
Evolving Self-organizing Cellular Automata based on
Neural Network Genotypes

Wilfried Elmenreich and István Fehérvári

Mobile Systems Group, Lakeside Labs
Institute for Networked and Embedded Systems,

University of Klagenfurt

Abstract This paper depicts and evaluates an evolutionary design process for gen-
erating a complex self-organizing multicellular system based on Cellular Automata
(CA). We extend the model of CA with a neural network that controls the cell be-
havior according to its internal state. The model is used to evolve an Artificial Neu-
ral Network controlling the cell behavior in a way a previously defined reference
pattern emerges by interaction of the cells. Generating simple regular structures
such as flags can be learned relatively easy, but for complex patterns such as for
example paintings or photographs the output is only a rough approximation of the
overall mean color scheme. The application of a genotypical template for all cells
in the automaton greatly reduces the search space for the evolutionary algorithm,
which makes the presented morphogenetic approach a promising and innovative
method for overcoming the complexity limits of evolutionary design approaches.

Keywords: cellular automata, artificial neural networks, self-organizing systems, evolutionary
algorithm

1 Introduction

The concept of Self-Organizing Systems (SOS), although long known from domains
such as physics, chemistry and biology, has recently gained interest to be applied to
technical systems. Self-organization can be defined as the emergence of coherent, global
behavior out of the local interactions between components. This emergent organization
is characterized by intrinsic autonomy, adaptability to environmental changes, and local
awareness of the most important global variables. Most importantly, many SOS appear
to be robust with respect to a variety of disturbances and intrusions, as the system is
to some degree capable of overcoming or self-repairing damages. While many natural,
social and technological examples of SOS exhibiting these characteristics are known,
and several mechanisms of self-organization have been analyzed in detail, the design
of a SOS remains a fundamental challenge [1]. Recent results have shown evolutionary
design [2] to be a promising method for designing self-organizing systems [3,4].

However, as the system to be evolved becomes more complex, the evolutionary ap-
proach suffers from problems such as disruption of inheritance, premature convergence
and failure to find a satisfying solution [5]. Yet, natural evolution has managed to create
the very complex design of life. A main difference between natural and artificial evolu-
tion is, in many cases, the genotype-phenotype mapping. Natural organisms grow from

Textfeld
© Springer, 2011. This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the copyright holder. The definite version is published within the Proceedings of the 5th International Workshop on Self-Organizing Systems, www.springerlink.com, 2011.

a single cell into a complex system, while in many applications of artificial evolution,
there is a one-to-one mapping from genotype to phenotype, leading to poor scalability.
Therefore, there is a strong need for introducing generic genotype descriptions that can
emerge into arbitrarily complex systems.

In this paper we describe such an approach by the model of a cellular automaton
where the state-transition logic of each cell is an instance of the same genotypical con-
troller. The control algorithm is implemented by a small artificial neural network that is
evolved to reproduce a given pattern on the cellular automaton. We tested the ability of
the resulting pattern formation model for replicating several naturally occurring patterns
(such as animal skin patterns) as well as man-made patterns (such as flags and paintings).
Results show that the approach works better for regular structures.

The remaining parts of this paper are structured as follows: The following section 2
briefly reviews related work on pattern formation and artificial evolution approaches to
evolve pattern formation processes. Section 3 introduces the model, i.e., the Cellular
Automata (CA) structure and the properties and interconnections of the Artificial Neu-
ral Networks (ANNs). The evolutionary programming method is based on a tool named
Frevo, its application for the given problem is described in Section 4. Experiments in-
cluding evolving several patterns and discussion of the results is elaborated in Section 5.
Finally, Section 6 concludes the paper and sketches possible further research and appli-
cations based on the presented approach.

2 Related Work

The need for proper genotype descriptions that can be evolved is discussed in the works of
Bentley/Kumar [5], Eggenberger [6], and Miller [7]. Bongard and Pfeifer [8] demonstrate
a model to evolve the morphology and neural control of an agent.

Amorphous computing [9] refers to systems of many identical simple processors each
having limited computational ability and interacting locally. Typically, such systems are
of irregular structure in contrast to the regular structure of CAs as they are used in our
case study.

Pattern formation in general is studied in developmental biology in terms of cell fate
control through a morphogen gradient. A morphogen has been conceptually defined in
the 1960s by Lewis Wolpert using the French Flag Model [10] where the colors of the
French flag represent the effects of the morphgen on cell differentiation. Herman and
Liu [11] have solved the French flag problem through the simulation of linear iterative
arrays of cells. Miller [7] has created a simulated differentiated multicellular organism
that resembles structure and coloring of the French flag. He uses a feed-forward Boolean
circuit implementing a cell program. The cell programs are evolved using a specialized
Genetic Programming system. Miller also comments on the difficulty of the problem of
evolving a cell program.

Chavoya and Duthen in [12] have used a Genetic Algorithm to evolve Cellular Au-
tomata that produce 2D and 3D shapes such as squares, diamonds, triangles, and circles.
Furthermore, in [13], they have evolved an Artificial Regulatory Network (ARN) for cell
pattern generation, producing the French flag pattern.

Fontana in [14] generated predefined arbitrarily shaped 2D arrays of cells through
an evolutionary-developmental technique. He was able to successfully generate complex

patterns such as dolphin, hand, horse, foot, frog, and the French flag. Fontana has ex-
tended this work in [15] to evolve complex 3D forms.

The combination of neural networks and cellular automata which grow under evolu-
tionary control is present in the China-Brain project [16], an effort to create an artificial
brain of interacting small (typically 12-20 neurons) neural networks. This work, having
several aspects in common, differs from the work presented in this paper in two aspects:
China-Brain is intended as a controller (e.g., to a robot) while in our problem the struc-
ture and form of the cells themselves are the output and, second, the interconnections
between the modules are designed explicitly by so-called brain architects, while they are
an output of the evolutionary process for our model.

3 Cellular Automaton Model

The used model consists of a regular rectangular grid matching exactly the resolution
and proportion of the reference image (reference images are very small, typically 50-500
pixels). The colors of the reference image are converted into a scale, where neighboring
colors are resembling each other. This color transformation from RGB has been achieved
by assembling a binary number by arranging the most significant bits of the channels R,G
and B, followed by the second most significant bits of those channels, and so on until the
least significant bits, finally yielding a 24-bit color code.

The colors which are present in the reference image are then sorted according to the
new scale and assigned to the possible output spectrum of the neural networks. Each
color gets an equal proportion of the output space, which is continuous between -1 to 1.

Each cell is controlled by an ANN, which is modeled as a time-discrete, recurrent
artificial neural network. Each neuron is connected to every other neuron and itself via
several input connectors. Each connection is assigned a weight and each neuron is as-
signed a bias value.

At each step, each neuron i builds the sum over its bias bi and its incoming connection
weights wji multiplied by the current outputs of the neurons j = 1, 2, ..., n feeding the
connections. Weights can be any real number, thus have either an excitatory or inhibitory
effect. The output of the neuron for step k + 1 is calculated by applying an activation
function F :

oi(k + 1) = F (

n∑
j=0

wjioj(k) + bi)

where F is a simple linear threshold function

F (x) =

−1.0 if x ≤ −1.0
x if − 1.0 < x < 1.0
1.0 if x ≥ 1.0

In total each ANN consists of 9 input neurons, 5 output neurons and 6 hidden neu-
rons. The 6 hidden neurons have been selected after a short evaluation and turned out to
be an applicable number in order to balance between capability of the ANN and reduc-
tion of the search space. One outgoing connection is used to define the cell’s color and
four pairs of incoming and outgoing neurons connect the ANN with neighboring cells.

Furthermore, an ANN can sense the colors of the neighboring cells. The ANN of a cell
does not get any direct information about its position in the grid. A cell at a border or in
corner, however, would be able to infer about its position. Via the inter-cell connections,
information can propagate to the cells in the center.

Figure 1. Interconnections of ANNs in neighboring cells

Figure 1 depicts the interconnections between the ANNs via neighboring cells in the
CA model. The light bulb, which is controlled by the ANN in the same cell indicates the
current color state of a cell. Each cell gets an instantiation of the same ANN. When the
CA is iterated, its ANNs can however acquire a different internal state that can be kept
via self-holding loops and that can lead to differentiation in the ANN’s behavior.

4 Evolutionary Programming of the ANNs

In order to evolve the weights of the ANN, we used Frevo [3], a Java framework for gen-
erating distributed self-organizing systems.1 Frevo allows to combine different represen-
tations (e.g., fully-connected ANNs, layered ANNs, Finite State Machines (FSMs)) with
an optimization method and a problem to be solved. Every problem contains a generic
interface to one or several instances of the representation, the optimizer basically evolves
a control algorithm formulated in the representation that solves the problem.

The modular concept allowed to reuse the model for the ANN and the optimization
algorithm from previous projects, thus reducing our task to formulate and implemented

1 Frevo and most of its models are available as open source software at http://www.
frevotool.tk/

the problem. The used optimization algorithm is depicted in the algorithm below. The se-
lection criteria are based on the rank (according to the candidate’s fitness) and, in case of
the random selection, also on diversity. Diversity means that candidates which are more
different to the already selected pool of candidates have a higher chance to be chosen.
Functions for mutation, recombination and the difference between candidates are pro-
vided by the specific candidate implementation. In our case, the ANNs applied mutation
and recombination on the weights and biases of the artificial neurons. The difference be-
tween the candidate is a sum of the squared differences of all weights and biases. The
number of neurons and structure of the ANNs was fixed at runtime, since the problem
statement has no dynamic aspects and networks with fixed structure have shorter evolu-
tion times [17].

Algorithm 1 Evolutionary algorithm used as optimization method
1: create n networks in a population and initialize them with random values
2:
3: for generations
4: for i=0 to n
5: evaluate networkp, i and store score
6: rank networks according to their score (best first)
7: select elitist networks
8: select randomly networks (bias for better ranked and diverse networks)
9: create mutations of selected networks

10: create recombinations of selected networks
11: create some networks anew and initialize them with random values

The parameters used for the the evolutionary algorithm are listed in Table 1.

Table 1. Parameters used for the evolutionary algorithm

Population size 100
Elite selection 15%
Random selection 10%
Mutated networks 30%
Recombination 40%
New networks 5%
Mutation rate 5%

A problem consists typically of a simulation with a generic interface to the control
system. The simulation returns a fitness value which is used by the optimization algo-
rithm for evolving the system. We implemented a CA simulator that is controlled by a
representation. The fitness function was implemented as a sum of the squared color in-
dex differences between the image after a number of iterations and the reference image.
In order to approximate human perception of different images (human vision is focused
around edges rather than areas with the same or similar color), the summands have been

weighted by a function giving higher values for pixels having pixels of different color in
their neighborhood.

5 Experiments and Results

We found flags to be the simplest kind of patterns to emerge for our proposed set-up.
Figure 2 depicts the evolution of a Hungarian flag. The reference image consists of a 6x9
image, where the two top rows are red and the top lower rows are green with white in
between. Thus the complexity of this reference is equivalent the French flag which was
used as reference in several related work articles as described in Section 2.

Figure 2. Evolution of recreating a Hungarian flag

Note that the proceedings in the quality were highly non-linear over the number of
generations, because the evolutionary algorithm gets often stuck in local cost minima
after about 100 generations. Thus, improvements past these generations happen only
very infrequently.

The mechanism to recreate an image over several iterations of the CA can be observed
by the example of an Austrian flag. The Austrian flag contains only red and white color
and was therefore easier to evolve than the three-colored Hungarian one. We achieved a
perfect reproduction after running the evolutionary algorithm for 90 generations. Figure 3
shows how the result unfolds over several CA iterations into the intended image.

The limits of the approach can be observed when going to more complex images. Fig-
ure 4 depicts the results of trying to reproduce a small image of the Mona Lisa painting
(left image). The middle image shows the downsized reference image. The best achiev-
able result after over 500 generations is depicted in the right image. The overall back-
ground color scheme is present, although, unfortunately, Mona is missing. The main rea-
son for this result lies in the increased size of the image – while the flags were evolved
on a raster of 6x9, the Mona Lisa image is 20x29. Note that initially only cells at the
corner and the borders can detect their position in the image - the inner cells must rely
on propagating information. For a larger image, the ratio between border and inner cells
is more extreme.

Figure 3. CA steps for Austrian flag

Figure 4. Attempt to reproduce the work of Leonardo da Vinci

Figure 5. Evolving a reproduction of animal skin patterns

Another question of interest was how well natural patterns can be evolved. Sev-
eral patterns resembling natural ones can be reproduced by CA executing simple state-
transition rules of positive and negative feedback [18].

Interestingly, our evolutionary algorithm did not come up with a feasible solution.
This is likely because the fitness function was inappropriate for that task, since it com-
pared the potential solution pixel by pixel to a reference image. Thus, a similar pattern is
not considered as solution, although a human observer might perceive a similar pattern as
being closer to the reference than an image that partially reproduces the original layout
of objects in the image. Figure 5 shows that although the created image resembles the
reference one on a pixel-by-pixel basis, the quality and type of the reference pattern is
not matched.

6 Conclusion and Future Work

We depicted and evaluated a design process that generates a multicellular system out
of a genotypical description for a single cell. The mechanisms have been realized via
an open source framework for evolutionary design (FREVO). At the beginning of each
simulation, all cells had the same state and commenced their operation at the same time -
this is comparable with a number of people cooperatively drawing an image in the dark.
This differentiates our problem from the ones in the literature, where usually a zygote
cell is given, from where the other cells grow. Still, the evolutionary process evolved
a solution where also some eminent cell (typically a particular corner cell) serves as a
zygote.

The main contribution of this paper is not presenting an algorithm for "drawing im-
ages in the dark" but rather presenting a proof-of-concept on integrating ANNs into a CA
in order to initiate a morphogenetic process.

Possible applications of this research could be the self-organized pattern formation
in swarm robotics. In other words, given a desired pattern, how can robots acquire it?
Another application could be smart paint (as indicated in [9]) that would decide on its
color based on a morphogenetic process having only a few distinctive sensory inputs,
thus not allowing for a zygote approach.

The best results have been achieved when evolving simple structures with large areas
of a single color as they are present for example in flags. For more complex images, the
current setup causes the evolutionary algorithm to get stuck at a suboptimal stage. There
is, however, a large space of possibilities for variations of the model which gives rise to
future work. E. g., findings on well-suited or less well-suited model configurations could
give insight to the understanding of such phenomena as morphogenesis and camouflage
mechanisms in nature.

Future experiments are planned to involve modifications in the internal ANN struc-
ture (e.g., investigate on the optimal number of hidden nodes for different reference im-
ages) as well as increasing or decreasing the ability of ANNs to communicate with their
neighbors. For evolving structures rather than replications of images, we are planning to
design the fitness function in a way to have the fitness based on the type of the emerging
structure instead of a pixel-by-pixel comparison.

Acknowledgments

This work was supported by the European Regional Development Fund and the Carinthian
Economic Promotion Fund (contract KWF 20214|18128|26673) within the Lakeside Labs
project DEMESOS and the follow-up project MESON. We would like to thank Marcin
Pilat, Miguel Gonzalez, and Rajesh Krishnan for their input on earlier versions of the pa-
per. Furthermore, we would like to thank the anonymous reviewers for their constructive
comments.

References

1. W. Elmenreich and G. Friedrich. How to design self-organizing systems. In Science beyond
Fiction FET09, pages 61–62, Prague, Czech Republic, 2009. European Commission: Infor-
mation Society and Media, Brussels.

2. P.J. Bentley. Evolutionary Design by Computers. Morgan Kaufman, 1999.
3. I. Fehérvári and W. Elmenreich. Evolutionary methods in self-organizing system design. In

Proceedings of the 2009 International Conference on Genetic and Evolutionary Methods,
2009.

4. I. Fehervari and W. Elmenreich. Evolving neural network controllers for a team of self-
organizing robots. Journal of Robotics, 2010:10 pages, 2010.

5. P. Bentley and S. Kumar. Three ways to grow designs: A comparison of embryogenies for an
evolutionary design problem. In In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 35–43. Morgan Kaufmann, 1999.

6. P. Eggenberger. Evolving morphologies of simulated 3d organisms based on differential gene
expression. In Proceedings of the Fourth European Conf. Artificial Life (ECAL’97), pages
205–213, 1997.

7. J. F. Miller. Evolving a self-repairing, self-regulating, french flag organism. In Proceedings of
Genetic and Evolutionary Computation Conference (GECCO 2004), pages 129–139, 2004.

8. J. C. Bongard and R. Pfeifer. Repeated structure and dissociation of genotypic and phenotypic
complexity in artificial ontogeny. In Proceedings of The Genetic and Evolutionary Computa-
tion Conference (GECCO-2001), pages 829–836, San Francisco, CA, USA, 2001.

9. Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F Knight,
Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss. Amorphous Computing.
Communications of the ACM, 43(5):74–82, 2000.

10. L. Wolpert. Positional information and the spatial pattern of cellular differentiation. Journal
of Theoretical Biology, 25:1–47, 1969.

11. G. T. Herman and W. H. Liu. The daughter of celia, the french flag and the firing squad. In
WSC ’73: Proceedings of the 6th conference on Winter simulation, page 870, New York, NY,
USA, 1973. ACM.

12. A. Chavoya and Y. Duthen. Using a genetic algorithm to evolve cellular automata for 2d/3d
computational development. In GECCO ’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 231–232, New York, NY, USA, 2006. ACM.

13. A. Chavoya and Y. Duthen. Use of a genetic algorithm to evolve an extended artificial regula-
tory network for cell pattern generation. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1062–1062, New York, NY, USA,
2007. ACM.

14. A. Fontana. Epigenetic tracking, a method to generate arbitrary shapes by using evolutionary-
developmental techniques, May 2008.

15. A. Fontana. Epigenetic tracking: A possible solution for evo-devo morphogenesis? In Pro-
ceedings of the 1st International Workshop on Morphogenetic Engineering, 2009.

16. Hugo de Garis, Jian Yu Tang, Zhiyong Huang, Lu Bai, Cong Chen, Shuo Chen, Junfei Guo,
Xianjin Tan, Hao Tian, Xiaohan Tian, Xianjian Wu, Ye Xiong, Xiangqian Yu, and Di Huang.
The china-brain project: Building china’s artificial brain using an evolved neural net module
approach. In Proceeding of the 2008 conference on Artificial General Intelligence 2008, pages
107–121, Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.

17. Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to
learning. Evolutionary Intelligence, 1(1):47–62, 2008.

18. Y. Bar-Yam. Dynamics of Complex Systems. Perseus Books, 1999.

