
Interface Design for Real-Time Smart Transducer Networks – Examining
COSMIC, LIN, and TTP/A as Case Study

Wilfried Elmenreich Hubert Piontek Jörg Kaiser
Institute of Computer Engineering Dep. of Embedded Systems/RT Systems Institut für Verteilte Systeme

Technische Universität Wien Universität Ulm Universität Magdeburg
Austria Germany Germany

wil@vmars.tuwien.ac.at hubert.piontek@uni-ulm.de kaiser@ivs.cs.uni-magdeburg.de

Abstract – This paper analyzes and discusses the interface
models of the three real-time smart transducer networks
COSMIC, LIN, and TTP/A.

The COSMIC architecture follows a publish/subscribe
model, where the producing smart devices broadcast their
event data on the basis of a push paradigm. Subscribers
receive data in form of a message-based interface.

LIN follows a strict pull principle where each message
from a device node is requested by a respective message
from a master. Applications have a message-based inter-
face in order to receive and transmit data.

The nodes in a TTP/A network derive its sending in-
stants from predefined instants in time. TTP/A maps com-
municated data into an Interface File System (IFS) that
forms a distributed shared memory.

1 Introduction

The availability of cheap microcontrollers and network
solutions has enabled distributed architectures with net-
worked smart transducer devices. The hardware for a
smart transducer consists of a physical sensor or actu-
ator, a microcontroller or FPGA with on-chip memory
and analog I/O, and a network interface. The software in
the microcontroller contains transducer-specific routines,
like de-noising, linearization, and feature extraction, and
a communication protocol establishing a standardized in-
terface to the smart transducer. This interface provides ac-
cess to the transducer values, like sensor measurements or
actuator set values, as well as configuration and manage-
ment data (calibration data, error logs, etc.). In order to
support an automatic (plug-and-play) or semi-automatic
configuration, a smart transducer may also host an elec-
tronic description, i. e., a machine-readable datasheet de-
scribing its features and interfaces.

Real-time and bandwidth requirements make the de-
sign of an interface to a smart transducer a difficult task.
This paper addresses the specific requirements and is-
sues of interface design for smart transducers and exam-
ines three architectures for real-time smart transducer net-
works, i. e., the Cooperating SMart devices (COSMIC)
middleware, the Local Interconnect Network (LIN), and
the Time-Triggered Communication Protocol for SAE

class A applications (TTP/A).
The paper is structured as follows: Section 2 states the

basic concepts and requirements for smart transducer in-
terface design. Section 3 describes communication model,
interface design and node description approach for the
COSMIC middleware. Accordingly, Section 4 and Sec-
tion 5 examine the LIN and TTP/A approach. Section 6
elaborates common features and differences of the three
approaches. The paper is concluded in Section 7.

2 Interface Concepts

A smart transducer interface can be decomposed into
several sub-interfaces with different purposes and require-
ments [1]: The real-time (RT) service interface is required
for transmitting transducer data such as measurements or
set values. The configuration and planning (CP) interface
provides access to protocol-specific functions like new
node identification, obtaining electronic datasheets, and
configuration of communication schedules. The CP inter-
face is not time-critical. The diagnostics and management
(DM) interface is used for accessing sensor and actuator-
specific functions like monitoring, calibration, etc. The
DM interface is not time-critical, however, some monitor-
ing applications require timestamping.

In the following we discuss real-time requirements,
flow control and interaction design patterns which are
mostly relevant for the RT service. The DM interface has
different requirements and should not interfere with the
RT service.

2.1 Real-Time Requirements
There are different kinds of real-time requirements for

a distributed system of smart transducers. As a common
feature, there is always a deadline that specifies a point in
time when a specific action has to be completed.

Performing some action locally with respect to real
time, like generating a particular Pulse Width Modulation
(PWM) signal or making a measurement every 100 ms is
relatively easy to achieve if drift of the local clock source
is sufficiently low to provide a useful time base.

Timestamping events can be used to temporally re-
late measurements to each other. In order to create

gymi
Text Box
This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained. The definite version was presented at 15th International Conference on Real-Time and Network Systems, Nancy, France, 2007

timestamps with a global validity, a synchronized global
time is required among the participating nodes. In most
cases, clock synchronization has to be done periodically
in order to compensate for the drift of the local clocks.
Once a global time is established, timestamping does not
pose real-time requirements on the communication sys-
tem, since timestamped events can be locally stored.

Bounded maximum reaction time requires the commu-
nication system to deliver messages within a specified
time interval. Standard feedback control algorithms also
require low message jitter in order to work correctly.

Globally synchronized actions require the synchro-
nized generation of action triggers in different nodes. This
can be achieved by a multi-cast message or assigning ac-
tions to an instant on the globally synchronized time scale.

Moreover, a real-time requirement can be hard,
i. e., deadlines must be held under all circumstances or
soft, the system is still of use if deadlines are violated in-
frequently.

Many architectures implement a subset of the de-
scribed features or provide different features with hard or
soft real-time behavior. For example the LAAS architec-
ture [2] for component-based mobile robots specifies local
hard-real-time such as a locally closed control loop or the
instrumentation of an ultrasonic sensor, while at higher
levels, e. g., for globally synchronized actions it provides
only soft real-time behavior.

2.2 Models of Flow Control
Communication between subsystems takes place in the

time domain and the value domain. In the value domain,
the message data is exchanged, while in the time domain
control information is transmitted [3].

The communication partner that generates the control
information influences the temporal control flow of the
other communication partner(s). If a communication is
controlled by the sender’s request we speak of a push
model, if communication is requested by the receiver, we
speak of a pull model.

For explanation, let us assume that two or more subsys-
tems need to exchange data over a network. Further, with-
out restrictions to generality, we assume message data to
be transmitted from a producer to one or more consumers.
Different from the very popular client-server communica-
tion pattern it is necessary to support a one-to-many or
many-to-many communication pattern in smart transducer
networks because in the common case, the sensor readings
of a transducer is needed in more than one place in con-
trol applications. Therefore, all of considered networks
support this property, however, in different ways. In order
to transfer data between the subsystems, they must agree
on the mechanism to use and the direction of the transfer.

Figure 1 a) shows the push method. The producer
is empowered to generate and send its message sponta-
neously at any time and is therefore independent of the
consumer. This loose coupling enables independence be-
tween the supplier and consumers of information [4], [5],

a)

Producer

b)

Consumer

Producer

c)

Data flow

Producer

Control flow Control flow

Control flow

Push

Data flow

Control flow

Pull

Data flow

Global Time

Time-Triggered Communication Consumer

Consumer

Figure 1. Push-, Pull-, and Time-Triggered
Communication

but makes it difficult to enforce temporal predictability
in a purely event driven model. Without the option to
enforce further temporal constraints, the communication
system and the receiving push consumer have to be pre-
pared for data messages at any time, which may result
in high resource costs and difficult scheduling. Popular
“push” mechanisms are messages, interrupts, or writing
to a memory element [6]. The push-style communication
is the basic mechanism of event-triggered systems.

In the pull model depicted in Figure 1 b) the consumer
governs the flow control. Whenever the consumer wants
to access the message information, the producer has to re-
spond to the consumer’s request.. This facilitates the task
for the pull consumer, but the pull supplier (producer)
must be watchful for incoming data requests. Popular
“pull” mechanisms are polling or reading from a memory
element [6]. Pull-style communication is the basic mech-
anism of client-server systems.

Figure 1 c) depicts a communication model where the
flow control is derived from an external trigger. This can
be another physical system or the derivation of the triggers
from the progress of physical time. In the latter case, the
control signals are known a priori, which requires prede-
fined scheduling and error detection in the control domain.

2.3 Interaction Design Patterns
We distinguish three basic interaction design patterns

for network communication.
In a master/slave relationship, at any time one node is

considered the master while the other nodes are consid-
ered to be slaves. The master is able to issue synchroniza-
tion events or to start communications. All slave nodes
depend on one master, while the master is independent of
a particular slave.

In a client/server relationship, a client issues a request

to a server, which has to answer the request. The client
and the server are thus tightly coupled via a pull model.

In a publish/subscribe relationship, a publisher gener-
ates data using the push model. A number of nodes may
subscribe to a particular publisher but there is no control
flow from subscriber to publisher. Depending on the im-
plementation, a publisher may broadcast its data immedi-
ately, transmit its data to an intermediary broker, or trans-
mit its data via point-to-point connections to a list of sub-
scribers. Thus, the number of subscribers may influence
the time it takes for a publisher to publish its data.

An architecture may hide the communication model
by implementing a distributed shared memory on top of
the communication. This way, an application uses the
same interface to access data locally or remote. How-
ever, a memory interface does not transport control data,
e. g., in order to launch a particular task upon reception
of an event. Such functionality can either be achieved via
polling, but that requires an adequate poll frequency and
comes with a noticeable overhead [7] or solved via addi-
tional features like interrupt generation after update of a
specific data field.

2.4 Diagnostics and Management
While the RT interface provides only access to a lim-

ited data set consisting of the actual needed transducer
data, for debugging or monitoring purposes, additional
data about the operation of the transducer is of interest.

Transmission of these data typically is not time-critical,
but must not interfere with the RT service leading to an un-
wanted probe-effect [8]. Furthermore, monitored RT data
should either have time stamps or it must be transmitted
before a (typically soft) deadline.

2.5 Configuration and Planning
Large smart transducer systems require support by au-

tomatic setup facilities in order to keep up with the com-
plexity of setting parameters correctly. Therefore, smart
transducer system should be supported by a tool archi-
tecture enabling a plug-and-play-like integration of new
nodes.

We consider different configuration and planning sce-
narios:

In the replacement scenario, a broken node is to be ex-
changed by a new one of the same type. Therefore, the
new node has to be detected and a backup of the config-
uration of the broken node has to be uploaded. However,
specific parameters like calibration data will have to be
created anew.

In the initial set-up scenario, a set of nodes is config-
ured in order to execute a particular communication. This
action requires a system specification, and, in most cases,
a human operator to perform tasks that cannot be solved
automatically.

In the extension scenario, a distributed application is
extended by extra nodes in order to improve the perfor-
mance and possibilities of the system. In this case the

system managing the configuration must have knowledge
how to integrate new transducers in order to upgrade the
system. An example of such an approach is outlined in [9].

For the purpose of node identification and documen-
tation, a node is assigned a machine-readable description
describing the node’s features. Example for such descrip-
tions are the Transducer Electronic Datasheets of IEEE
1451.2 [10] or the Device Profiles in CANopen [11].

3 COSMIC

3.1 COSMIC communication abstractions

COSMIC is middleware which is designed for small
embedded systems, supporting heterogeneous networks
and cross network communication. It provides a publish/-
subscribe abstraction over different addressing and rout-
ing mechanisms as well as it considers different latency
properties of the underlying networks. COSMIC pro-
vides typed event messages (EM) identified by an event
UID which identifies the content of a message rather than
a source or destination address. Further, EMs have at-
tributes which define a temporal validity of the EM. It
should be noted that the term ”event” does not refer to a
specific synchrony class but just denotes a typed message.
As indicated previously, in a real–time embedded envi-
ronment the pure push model creates problems because
the consumers of the information must be ready to receive
and process this information at any time. This may lead to
situations where some of the messages are lost. There-
fore, COSMIC introduces the notion of event channels
(EC) which allow specifying temporal constraints and de-
livery guarantees of individual communication channels
explicitly. COSMIC supports three event channel classes:
A hard real-time event channel (HRTEC) offers deliv-
ery guarantees based on a time-triggered scheme. EMs
pushed to a soft real-time event channel (SRTEC) are
scheduled according to the earliest deadline first (EDF)
algorithm. The respective deadline is determined by
the temporal validity information in the attribute field
of the EM. Because soft real-time EMs which have al-
ready missed their transmission deadline may cause fur-
ther deadline misses of other soft real-time EMs, they
are discarded and the respective local application is no-
tified. The application then can decide about re-sending
in a lower real-time class or just skip it. Finally, a non
real-time event channel (NRTEC) disseminates events that
have no timeliness requirements.

ECs are established prior to communication allowing
the middleware to reserve the necessary resources and
perform the binding to the underlying mechanisms of the
communication network.

The COSMIC architecture is not bound to a particular
network. An implementation based on Controller Area
Network (CAN) [12] is described in the next section.

t

latest ready
time

latest start
time deadline

msg msg msg

max. waiting
time

max. transmission
time

min. gap due to
clock offsets

reserved time slot
now

reserved time slot

Figure 2. Structure of a time slot

3.2 COSMIC–on–CAN architecture
Implementing the event model requires to map the ab-

stractions of that model (publisher, subscriber, event chan-
nel, event instance) to the elements provided by the in-
frastructure of the communication system. The respec-
tive functionality to perform these mapping in COSMIC
is encapsulated in the Event Channel Handler which re-
sides in every node. Given the constraints in bandwidth
and in message length on CAN, the implementation of
events and event channels has to exploit the underlying
CAN mechanisms. To save the rare space in the message
body [13] and to reduce the inherent CAN message over-
head, significant information is also encoded via the CAN
ID.

The implementation is based on the extended 29 bit
CAN ID of the CAN 2.0 B specification. The 29-Bit CAN
identifier (CAN-ID) is structured into three fields, i. e., an
8 bit priority field used to prioritize messages according to
HRTEC, SRTEC, and NRTEC, a 7 bit node- ID ensuring
unique identifiers and a 14-Bit event tag. The assignment
of an event UID to an event tag is performed dynamically
by the COSMIC middleware infrastructure. A description
of this infrastructure and the respective binding protocol
is described in [14].

3.3 Enforcing temporal constraints in COSMIC
HRTECs provide delivery guarantees and use reserved

time slots in a Time Division Multiple Access (TDMA)
scheme organized in periodic rounds. The intention of
the reservation-based scheme is to avoid collisions by sta-
tically planning the transmission schedule. Hence, any
conflict between HRTECs is avoided. COSMIC is imple-
ments clock synchronization based on the algorithm pro-
posed in [15].

Because a CAN message cannot be preempted a non
hard real-time message transmission may delay a hard
real-time message by the maximum length of one CAN
message in the worst case. Furthermore, transient trans-
mission faults may increase the time needed to transmit
a hard real-time message. Therefore, a hard real-time
slot is extended according to Fig. 2. The protocol relies
on the fault–handling mechanisms of the standard CAN
which has an impact on the fault classes which we can
handle. For a message with b bytes of data, the maximum
length of the message including header and bit–stuffing
is: Lengthmessage = 75+ bb ·9.6c1. Under the assumption
of f single transmission failures, the required minimum
time–slot length is: slot length = 2 · tmessage +(tmessage +

1The factor 9.6 is because of the bit stuffing mechanism

18) · f +3bittimes. Assuming a single message failure of
an 8 Byte message at 1 Mbit/sec (msg transmission time:
151µsec, fault detection and retransmission 18µsec) and a
gap between the slots of 50µsec, approx. 1900 slots/sec
can be allocated. If it is necessary to tolerate a permanent
controller failure, this number drops down to an approxi-
mate number of 350 slots/sec. Compared to a maximum
throughput of about 6500 maximum length messages per
second, the number of possible HRT slots is low. How-
ever, these numbers refer to the number of guaranteed
HRTECs not to the number of messages which actually
can be sent. Unlike in pure time-triggered systems, the
CAN priority mechanism can be used to transmit SRT or
NRT messages in cases where a HRT message has been
received a message successfully by all operational nodes2.
Thus, time redundancy only costs bandwidth if faults re-
ally occur, which may be relatively rare compared to the
overall traffic. The priority-based arbitration mechanism
is also exploited to schedule SRTECs and NRTECs. HRT
messages always reserve the highest priority. The relation
between the priorities of HRT, SRT and NRT messages
can be expressed by the relation: PHRT < PSRT < PNRT (a
lower numerical value represents a higher priority). The
assignment enforces that a message of a lower real–time
class never will interfere with one of a higher class dur-
ing bus arbitration. We assume the highest priority (0)
for HRT messages and a small number of fixed low pri-
orities for NRT messages. The remaining priority levels
are available for scheduling SRT messages. They have to
be mapped on a time scale to express the temporal dis-
tance of a deadline. The closer the deadline, the higher
the priority. Mapping deadlines to priorities will cause the
problem that static priorities cannot express the properties
of a deadline, i.e. a point in time. A priority correspond-
ing to a deadline can only reflect this deadline in a static
set of messages. When time proceeds and new messages
become ready, a fixed priority mechanism cannot imple-
ment the deadline order any more. It is necessary to in-
crease the priorities of a message when time approaches
the deadline, i.e. with decreasing laxity.

3.4 Device Descriptions
COSMIC devices are described in an XML-based lan-

guage called CODES (COSMIC embedded DEvice Spec-
ification) [18]. The descriptions are structured into three
parts. Part one, General Information contains the node’s
name, its type, its manufacturer, its unique identifier, its
networking facilities, its supported event channel types,
recycling information, and a clear text description of the
device. This part also contains version information about
the component. The second part contains all event defin-
itions, i. e., the description of all events produced or con-
sumed by the device.

2There are situations of inconsistent replicas and even inconsistent
omissions (according to [16], inconsistent omissions occur with a proba-
bility in the order of 10−9). Kaiser and Livani [17] describe a transparent
mechanism to handle these situations.

For each event is described by a plain text tag and a
unique identifier. The event’s definition includes a list of
attributes giving non-functional details about the event,
e. g., the event’s expiration time. Whenever an event is
disseminated, it is sent as a compact message. This mes-
sage’s data structure is specified in the event definition.
For each field in the data structure, its name, data type and
byte order are included in the description. This informa-
tion can be used by tools to automatically create decoder
for a compact message. Fields representing a measure-
ment are annotated by the corresponding physical dimen-
sion in a machine-readable format. Non-measurement
fields are described by lists or state machines. Each field
may contain also attributes, e. g., the valid data range.
The last part contains the declaration of all event chan-
nels and their properties. Each event channel definition
contains the subject UID linking it to the respective event
definition, the class of event channel, the direction of the
event channel as seen locally, and again a list of attributes,
e. g., the channel’s period.

While the greater part of the description contains sta-
tic information, some elements are not suitable for inte-
gration into a static description document, e.g. the pe-
riod of an event channel, which certainly will vary de-
pending on the application. To overcome this problem,
parameterization was introduced. Any non–static ele-
ment can be marked as a parameter in the static descrip-
tion. The element’s actual value is then defined and stored
external to the static description. Parameters are stored
in path–value–pairs, similar to well–known name–value–
pairs. Instead of naming the parameter, it’s XPath expres-
sion within the static description acts as the identifier. A
scheme for mapping this structure down to a binary pa-
rameter storage scheme suitable for small devices exists.
Whenever the description is used, the parameters are in-
cluded beforehand. The query service (see below) is a
suitable place that will handle this inclusion in running
systems. Having each parameter’s path expression eases
the integration into the description document.

CODES descriptions play a central role for COSMIC
components. The life of a COSMIC component starts with
the description document created during the component’s
design phase. It is used during the following implementa-
tion phase to generate parts of the component’s code [18].
Black–box tests of the component can be assisted, e.g.
tests for timing behavior or testing the compliance of dis-
seminated events with their description in terms of the
data structure, value ranges, or precision. The descrip-
tions are further useful throughout the component’s life–
cycle: During the integration phase into a larger system,
a number of compatibility checks can be performed auto-
matically. Schedules for the HRT communication can be
derived from the respective set of descriptions. While the
component is in use, the ready availability of its descrip-
tion forms the basis for dynamic use of formerly unknown
components. Currently, this requires a priori knowledge
or the interaction with a user. In the long run, the integra-

tion of semantic web technology is planned to enable true
autonomous dynamic cooperation of components. When-
ever a system is in need of maintenance, the availability
of the descriptions is beneficial, too. They provide a quick
overview of the system, i.e. what components are avail-
able, and how they are configured.

The descriptions are stored within the devices them-
selves. They can be retrieved and queried at run–time:
On system start–up, and whenever a new component is
added to a system, an automatic configuration is neces-
sary for the component to be able to participate in com-
munication. During this configuration, the components’
descriptions and parameters are uploaded to the node run-
ning the event channel broker. This node also runs a query
service which makes the descriptions accessible from out-
side the system. The parameters are included in the sta-
tic part of the description, yielding a single document de-
scribing the current configuration of the components. Re-
quests to the query service are given as XSLT transforma-
tions [19]. The transformations are applied to the CODES
descriptions on the node running the query service, thus
enabling even rather low–power nodes to make use of the
query service. XSLT transformations represent a suitable
technology not only for the query service, but throughout
the different application areas of the CODES descriptions.
They are e.g. also used for code generation.

4 LIN

4.1 System Architecture
Each message in LIN is encapsulated in a single mes-

sage cycle. The message cycle is initiated by the master
and contains two parts, the frame header sent by the mas-
ter and the frame response, which encompasses the actual
message and a checksum field. The frame header contains
a sync brake (allowing the slave to recognize the begin-
ning of a new message), a sync field with a regular bit
pattern for clock synchronization and an identifier field
defining the content type and length of the frame response
message. The identifier is encoded by 6 bit and 2 bits for
protection. Figure 3 depicts the frame layout of a LIN
message cycle.

The frame response contains up to 8 data bytes and a
checksum byte. Since an addressed slave does not know a
priori when it has to send a message, the response time of
a slave is specified within a time window of 140% of the
nominal length of the response frame. This gives the node
some time to react on the master’s message request, for
example to perform a measurement on demand, but intro-
duces a noticeable message jitter for the frame response.

DataByte

Sync break message of 2,4, or 8 data bytesSync field Msg. identifier

0x00

t

...0x55 id DataByte chk

Frame header (from master) Frame response (from master or slave)

Figure 3. LIN frame format

The interaction between master and slave is a plain
pull mechanism, since the slaves only react on the frame
header from the master. It is the master’s task to issue
the respective frame headers for each message according
to a scheduling table. From a data-centric perspective,
the communication is defined by messages that are sub-
scribed by particular slaves for reception or transmission.
The configuration of the network must ensure that each
message has exactly one producer.

In 2003, LIN was enhanced by extra features leading
to the LIN 2.0 specification. New features introduced in
LIN 2.0 are an enhanced checksum, sporadic and event-
triggered communication frames, improved network man-
agement (status, diagnostics) according to ISO 14230-3
/ ISO 14229-1 standards, automatic baud rate detection,
standardized LIN product ID for each node, and an up-
dated configuration language to reflect the changes.

In addition to the unconditional frames (frames sent
whenever scheduled according to the schedule table) pro-
vided by LIN 1.3, LIN 2.0 introduces event-triggered
frames and sporadic frames.

Similar to unconditional frames, event-triggered
frames begin with the master task transmitting a frame
header. However, corresponding slave tasks only trans-
mit their frame response if the corresponding signal has
changed since the last transmission. Unlike unconditional
frames, multiple slave tasks can provide the frame re-
sponse to a single event-triggered frame, assuming that
not all signals have actually changed. In the case of two
or more slave tasks writing the same frame response, the
master node has to detect the collision and resolve it by se-
quentially polling (i.e., sending unconditional frames) the
involved slave nodes. Event-triggered frames were intro-
duced to improve the handling of rare-event data changes
by reducing the bus traffic overhead involved with sequen-
tial polling.

Sporadic frames follow a similar approach. They use
a reserved slot in the scheduling table, however, the mas-
ter task only generates a frame header when necessary,
i. e., when involved signals have changed their values.
As this single slot is usually shared by multiple sporadic
frames (assuming that not all of them are sent simultane-
ously), conflicts can occur. These conflicts are resolved
using a priority-based approach: frames with higher pri-
ority overrule those with lower priority.

In addition to signal-bearing messages, LIN 2.0 pro-
vides diagnostic messages. These messages use 2 re-
served identifiers (0x3c, 0x3d). Diagnostic messages use
a new format in their frame response called PDU (Packet
Data Unit). There are two different PDU types: requests
(issued by the client node) and responses (issued by the
server node).

The LIN 2.0 configuration mode is used to set up LIN
2.0 slave nodes in a cluster. Configuration requests use
SID values between 0xb0 and 0xb4. There is a set of
mandatory requests that all LIN 2.0 nodes have to imple-
ment as well as a set of optional requests. Mandatory re-

V
0 7 11 13 17

0

64

128

192

255
Signal

V_battery {
 logical_value, 0, "under voltage";
 physical_value, 1, 63, 0.0625, 7.0, "Volt";
 physical_value, 64, 191, 0.0104, 11.0, "Volt";
 physical_value, 192, 253, 0.0625, 13.0, "Volt";
 logical_value, 254, "over voltage";
 logical_value, 255, "invalid";
}

Figure 4. Example for a LIN signal definition

quests are:

• Assign Frame Identifier: This request can be used to set
a valid (protected) identifier for the specified frame.

• Read By Identifier: This request can be used to ob-
tain supplier identity and other properties from the ad-
dressed slave node.

Optional requests are:

• Assign NAD: Assigns a new address to the specified
node. Can be used to resolve address conflicts.

• Conditional Change NAD: Allows master node to de-
tect unknown slave nodes.

• Data Dump: Supplier specific (should be used with
care).

4.2 Device Descriptions
Each LIN 2.0 [20] node is accompanied by a node ca-

pability file (NCF). The NCF contains:

• The node’s name.

• General compatibility properties, e.g. the supported
protocol version, bit rates, and the LIN product iden-
tification. This unique number is also stored in the mi-
crocontroller’s ROM and links the actual device with its
NCF. It consists of three parts: supplier ID (assigned
to each supplier by the LIN Consortium), function ID
(assigned to each node by supplier), and variant field
(modified whenever the product is changed but its func-
tion is unaltered)

• Diagnostic properties, e.g. the minimum time between
a master request frame and the following slave response
frame.

• Frame definitions. All frames that are published or sub-
scribed by the node are declared. The declaration in-
cludes the name of the frame, its direction, the message
ID to be used, and the length of the frame in bytes. Op-
tionally, the minimum period and the maximum period
can be specified. Each frame may carry a number of sig-
nals. Therefore, the frame’s declaration also includes
the associated signals’ definitions. Each signal has a
name, and the following properties associated with it:
Init value specifies the value used from power on until
the first message from the publisher arrives. Size speci-
fies the signal’s size in bits. Offset specifies the position
within the frame. Encoding specifies the signal’s rep-

Design

System Defining
Tool

System
Generator

Node Capabillity Files

LIN Description
File

Debugging/
Emulation

System
Assembly

Bus analyser
and emulatorMasterSlave 3Slave 1 Slave 2

LIN bus

Figure 5. Development phases in LIN

resentation. The presentation may be given as a combi-
nation of the four choices logical value, physical value,
BCD value, or ASCII value. Declarations of physical
values include a valid value range (minimum and max-
imum), a scaling factor, and an offset. Optionally, this
can be accompanied by a textual description, mostly to
document the value’s physical unit. An example is given
in figure 4.

• Status management: This section specifies which pub-
lished signals are to be monitored by the master in order
to check if the slave is operating as expected.

• The free text section allows the inclusion of any help
text, or more detailed, user–readable description.

The node capability file is a text file. the syntax is simple
and similar to C. Properties are assigned using name =
value; pairs. Subelements are grouped together using
curly braces, equivalent to blocks in C.

LIN clusters are configured during the design stage us-
ing the LIN Configuration Language. This language is
used to create a LIN description file (LDF). The LDF de-
scribes the complete LIN network. The development of a
LIN cluster is partitioned into three phases (see figure 5).
During the design phase, individual NCFs are combined
to create the LDF. This process is called System Definition.
For nodes to be newly created, NCFs can be created either
manually or via the help of a development tool. From the
LDF, communication schedules, and low–level drivers for
all nodes in the cluster can be generated (System Genera-
tion). Based on the LDF, the LIN cluster can be emulated
and debugged during the Debugging and Node Emulation
phase. In the System Assembly phase, the final system is
assembled physically, and put to service.

In addition to the LIN configuration language and LDF,
which are the most important tools to design a LIN clus-
ter, the LIN specification defines a (mandatory) interface
to software device drivers written in C. Also, many tools
exist that can parse a LDF and generate driver modules by
themselves. The LIN C API provides a signal based in-
teraction between the application and the LIN core (core
API).

5 TTP/A

5.1 Communication System Architecture
The information transfer between a smart transducer

and its communication partners is achieved by sharing in-
formation that is contained in an internal interface file sys-
tem (IFS), which is situated in each smart transducer. The
IFS provides a unique address scheme for transducer data,
configuration data, self-describing information, and inter-
nal state reports of a smart transducer [1]. It also serves as
decoupling element, providing a push interface for pro-
ducers writing to the IFS and a pull interface for con-
sumers reading from the IFS. Each transducer can contain
up to 64 files in its IFS. An IFS file is an indexed array
of up to 256 records. A record has a fixed length of four
bytes. Every record of an IFS file has a unique hierar-
chical address (which also serves as the global name of
the record) consisting of the concatenation of the cluster
name, the logical node name, the file name, and the record
name.

A time-triggered sensor bus will perform a periodical
time-triggered communication by sending data from IFS
addresses to the fieldbus and writing received data to IFS
addresses at predefined points in time. Thus, the IFS is the
source and sink for all communication activities. Further-
more, the IFS acts as a temporal firewall that decouples
the local transducer application from the communication
activities.

Communication is organized into rounds consisting of
several TDMA slots. A slot is the unit for transmission of
one byte of data. Data bytes are transmitted in a standard
UART format. Each communication round is started by
the master with a so-called fireworks byte. The fireworks
byte defines the type of the round and is a reference sig-
nal for clock synchronization. The protocol supports eight
different firework bytes encoded in a message of one byte
using a redundant bit code supporting error detection.

Generally, there are two types of rounds:
Multipartner round: This round consists of a

configuration-dependent number of slots and an assigned
sender node for each slot. The configuration of a round
is defined in a data structure called “RODL” (ROund De-
scriptor List). The RODL defines which node transmits in
a certain slot, the operation in each individual slot, and the
receiving nodes of a slot. RODLs must be configured in
the slave nodes prior to the execution of the corresponding
multipartner round. An example for a multipartner round
is depicted in Figure 6.

FB Slot 1 Slot 2 Slot 1FBSlot n...
After last slot in

round slaves wait
for next fireworks

Slot 0
from Master

(Fireworks Byte)

...
tTTP/A round Inter round gap

Each slot is assigned
a sender and some
receivers a priori

Figure 6. TTP/A Multipartner Round

Master/slave round: A master/slave round is a special
round with a fixed layout that establishes a connection be-
tween the master and a particular slave for accessing data
of the node’s IFS, e. g., the RODL information. In a mas-
ter/slave round the master addresses a data record using a
hierarchical IFS address and specifies an action like read-
ing of, writing on, or executing that record.

The multipartner (MP) round establishes a real-time
communication service with predefined access patterns.
Master/slave (MS) rounds are scheduled periodically be-
tween multipartner rounds, whereas the most commonly
used scheduling scheme consists of MP rounds alternat-
ing with MS rounds. The MS rounds allow maintenance
and monitoring activities during system operation with-
out a probe effect. The MS rounds enable random access
to the IFS of all nodes, which is required for establishing
two conceptual interfaces to each node, a configuration
and planning (CP) interface and a diagnosis and manage-
ment DM interface. These interfaces are used by remote
tools to configure node and cluster properties and to obtain
internal information from nodes for diagnosis.

5.2 Smart Transducer Descriptions
For a uniform representation of all system aspects, an

XML-based format is used [21]. A smart transducer de-
scriptions (STD) describe the node properties.

There are two types of STDs: Static STDs describe the
node properties of a particular field device family. Static
STDs contain node properties that are fixed at node cre-
ation time and act as a documentation of the nodes’ fea-
tures. In contrast, Dynamic STDs describe properties of
individual nodes, as they are used in a particular applica-
tion.

Instead of storing the STDs directly on a smart trans-
ducer, the node contains only a unique identifier consist-
ing of a series and a serial number, whereas the serial
number identifies the node type and the serial number dif-
ferentiates instances of the same node type. This unique
identifier is used to access the node’s datasheet on an ex-
ternal server. Thus, node implementations keep a small
footprint, while the size of the descriptions is not signifi-
cantly limited.

5.3 Cluster Configuration Description
The cluster configuration description (CCD) contains

descriptions of all relevant properties of a fieldbus clus-
ter. It acts as the central structure for holding the meta-
information of a cluster. With help of a software tool capa-
ble of accessing the devices in a smart transducer network
it is possible to configure a cluster with the information
stored in the CCD. A CCD consists of the following parts:

• Cluster description meta information: This block holds
information on the cluster description itself, such as the
maintainer, name of the description file, or the version
of the CCD format itself.

• Communication configuration information: This infor-
mation includes round sequence lists as well as round

descriptor lists, which represent the detailed specifi-
cation of the communication behavior of the cluster.
Other properties important for communication include
the UART specification and minimum/maximum signal
run times.

• Cluster node information: This block contains infor-
mation on the nodes in a cluster. These nodes are repre-
sented either by a list of dynamic STDs or by references
to static STDs.

6 Discussion

Table 1 lists the main features of the three transducer
networks with respect to the concepts describe in Sec-
tion 2. All three approaches provide a real-time service
with hard real-time message guarantees, but use differ-
ent interaction design patterns. COSMIC comes with
a publish-subscribe approach where nodes publish their
data using the push principle. LIN is a master-slave
network where each message is activated by the master.
TTP/A uses a master-slave configuration in order to es-
tablish a common time base and then follows a predefined
communication schedule based on the physical progres-
sion of time.

The basic scheduling mechanisms for hard real-time
messages by using a static TDMA scheme is the same
in all three approaches. The mechanisms for other
data is different – TTP/A provides a polling mechanism
via master-slave rounds, LIN 2.0 introduced event mes-
sages. COSMIC is the most flexible by providing EDF-
scheduled soft real-time messages as well as non real-time
messages. However, a full implementation of the SRTC
requires substantial software because of the dynamic pri-
orities and the more complex handling of discarded mes-
sages. Therefore, it has so far only be implemented on
more powerful hardware under RT-Linux. Additionally,
COSMIC relies on synchronized clocks while LIN and
TTP/A require less effort for the proper protocol opera-
tion.

The advantages of COSMIC’s publish-subscribe are a
loose coupling between producer and consumer which fa-
cilitates the configuration of a network. The type of the
channel to which EM of a certain type is pushed is de-
fined by the publisher. The subscription and the respec-
tive guarantees for delivery at the subscriber side, how-
ever, may be of the same or a lower real-time class. This
enables reception of a critical hard real-time message also
for applications which do not need the respective deliv-
ery guarantees, e.g. a navigation task which uses critical
messages from an obstacle avoidance system.

The pull principle in LIN makes a node’s implemen-
tation very simple, but causes an overhead on the net-
work due to the frequent message requests from the mas-
ter. Moreover, since the LIN slaves do not know the time
of a request a priori, it becomes difficult to time a mea-
surement adequately or to synchronize measurements.

The time-triggered approach of TTP/A comes with

Table 1. Feature comparison
LIN COSMIC TTP/A

Criticality Levels HRT, SRT HRT, SRT HRT
Flow control model pull push TT, pull
Interaction pattern master/slave publish/ subscribe TT, master/slave
Bounded transmission time yes yes yes
Global Time no yes yes
Synchronized actions no no yes
Middleware abstraction messages event messages and channels IFS
Device Descriptions Language LIN-specific XML XML

high efficiency, predictability, and the possibility to syn-
chronize actions. However, the configuration effort of a
TTP/A network is higher than for a LIN device or COS-
MIC devices not requiring stringent real-time guarantees.
For example, a TTP/A node has to be configured with the
correct schedule before it can participate in the RT com-
munication. In contrast, a LIN node or a COSMIC node
might be reused in another application without reconfigu-
ration of the node. Anyway, all three approaches depend
on an adequate tool support.

The IFS concept of TTP/A is an abstraction mechanism
that hides the time-triggered messages from the applica-
tion. The IFS implements a distributed shared memory
that provides a simple interface for applications. There-
fore, TTP/A applications are not triggered by the recep-
tion of a message, which allows for a separation of com-
munication and computation.

LIN is designed to serve as sub-bus in automobiles
and is therefore specified in a very rigid way towards
use in a specific end product. This makes the LIN ar-
chitecture, though the approach is resource efficient and
interesting, less suitable for applications which require a
higher degree of cooperation between the nodes and also
the rather constraint LIN message format restricts larger
sensor-actuator systems. Also the LIN device description
is rather focussed on the specific LIN application area.

In contrast, COSMIC and TTP/A specify several high-
level features, while leaving details of physical and data
link layer up to the implementer. The XML-based
datasheets of COSMIC and TTP/A are easily extendable
in order to support future extensions.

The mechanisms of the three approaches are different,
which makes them incompatible in the first place. In or-
der to achieve interoperability between heterogeneous net-
works, an adequate interface system, whereas the mecha-
nisms of COSMIC and TTP/A are candidates rather than
LIN. COSMIC provides a versatile message interface that
abstracts over the underlying communication protocol.
On the other hand, the IFS approach of TTP/A allows to
abstract over the communication by establishing a distrib-
uted shared memory. The IFS comes with the main ad-
vantage of being easily adapted to a different protocol,
however for convenient application development, tools
supporting the set up of the distributed communication
schedules are required. Thus, it is up to the application
developer if a message-based interface (COSMIC) or a

memory-based interface (TTP/A / IFS) is preferred.

7 Conclusion

The contributions of this paper are threefold: Firstly we
have elaborated a set of requirements for different kinds
of real-time constraints for a distributed system of smart
transducers.

Secondly, we have presented and analyzed the concepts
of three different smart transducer interface implementa-
tion approaches. Each approach has its specific focus con-
cerning an application area. LIN is the protocol with the
lowest hardware and cost requirements, however several
design decisions restrict its use to an isolated sub-bus for
automotive body electronics or simple control systems in
industrial automation. LIN is supported by mature tools
from automotive suppliers. TTP/A has a similar resource
footprint as LIN but firstly substantially benefits from the
strict time-triggered communication scheme and secondly
provides a convenient distributed shared memory pro-
gramming model where consistency problems are solved
by the synchrony of the communication system. Para-
meters such as communication speed can be adapted in
a rather flexible way depending on the physical network.
This makes TTP/A an interesting choice for all kind of
low-cost embedded time-triggered applications with real-
time requirements. Additionally, the IFS is standardized
by OMG in the Smart Transducer Interface Standard [22].
COSMIC provides flexible real-time support and will in-
tegrate well into distributed applications with a publish-
subscribe communication scheme. The main objective of
COSMIC was interoperability between networks with dif-
ferent real-time properties. Thus, a higher overhead in the
nodes may be needed. COSMIC and TTP/A come with
different configuration support providing similar features

A third contribution of the paper is the discussion of de-
vice description. We think that this is an important issue
because it firstly underlines the hardware/software (and
probably mechanical) nature of a smart transducer and the
intrinsically component-based system structure and sec-
ondly is indispensable in a complex reliable control sys-
tem. Presently, device descriptions are mainly used during
system configuration to avoid faults from manual set-up.
The LIN NFC and also LDF exactly meet these require-
ments. Device description of TTP/A and COSMIC go be-
yond the needs of configuration and also are intended for

dynamic use. This can range from diagnostic purposes to
dynamic device discovery and use during operation.

Although being quite different, we think that it will be
possible to establish methods and tools that operate on a
meta-level and can be used to configure an application
using different underlying fieldbus systems. In order to
achieve this, a generic interface model for transducer data
has to be found. The Interface File System (IFS) presented
with TTP/A seems to be a promising approach for forming
a generalized interface, since it is relatively easy to convert
transducer data onto an IFS. We will further investigate
ways to provide coexistence and cooperation between the
different network and programming models.

Acknowledgments

This work was supported in part by the ARTIST2 Net-
work of Excellence on Embedded Systems Design under
contract No. IST-004527 and by the Austrian FWF project
TTCAR under contract No. P18060-N04. We would like
to thank Christian Paukovits, Stefan Pitzek, Gernot Klin-
gler, Christian El-Salloum and Andreas Pfandler for con-
structive comments on an earlier version of this paper.

References

[1] H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A. Inter-
national Journal of Computer System Science & En-
gineering, 16(2):71–77, March 2001.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and
F. Ingrand. An architecture for autonomy. Interna-
tional Journal of Robotics Research, 17(4):315–337,
April 1998.

[3] A. Krüger. Interface Design for Time-Triggered
Real-Time System Architectures. PhD thesis, Tech-
nische Universität Wien, Institut für Technische In-
formatik, Vienna, Austria, April 1997.

[4] K. Mori. Autonomous decentralized systems: Con-
cepts, data field architectures, and future trends.
In International Conference on Autonomous Decen-
tralized Systems (ISADS93), 1993.

[5] J. Kaiser and M. Mock. Implementing the real–
time publisher/subscriber model on the controller
area network (CAN). In Proceedings of the 2nd
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 172–181,
Saint Malo, France, May 1999.

[6] R. DeLine. Resolving Packaging Mismatch. PhD
thesis, Computer Science Department, Carnegie
Mellon University, Pittsburgh, June 1999.

[7] K. Langendoen, R. Bhoedjang, and H. Bal. Models
for asynchronous message handling. IEEE Concur-
rency, 5(2):28–38, April-June 1997.

[8] C. E. McDowell and D. P. Helmbold. Debugging
concurrent programs. ACM Computing Surveys,
21(4):593–622, December 1989.

[9] S. Pitzek and W. Elmenreich. Plug-and-play: Bridg-
ing the semantic gap between application and trans-
ducers. In Proceedings of the 10th IEEE Conference
on Emerging Technologies and Factory Automation
(ETFA05), volume 1, pages 799–806, Catania, Italy,
September 2005.

[10] Institute of Electrical and Electronics Engineers, Inc.
IEEE Std 1451.2-1997, Standard for a Smart Trans-
ducer Interface for Sensors and Actuators - Trans-
ducer to Micro-processor Communication Protocols
and Transducer Electronic Data Sheet (TEDS) For-
mats, 1997.

[11] CAN in Automation e.V. CANopen - Communi-
cation profile for industrial systems. available at
http://www.can-cia.de/downloads/.

[12] Robert Bosch GmbH. CAN specification version
2.0, September 1991.

[13] L.-B. Fredriksson. CAN for critical embedded auto-
motive networks. IEEE Micro, 22(4):28–36, 2002.

[14] J. Kaiser and C. Brudna. A publisher/subscriber ar-
chitecture supporting interoperability of the CAN–
bus and the internet. In Proceedings of the 4th IEEE
International Workshop on Factory Communication
Systems (WFCS 2002), Västerås, Sweden, 2002.

[15] M. Gergeleit and H. Streich. Implementing a dis-
tributed high–resolution real–time clock using the
CAN–bus. In 1st International CAN Conference,
1994.

[16] J. Ruffino, P. Verissimo, C. Almeida, and L. Ro-
drigues. Fault–tolerant broadcasts in CAN. In Pro-
ceedings FTCS–28, Munich, Germany, 1998.

[17] J. Kaiser and M. A. Livani. Achieving fault–tolerant
ordered broadcasts in CAN. In Proceedings of the
Third European Dependable Computing Conference
(EDCC–3), Prague, September 1999.

[18] J. Kaiser and H. Piontek. CODES: Supporting the
development process in a publish/subscribe system.
In Proceedings of the fourth Workshop on Intelligent
Solutions in Embedded Systems WISES 06, 2006.

[19] M. Kay, Ed. W3C XSL transformations (XSLT) ver-
sion 2.0. http://www.w3.org/TR/xslt20, June 2006.

[20] Audi AG, BMW AG, DaimlerChrysler AG, Mo-
torola Inc. Volcano Communication Technologies
AB, Volkswagen AG, and Volvo Car Corporation.
LIN specification v2.0, 2003.

[21] S. Pitzek and W. Elmenreich. Configuration and
management of a real-time smart transducer net-
work. In Proceedings of the 9th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 2003), pages 407–414, Lisbon,
Portugal, September 2003.

[22] Object Management Group (OMG). Smart Trans-
ducers Interface V1.0, January 2003. Specification
available at http://doc.omg.org/formal/2003-01-01
as document ptc/2002-10-02.

