program of a single robot driven by sensor data. Ac-
cording to [3] the evolved network was significant better
than the handcrafted solution.

For self-organizing systems to get the highest satisfaction
σsys for the system a cooperative behavior should be devel-
oped. This is mostly done by manually adjusting parame-
ters which in case of systems with high complexity could
be very difficult. In these systems, a small change in a pa-
rameter could arise unpredicted behavior due to the missing
direct function between element and system. Thus, a lot of
trials are necessary to find a satisfying solution. Evolution-
ary methods provide a means to automatize the testing and
optimizing of parameters in an intelligent way.

In this paper we present a method where the team strat-
egy is not pre-programmed, but using the idea proposed
by Elmenreich and Klinger [3], is generated by genetically
evolving an Artifical Neural Network (ANN). The intention
is to minimize the required human interference in creating
the model by making it partly or fully generated by itself.
The rest of the paper is structurized as follows: Section 2
describes self-organizing systems while Section 3 explains
the genetic approach and discusses the method for the given
problem. Current work is discussed in Section 4.

II. SELF-ORGANIZING SYSTEMS

The term “self-organizing” was first introduced in 1947 by
W. Ross Ashby. It refers to pattern-formation processes
within a system caused by the behavior of its individual en-
tities. Their basic feature is the way how they acquire their
order and structure. Among the several definitions the most
suitable could be the following:

“In self-organizing systems, pattern formation occurs
through interactions internal to the system, without inter-
vention by external directing influences.”[4, p.7]

A good example is a team of workers acting on their own
following a mutual understanding. If there would be com-
mon blueprints or a boss controlling them, it would mean an
external influence resulting in no self-organization. Nature
also has many examples like a school of fish where each
individual has knowledge only about its neighbors and so
there is no leader among them. The key part is the commu-
nication between the individuals satisfying their own goals
and by doing so a pattern emerges. Through these fea-
tures it is expected that the overall system shows many ad-
vantages like robustness, adaptability and scalability which
makes self-organizing systems (SOS) an interesting option
for controlling complex systems. However the above men-
tioned properties and the decentralized control makes an
SOS difficult to design and control. Although, Gershen-
son [5] provides some ideas for the design of SOS for tech-
nical applications, there is no general methodology yet to
explain how these should be done.

III. THE GENETIC APPROACH

The main idea behind genetic methods is the Darwinian se-
lection process. The algorithm operates on a pool of possi-
ble solutions. It evaluates them based on their fitness func-
tion which measures their performance when applied to the
given problem. While the best ones are kept, those with
bad performance will be replaced by offsprings or muta-
tions of the pool. For more complex problems where the
solutions cannot be represented by variables but individual
programs it is hard to define how to mutate or recombine
them while keeping the syntactically correct structure. In
these cases normal programming languages like C or Java
do not qualify for this kind of programming, however the
usage of ANN could solve the problem.

A. NEURAL NETWORK MODEL

We choose a fully connected, time-discrete, recurrent ANN
where each neuron has a connection to every other neuron
and also to itself via several input connectors. Based on the
neurons activation value, the neurons output is forwarded
via different connections to all other neurons. Each con-
nection is assigned a weight and each neuron is assigned
a bias value. There are special input and output neurons
for the controlling interface: the input neurons produce the
sensor data on their output independtly of their input val-
ues, the output neurons act like normal neurons in the net-
work, but their output data is also forwarded to the actua-
tors. Other nodes which are not characterized as input or
output nodes are the so-called hidden neurons. Figure 1
shows a schematic structure.

In more complex systems containing many individuals
like self-organizing systems there might be a need for dif-

gymi
Text Box
Personal use of this material is permitted. However, to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works permission must be obtained. The definite version of this paper is published in Proc. of the Junior Scientist Conference (JSC'08), Vienna, Austria, 2008



Figure 1: Neural network model example

ferently arranged sensor subsystems connected to the same
network. Robot soccer would be a good example where one
group of sensors watch for the ball while other groups for
teammates or opposing partymembers. Their separate in-
puts will be connected to the common network at the input
nodes so the output would depend on several external fac-
tors resulting in more compound behavior.

B. EVOLUTION METHOD

Evolution method means a genetic algorithm that looks for
solutions with high fitness values to the given problem.
During the process many solutions are created and evalu-
ated in parallel while the best ones will be kept for the next
generation. First, the genomes have to be defined for each
entity. In our case they are represented by the weight matrix
and the biases of each neuron. The next step is the defini-
tion of the fitness function which is a proper formulation of
what we expect from the system. As proved in [3] genetic
selection processes supporting crossover, mutation and elite
selection have higher learning speed than the ones without
crossover [6]. To have support of all this features we will
use the versatile framework given by Pfandler [7].

IV. TESTBED

There are several ways to test the proposed method; we
chose the RoboCup Soccer Simulator1 as an evaluation tool.
This open-source program is capable of simulating a soccer
game between two teams played in real-time. See Figure 2
for a screenshot of the simulator. As a result of each genetic
procedure a population of ANNs will be created. These will
be turned into robot soccer team control programs, where
we want to rank them for further processes based on their
in-game performance. In the soccer environment there is
no effective way to assign fitness values to the entities by
evaluating them one by one, so we will use a Swiss system
tournament [8] organized among them. A standard simu-
lated robot soccer game takes 12 minutes to finish if played
in real-time. Calculating with a population of 100 it would
take 84 minutes to finish with only one iteration. To over-
come this problem and shorten the required time for the
test the simulator will be modified to run as fast as possi-
ble using an asynchronic coupling between server and team
clients. Further speedup can be achieved using a parallel
evaluation on a multi-computer system.

V. CONCLUSION AND OUTLOOK

The success of genetically evolved ANNs used in [3] for
autonomous mobile robot control shows a good potential

1http://sserver.sourceforge.net

Figure 2: Team evaluation using soccer simulator

for applying to self-organizing systems. The goal of the
current project is to create a simulation environment for
self-organizing systems evolved by following the proposed
method. Once implemented, experiments will be performed
to optimize and to compare this solution with hand coded
ones in robot soccer environments.

ACKNOWLEDGMENTS

This work was supported by the Austrian FWF project
TTCAR under contract No. P18060-N04.

REFERENCES

[1] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel. De-
signing an evolutionary strategizing machine for game
playing and beyond. IEEE Trans. on Systems, Man and
Cybernetics, Part C, 37(4):583–593, July 2007.

[2] M. W. Han and P. Kopacek. Neural networks for the
control of soccer robots. In Proceedings of the 2000
IEEE International Symposium on Industrial Electron-
ics, pages 571–575, Cholula, Mexico, August 2000.

[3] W. Elmenreich and G. Klingler. Genetic evolution of
a neural network for the autonomous control of a four-
wheeled robot. In Sixth Mexican International Con-
ference on Artificial Intelligence (MICAI’07), Aguas-
calientes, Mexico, November 2007.

[4] S. Camazine, J. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organization in
Biological Systems, volume 1. Princeton University
Press, Princeton, NJ, USA, 2nd edition, January 2001.

[5] C. Gershenson. Design and control of self-organizing
systems. PhD Dissertation, Vrije Universiteit Brussel,
Brussel, Belgium, 2007.

[6] L. A. Meeden. An incremental approach to developing
intelligent neural network controllers for robots. IEEE
Trans. on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, 26(3):474–485, June 1996.

[7] A. Pfandler. Design and implementation of a generic
framework for genetic optimization of neural networks.
Bachelor’s thesis, Vienna University of Technology, Vi-
enna, Austria, 2007.

[8] J. A. Bergstra and L. M. G. Feijs, editors. Algebraic
Methods, volume 2. Springer-Verlag, New York, LLC,
1st edition, May 1991.




