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Abstract — Measurements from sensors as they are
used for robotic grid map applications typically show
behavior like degradation or discalibration over time,
which affects the quality of the generated maps. This
paper presents two novel algorithms for the generation
of certainty grids dealing with this behavior.

The first algorithm named Fault-Tolerant Certainty
Grid (FTCG) performs voting over multiple sensor
readings. This approach removes up to (n-1)/2 faulty
measurements for grid cells that are updated by n inde-
pendent sensors, however requires that each grid cell is
covered by at least three different independent sensors.

The second algorithm named Robust Certainty Grid
(RCG) uses a sensor validation method that detects ab-
normal sensor measurements and adjusts a confidence
value for each sensor. This method supports also rein-
tegration of recovered sensors from transient faults and
sensor maintenance by providing a measurement for
the operability of a sensor. The RCG algorithm works
with at least three sensors with a partially overlapping
sensing range and needs fewer sensor inputs and less
memory than the FTCG approach.

Results from simulation and an experimental eval-
uation on an autonomous mobile robot show that un-
der the presence of unreliable sensor data, both algo-
rithms perform better than the Bayesian approach typ-
ically used for certainty grids.

1 Introduction

An important task for autonomous mobile robots is
building accurate maps of their environment based on
information produced by onboard sensors [1]. Such
maps can be topological (describing the connectivity of
different places) or metric (capturing geometric prop-
erties in grid-like structures).

A certainty grid is a metric method to map different
sensor readings into a tesselated map describing the
surroundings of a mobile robot, being a simple and in-
tuitive representation of distributed spatial sensor in-
formation [2]. For mobile robots, usually the grid is
modeled as a two-dimensional or, especially for non-
flat outdoor environments, a three-dimensional map of
the robot’s surroundings. Based on the contents of the
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grid, the mapping, navigation, and path planning sys-
tems of the robot decide on the robot’s actions.

In the literature, the term occupancy grid is also
used. In some cases, an occupancy grid refers to a
structure with binary values for each cell, i. e., occu-
pied or empty. Depending on the application, the grid
is initially assumed to be empty [3, 4] or occupied [5].
However, in many cases the term occupancy grid is also
used for a metric structure where each cell is assigned
a probability of being occupied by an obstacle. Ei-
ther way, grid-like structures are considered the most
successful data structure for mobile robots for the rep-
resentation of the environment [6].

For an autonomous robot, the certainty grid repre-
sents a critical data structure that may not become er-
roneous due to a single sensor failure. Single sensors are
affected by several sources of error, like sensor depriva-
tion, limited spatial or temporal coverage, imprecision,
cross-sensitivity, and uncertainty [7, 8, 9]. In order to
overcome these problems, the inputs from several sen-
sors are combined to form a dependable representation
of the environment.

In the original certainty grid by Elfes [2], transient
sensor errors are tolerable since typically a cell is up-
dated by several measurements. However, when em-
ploying sensors with frequent measurement errors spe-
cial treatment for fusing measurements into the grid
is required in order to prevent the validity of the cer-
tainty grid. Analysis of sensors as they are typically
used for robotic map applications show that most sen-
sors actually follow the latter scenario, that is they
show degradation due to wear-out, staining, and dis-
calibration. In spite of these problems it is necessary
to extend the treatment of the sensor measurements in
order to construct a dependable map from unreliable
sensor data.

In this paper we present two approaches for tolerat-
ing sensor faults. The Fault-Tolerant Certainty Grid
(MSE) method employs triple coverage of the sens-
ing area and uses voting in order to cope with sensor
failures. The Robust Certainty Grid (MSE) approach
employs a robust implementation of the certainty grid
that uses grid cells which are covered by multiple sen-
sors for a mutual evaluation of the sensor’s reliability.
This evaluation is then used to determine the future
contribution of the evaluated sensor’s measurements
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(a) Obstacle in front of robot
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(b) Representation in certainty grid

Figure 1: Representation of the robot environment in
a certainty grid

to the grid.
The rest of the paper is organized as follows: Sec-

tion 2 describes the problem statement and the as-
sumptions on sensor failures. Section 3 briefly de-
scribes the commonly used certainty grid fusion algo-
rithm and discusses possible shortcomings. Sections 4
and 5 describe the MSE and the MSE approach. An
experimental evaluation of all three algorithms is pre-
sented in Section 6; the results are discussed in Sec-
tion 7. Related work to this topic is discussed in Sec-
tion 8 until Section 9 concludes the paper.

2 Problem Statement

We assume a robot using multiple sensors to scan an
area of interest for obstacles. One sensor must cover a
particular area, this can be achieved with a camera or a
distance sensor that is swiveled over a particular sector.
The goal is to get a map of the robot’s environment
containing obstacles and free space.

Figure 1 a) depicts a schematic four-wheeled robot
and three partially overlapping detection areas created
by three sensors. In Figure 1 b), an example for the
corresponding certainty grid is depicted. Note that for
areas not covered by the sensors and for occluded ar-
eas (e. g., behind the obstacle) the probability for an
obstacle is assumed with 50 % (maximum entropy as-
sumption [10]).

Note that from the view of hardware architecture it
is almost impossible to mount sensors in a way that the
viewpoint angle from a sensor to an object is perfectly
identical to the angle of the replicated sensor. A repli-
cated sensor will thus always be located slightly offside,
thus viewing objects from different angles. Even if two
sensors are working correctly, they may produce differ-
ent results. Figure 2 depicts an example for an object
that yields ambiguous sensor readings for two correctly
operating distance sensors. Although both sensors are
working correctly according to their specification, sen-
sor B detects an object for the given region while sensor
A detects free space for this particular cell.

2.1 Fault Hypothesis

We consider the sensors to form independent fault con-
tainment regions, thus a failure in one of the sensors
does not cause a failure in another sensor.

We have conducted experiments with several sets of
infrared distance sensors for the purpose of analyzing
common failure modes of sensors in [11]. According to
the results it depends on the configuration of the sensor
set if sensor errors are correlated. We assume to have
a sensor configuration where sensors have independent
failure modes.

A failing sensor delivers either wrong measurements
or no measurements. We distinguish the following
three types: A transient sensor failure is triggered by
some random event that causes the sensor to deliver
a singular degraded or false measurement instead of a
correct one. Martin and Moravec considered the effect
of transient sensor failures neglectable in the certainty
grid [12]. An intermittent sensor failure consists of a
sequence of transient sensor failures. After some du-
ration the sensor may recover from the failure. An in-
termittent sensor failure could be caused by a stained
sensor lens that recovers when the dirt is removed. A
sensor with a permanent failure has broken down abid-
ingly and requires an explicit repair action in order to

Sensor A Sensor B
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Figure 2: Discrepancy between sensor A and sensor B
due to object shape
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re-obtain its nominal performance. From a set of n
sensors we assume that at most b(n−1)/2c sensors de-
liver incorrect values due to transient, intermittent, or
permanent failures.

The sensors are considered the only source of faults
in the regarded system. Other failures like communica-
tion and node failures are orthogonal to the described
sensor failures and can be handled by a dependable
system architecture as for example the Time-Triggered
Architecture (TTA) [13].

3 Certainty Grid Approach us-
ing Bayes’ Rule

Matthies and Elfes [14] propose a uniform method for
integrating various sensor types. Each sensor is as-
signed a spatial interpretation model, which is devel-
oped for each kind of sensor, that maps the sensor
measurement into corresponding cells. When sensor
uncertainties are taken into account, we arrive at a
probabilistic sensor model.

The calculation of new grid values is usually done by
Bayesian inference. Suppose that two sensors S1 and
S2 give two occupancy probability values for a partic-
ular grid element cell. Assuming conditional indepen-
dence and maximum entropy [10], the updated proba-
bility of a grid cell being occupied by an obstacle can
be calculated using Bayes’ rule:

1
P(cell.occ|S1, . . . , Sn)

− 1 =
n∏

i=1

(
1

P(cell.occ|Si)
− 1
)

(1)

where P(cell.occ|Si) depicts the probability of cell
being occupied given the measurement of sensor Si.

Equation 1 shows fully associative and commutative
behavior. Thus, the order of processing does not influ-
ence the result.

Basically, it is assumed that the certainty grid ap-
plication has no a priori knowledge on the geometry of
its environment and that objects in this environment
are static or change with a neglectable rate. The ef-
fect of transient sensor errors can usually be neglected,
because they have little effect on the grid [12]. How-
ever, this approach does not provide means to handle
transient or permanent sensor faults which would cause
errors in the grid that significantly affect navigation or
map-building systems.

4 Fault-Tolerant Certainty Grid
Approach

The MSE approach uses a separate entry of an occu-
pancy value for each sensor. Thus, each sensor pro-
duces its own grid independently of the other sensors.
The concise world model is built by fusing all sensor

grids. The proposed fault tolerant algorithm is simi-
lar to the Fault-Tolerant Average algorithm for clock
synchronization [15].

The fault-tolerant fusion is performed as follows:
First the input data from all sensors for each grid cell
are gathered. If the sensors do not update the grid cells
simultaneously, the fusion of the measurements into the
grid cell is delayed until all sensor data has been gath-
ered for a particular grid cell. It is assumed that the
environment does not change significantly during the
measurement phase.

Then from the set of proposed certainty values for
each grid cell the median value is selected to update the
particular cell. Each cell requires updates from at least
three independent sensors in order to tolerate a faulty
measurement. If the measurement is lower or higher
than all the other measurements, it is voted out by the
median selection. If the measurement is between two
correct measurements, this benign value will be used,
but not distort the certainty grid.

As long as there is at most one fault out of three
measurements (or bn−1

2 c faulty measurements out of n
measurements) for a particular cell, the faulty measure-
ment does not cause a wrong estimation for this grid
cell. However, this fault-tolerant approach comes with
two drawbacks. First, it potentially hinders a lot of
correct sensor measurements from contributing to the
grid. Second, the method requires at least triple cov-
erage to be fault tolerant. Typically, the sensors’ field
of view is expected not to full overlap due to geomet-
rical properties of robots. For the regions not covered
by at least three sensors, the median selection is not
fault-tolerant.

In order to overcome these problems we present a
sophisticated algorithm for handling sensor faults and
use the fault-tolerant certainty grid approach as a ref-
erence for its performance.

5 Robust Certainty Grid

The MSE has been designed in order to support ro-
bustness against sensor failures while not requiring a
full triple redundancy for the whole sensor system.

5.1 Robust Certainty Grid Algorithm

In contrast to the MSE approach, the MSE algorithm
fuses all sensor inputs immediately into a single cer-
tainty grid. Together with the grid occupancy value occ
each cell stores information about the so-called owner
of the current occ value within the cell. Typically, the
owner is the sensor that updated this cell most recently.
This property of each cell is named the current owner
of the cell:

cell.owner =


0 unknown
1 sensor 1
...
nsensors sensor n
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procedure AddToGrid( sensor, cell )
begin
if (cell.owner = unknown) or (cell.owner = sensor) then

cell.occ := sensor.measurement;
cell.owner := sensor;

else
comparison := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
weight1 := abs(cell.occ-0.5)∗cell.owner.conf;
weight2 := abs(sensor.measurement-0.5)∗sensor.conf;
if weight1 = weight2 then

cell.occ := (cell.occ+sensor.measurement) / 2;
else

cell.occ := (cell.occ∗weight1+sensor.measurement∗weight2)
/ (weight1 + weight2);

if comparison > CONFIRMATIONTHRESHOLD then
inc(cell.owner.conf);
inc(sensor.conf);

if comparison < CONTRADICTIONTHRESHOLD then
dec(cell.owner.conf);
dec(sensor.conf);

contribution := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
if contribution > CONTRIBUTIONTHRESHOLD then

cell.owner := sensor;
else

cell.owner := unknown;
end

Figure 3: AddToGrid algorithm

All grid cells are initialized with cell.occ = 0.5 and
cell.owner = unknown. When a new measurement
has to be added to the grid, the following AddToGrid
algorithm is executed (Figure 3 lists the algorithm in
pseudocode):

• If the particular grid cell has an empty owner field
or the cell owner is identical with the contributing
sensor, the measurement of the sensor is taken as
is and the cell stores the index of the sensor as new
owner.

• If there is a different contributor than the current
owner, the measurement is first compared to the
cell value cell.occ by calculating a value named
comparison.

The value of comparison is higher if the measure-
ment is similar to the cell’s occupancy value and
lower if the measurement contradicts the cell’s cur-
rent occupancy value. If comparison is above a
particular confirmation threshold, we speak of a
confirmation of cell value and new measurement.
If comparison is below a particular contradiction
threshold, we speak of a contradiction of the cell
value and the new measurement. In case of a con-
firmation, the confidence values of the new sen-
sor and the sensor named in the owner field are
both increased. In case of a contradiction, the
confidence values of the new sensor and the sensor
named in the owner field are both decreased. If
comparison is not significant, it does neither yield
a confirmation nor a contradiction.

• The new occupancy value of the cell is calculated
as a weighted average between old value and actual
measurement. The weights are derived from the
respective confidence values and the significance
of the measurement. A measurement is more sig-
nificant if it has a greater absolute distance to the
uncertain state (0.5).

• The contribution is a measurement of the consis-
tency of the sensor measurement with the new
cell.occ value. If the contribution is above a
certain threshold, the contributing sensor be-
comes the new owner of the cell. Otherwise the
cell.owner value is reset to unknown.

6 Experimental Evaluation

We used two different test environments to evaluate the
proposed algorithms, a real mobile robot and a sim-
ulation environment. While the experiments on real
hardware provide a better understanding on the appli-
cability of the approach, some evaluations have been
done in a simulated environment with controlled re-
producible sensor inputs.

6.1 Mobile Robot Experiment

The mobile robot comprises a model car called Smart
Car equipped with a suit of pivoted distance sensors,
two ultrasonic sensors pointing straight forward, an
electric drive, and a steering unit (see Figure 4).

Figure 4: Smart Car: Autonomous mobile robot with
pivoting sensors

The certainty grid is built from the input of three
Sharp GP2D02 infrared sensors. These type of sensors
provide a rather narrow sensor beam, however they suf-
fer from a significant amount of transient sensor errors.
Environmental influences such as a change in lighting
may cause also intermittent failures.

The statistical behavior of the infrared sensor errors
has been analyzed in [16]. Apart from a limited ac-
curacy, it is difficult to distinguish a correct measure-
ment from the returned measurement signal when no
object is within detection range (80 cm). The behav-
ior of the sensors has been improved by an algorithm
that tries to predict the correct interpretation based on
measurement fluctuation, which works well for partic-
ular sensors, but has a remaining probability of failure
for others [16].

We have analyzed several samples of GP2D02 sen-
sors by comparing the calibrated sensor measurement

4



(a) Experiment setup
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(d) Fault-tolerant median method

Figure 5: Evaluation of algorithms on real data

to the real distance to an object. Figure 6 depicts the
measured distribution of sensor errors for three differ-
ent sensors.

The results obtained from the experiment with the
Smart Car are depicted in Figure 5. Figure 5(a)
shows a photograph of the test environment, while Fig-
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Figure 6: Error histograms for three Sharp GP2D02
infrared sensors (from [16])

accuracy pfailed inf pfalse inf

Sensor A 6% 16% 4%
Sensor B 10% 18% 8%
Sensor C 7% < 1% < 1%
Sensor D 12% 18% 9%
Sensor E 3% < 1% < 1%

Table 1: Measured sensor properties

ures 5(b–d) depict the certainty grids generated from
the sensor data using different algorithms.

The probability value of a grid cell has been imple-
mented as an 8-bit integer value. Thus, a value of 0
corresponds to the free state (p = 0), 128 means the
uncertain state (p = 0.5) while 255 is used to express
the occupied state (p=1.0) of a grid cell. The certainty
grid had a size of 17 times 11 cells whereas each cell
corresponds to a 10 cm times 10 cm square.

6.2 Evaluation by Simulation

The MSE and the MSE algorithms have been evaluated
together with Bayesian fusion. For the evaluation we
have implemented a simulation program that emulates
an arbitrary number of sensors that are swept around
in order to map a given artificial environment.

We have simulated systems with 3, 4, and 5 sensors.
For each sensor we emulated the measuring behavior
of a corresponding real GP2D02 sensor. The sensors
showed a great variance in their accuracy and the abil-
ity to detect situations without objects in detection
range. Table 1 shows the sensor properties for five dif-
ferent GP2D02 sensors that have been used for the sim-
ulation. The value pfailed inf determines the percent-
age of fails in detecting this situation, while pfalse inf

determines the percentage of false alarms. Using this
system, we have simulated the measurement and pro-
cessing of 1560 sensor measurements for each of the
three fusion methods.

MAE·10−3 MSE·10−3

Bayesian fusion 101 69
Robust certainty grid 22 12
Fault-tolerant certainty grid 9 6

Table 2: Performance of certainty grid algorithms by
Mean Average Error (MAE) and Mean Squared Error
(MSE)
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Table 2 shows a comparison of the average results
from the simulation. The grid has been built from
simulated sensor measurements for different obstacle
configurations using the MSE, Bayesian fusion, and
the MSE algorithm. The evaluation criterium is the
difference between a grid generated by a particular al-
gorithm to a certainty grid generated by perfect vir-
tual sensors. Thus, the value of each grid cell has
been compared yielding a Mean Average Error (MSE)
and a Mean Squared Error (MSE) for each method.
The MSE algorithm achieved the lowest deviation, i. e.,
best performance. Both, the MSE and the MSE ap-
proach achieved a better performance than the stan-
dard Bayesian fusion.

6.3 Simulation of Intermittent Sensor
Failures

The MSE uses a sensor validation method that detects
abnormal sensor measurements and adjusts a confi-
dence value for each sensor. This method supports the
detection and reintegration of recovered sensors from
intermittent faults. This self-healing behavior is re-
lated to the concept of self-stabilization as introduced
by Dijkstra in [17].
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Figure 7: Recovery of sensor confidence after a tran-
sient failure in the RCG algorithm

Figure 7 depicts the confidence values of a set of
three sensors from a simulation of about 200 sensor
readings using the MSE algorithm. All sensors had
been initialized with the highest confidence, but sensor
1 suffered from a transient failure during its first 50
readings. The simulated failure added a noise signal of
20% of the sensor’s range to the output signal. While
that failure persisted, the confidence of sensor 1 de-
creased. The confidence values of sensor 2 and 3 were
also fluctuating due to inconsistencies in their readings
and contradictions with sensor 1. As shown in the fig-
ure, the confidence value of sensor 1 recovered within
about 30 sensor readings after removal of the transient
failure.

7 Discussion

Examination of the infrared distance sensors showed
that, due to wear-out, staining, and discalibration, real
sensors typically show degradation behavior over time.
Using such sensors as inputs to grid mapping appli-
cations leads to errors in the resulting certainty grid.
Thus, the generated map deviates from the real envi-
ronment, which has been shown in real experiments
featuring a mobile robot and in simulation experi-
ments.

The experiments have been conducted for a robot
in a static environment but apply as well to a moving
robot that updates its position in the map via a po-
sitioning service (that could be also derived from map
and sensor data following a Simultaneous Localization
And Mapping (MSE) approach)). We assumed that
the environment is mostly static or changes slowly so
that subsequent sensor measurements observe a consis-
tent environment. This requirement can be overcome
if object movements can be tracked and the position
of an object can be predicted using previous positions.
This scenarios, however, are considered extensions out-
side the scope of the paper.

The approaches presented in this paper need at
least three independent sensors in order to compen-
sate a single faulty measurement. In contrast to the
MSE algorithm, the MSE algorithm gains extra sen-
sor space, because the sensor views may overlap only
partially. When considering implementations on small
embedded devices such as a Microcontroller with few
kilobytes of on-chip RAM, the memory requirements
for both approaches are of interest. The MSE algo-
rithm needs to store a certainty grid for each sen-
sor separately (the values of the resulting grid may
be calculated on demand in order to save memory)
(nsensors · gridheight · gridwidth memory elements),
whereas the MSE needs gridheight·gridwidth memory
elements for the certainty values and dlog2(nsensors+1)e

8 ·
gridheight · gridwidth extra bytes of memory for the
storage of the owner values. The memory requirements
for the confidence values can usually be neglected, since
the number of sensors normally is remarkably lower
than the total number of cells in the grid. Thus, the
memory requirements of the MSE algorithm are con-
siderable lower than the memory consumption of the
MSE approach.

In contrast to Bayesian fusion and the MSE algo-
rithm, the AddToGrid procedure (as shown in Figure 3)
of the MSE is sensitive to the ordering of measure-
ments. Thus, when a grid cell is updated by subsequent
measurements, the order of updates makes a difference
in the result. In order to achieve deterministic behav-
ior, a consistent ordering of measurement updates is re-
quired. In time-triggered systems such as the TTA [13]
this problem is already solved by the architecture.
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8 Related Work

Most implementations of certainty grids in the liter-
ature assume a priori known statistical parameters
about the sensor behavior, examples are [18, 19, 20]. A
notable exception is presented in [21] where an adaptive
algorithm is described based on Adaptive Fuzzy Logic
(AFL). As it is the case for the described scenario with
intermittent sensor failures, the experiments yielded a
hysteresis in the performance measure for a recovering
sensor. However, the AFL approach has the disad-
vantage of a relatively high complexity of Ω(2n

sensors),
which is crucial for its implementation on embedded
platforms.

Thrun presents a forward sensor model approach [22]
that overcomes some sensor discrepancy problems by
using a global interpretation of a sensor measurement
instead of regarding single grid cells. This approach is
related to our algorithm in the way that it uses infor-
mation from multiple cells in order to decide for the
interpretation of a sensor’s measurement, but instead
of measurement errors, it takes effect on discrepancies
of the sensor models.

A related problem to the problem described in this
paper is given by multi-robot mapping [23]. As well
as in our approach information from redundant sensors
has to be agreed for the purpose of a dependable sensor
grid. Yet, multi-robot mapping depends heavily on
solving the MSE problem, at least to find the relative
positions of robots to each other, while in our case, the
relative positions of the sensors on the robot are known
a priori with sufficient accuracy.

9 Conclusion

The main contribution of this paper is the introduc-
tion and evaluation of two methods for handling faulty
measurements when building a world model in form
of a certainty grid map. The innovative aspect lies in
implementing a mutual cross-checking of sensor mea-
surements into a certainty grid method in order to infer
about sensor degradation and to reduce the influence
of sensor errors on the generated grid.

An analysis of distance sensors as they are typically
used for robotic applications showed that the presented
approach is relevant with respect to the effects of typ-
ical sensor errors. The approach, nevertheless, is a
generic one that is applicable to various sensor types.

In the presence of faulty measurements, all meth-
ods show a better behavior than the Bayesian fusion.
From the examined performance and the resource re-
quirements, the MSE algorithm and the fault-tolerant
median selection are most promising. While the fault-
tolerant median selection shows the best performance,
the MSE algorithm needs a significantly less amount of
memory to store the certainty grid. However, if the cer-
tainty grid is only generated for a limited space while
a second data structure is used as a global map, the
resource requirements for the fault-tolerant median se-

lection are also suitable for the implementation in em-
bedded systems.

The described algorithms support on the one hand
the usage of cheap low-cost sensors for map building
and on the other hand a condition-based maintenance
scheme for robots where sensor deprivation is expected
during system lifetime.
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