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Abstract

In this paper we exercise the genetic programming
of a Artificial Neural Network (ANN) that inte-
grates sensor vision, path planning and steering
control of a mobile robot. The training of the ANN
is done by a simulation of the robot, its sensors, and
environment. The results of each simulation run
are then used to denote the ability for the tested
network to operate the robot. After less than hun-
dred evaluations we receive an ANN that is able
to navigate the robot around obstacles better than
a traditional implementation of sensor-based vision
and navigation for the same robot.

1 Introduction

Designing a vision and control software for an au-
tonomous robot is a complex and cumbersome task.
The control software has to cope with sensor inac-
curacies, actuator modeling, software complexity,
and resource constraints of the embedded system.
Moreover, the results are typically brittle systems
that need to be fine-tuned for a given robot con-
figuration and are often difficult to reuse on dif-
ferent systems or when part of the system changes
(e. g., when employing sensors with different behav-
ior).

In order to overcome these problems and to cre-
ate also innovative solutions to abstract control
problems (e. g., “explore the room”), the idea using
evolutionary programming by automatically evolv-

ing control systems by a genetic algorithm has been
proposed by several researchers [18].

A genetic algorithm [19] evaluates a pool of can-
didates by a given fitness function that estimates
the candidates’ performance when applied to the
intended problem. Then, the best candidates are
kept, while the candidates with bad performance
are replaced by offsprings or mutations of the pool.
Thus, candidates with a high fitness function are
evolved over several generations.

A genetic algorithm only works if the candidates
are represented in a way that they can easily be mu-
tated and recombined while still retaining a syntac-
tically correct and possible useful program. There-
fore, standard programming languages like C or
Java do not qualify for this kind of genetic pro-
gramming. Instead languages like LISP or ANNs
are used for program representation.

In this paper we show how to evolve an ANN that
instruments the sensors and movement control of
an autonomous mobile robot and compare the re-
sults to a traditionally implemented control system
for the same robot. The intention is to provide
a reference implementation for this kind of prob-
lem that explains the efficient usage of mutation,
crossover, and selection on populations of solutions
represented as ANNs. Our results show that the
evolutionary approach can be an interesting alter-
native to a solution from a human designer in terms
of performance, design effort, memory footprint,
and execution time.

The remaining parts of the paper are organized
as follows: Section 2 describes the robot hardware
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for which the control system has been designed,
explains the specific difficulties for the vision and
control system and describes the setup of a sim-
ulation environment for this robot. Section 4 de-
scribes the ANN and the interfacing between robot
hardware and neurons. Section 5 explains the ge-
netic algorithm and discusses the method for the
given problem type. Section 7 depicts the results
of several experiments carried out in the simulator
using the genetic algorithm to evolve an ANN that
performs the intended task. Section 8 relates the
contributions of this paper to existing approaches
in this area. The paper is concluded in Section 9.

2 The robot

The robot, called Smart Car consists mechanically
of an off-the-shelf four wheeled model car fitted
with a wooden mounting board (depicted in Fig-
ure 1) of size 0.4 m times 0.3 m. The mounting
board hosts several sensors and actuators (see [9]
for details) whereof we use only the three Sharp
GP2Y0A02 infrared sensors and the actuators for
speed and steering control for our experiments.
The infrared sensors are mounted on servos, so that
the sensor’s viewing angle can be adjusted dynam-
ically. The robot features an Ackerman steering at
the front axis, basically this means, that the inner
wheels are turned at a greater angle when driving
into a curve. However, due to this kind of steer-
ing, navigation to a specific location is not trivial,
since the robot cannot turn on place, but has a turn
radius of 0.82 m.

The transducers, i. e., the robot’s sensors and ac-
tuators, are instrumented by separate microcon-
trollers performing local transducer-specific instru-

Figure 1: The Smart Car robot

mentation and signal conditioning while communi-
cating with the main controller via a time-triggered
sensor bus. The main controller of the smart car is
based on an 8-bit ATmega128 microcontroller run-
ning at a clock speed of 14.7456 MHz and featuring
128 KB of Flash ROM and 4KB of RAM memory.
Thus, the implementation of the vision and control
system is required to have a low resource footprint
in terms of memory and computation requirements.

3 Simulation environment

There has been several arguments on simulation
vs. real hardware in the literature [13], however we
decided to employ simulation for the following rea-
sons:

• When exploring different configurations for the
system parameters, there will in overall sev-
eral hundred thousand evaluation runs tak-
ing place, each consisting of the robot being
controlled by a different version of the pro-
gram. This will take considerable time – in our
case one evaluation requires the robot moving
around for about half a minute. Using simu-
lation, the set-up can be improved and simu-
lations can be sped up and parallelized using
standard PCs.

• Most available robots will tend to break
down [5] or at least show wear-out behavior
on the mechanical components when used for
an extended amount of time.

• Maintenance and initialization, e. g., reloading
batteries or placing the robot on a defined start
position are, unlike in simulations, very diffi-
cult to automatize for real-world robots and
therefore would require constant support and
supervision of a human operator.

• The simulation environment gives easy access
to normally unknown parameters like current
position or traveling path that could only ac-
quired indirectly by sensor measurements in
the real world. Consequently these values sup-
port the monitoring and assessment of the evo-
lution process.

The main arguments against simulation lie in
the differences between simulation model and real-
ity. However, this problem can be diminished by



designing the simulation model carefully. Given
the arguments above, we suggest that simulation
should be the first step to involve intelligent behav-
ior in a safe simulation environment that allows to
make mistakes (like crashing into walls) and sup-
port a fast evaluation of several 100,000 genera-
tions using parallelization and a faster-than-real-
time simulation mode. After this stage it is still
possible to further evaluate the system using its ac-
tual hardware. Such a two-stage hybrid approach
has been exercised by Nolfi, Miglino and Parisi [14]
and the results show that the adaption process of
the evolved system to the real world is typically
very fast.

The Smart Car has been modeled carefully for
the Rossum’s Playhouse (RP1) simulator [11]. The
model accurately includes the Ackerman steering
behavior and a realistic model of the infrared
sensors based on measurements published in [16,
Chapter 5.1]. Figure 2 depicts the measured be-
havior of a real Sharp GP2Y0A02 infrared sensor
as they are used on the Smart Car. For distances
below 20 cm, the sensor does not deliver measure-
ments that can be reliably interpreted.

Distances between 20 and 150 cm can be con-
verted to a distance measurement using the follow-
ing equation:

dist =
a

x− b
+ c

where x is the sensor’s response and a,b, and c
are calibration constants. This conversion is auto-
matically done by the smart sensor. It would have
also been possible to feed the ANN with the raw
sensor signal, however, a previous evaluation has
shown that the arithmetic approach shows better

Figure 2: Measured behavior of a GP2Y0A02 dis-
tance sensor (from [17])

performance in terms of execution speed and er-
ror [10].

The calibrated distance value tends to have a
stochastic error of a variance of 2 cm2 [16, Chap-
ter 5]. Using these data, the behavior of the Sharp
GP2Y0A02 infrared sensors has been modeled in
RP1.

4 Neural network model

The chosen ANN is a fully connected recurrent
time-discrete model similar to that used by Hus-
bands et al. for a similar problem [8]. The neurons
are designed for their usefulness in control appli-
cations rather than being biologically plausible or
easy to analyze. The data types have been op-
timized for embedded microcontrollers without a
floating point unit.

Each neuron is connected to the other neurons
via several input connectors. Based on the neurons
activation value, the neurons output is forwarded
via different connections to all other neurons. The
network is fully connected, thus each neuron has
also a connection to itself. Each connection is as-
signed a weight that can be a value between -256.0
and +255.0, represented as fixed point value with a
15 bit mantissa. The output of a neuron is a value
between -1.0 and 127

128 = 0.992, represented as fixed
point value with a 7 bit mantissa. Additionally,
each neuron is assigned a bias value with the same
data format as the incoming weights.

The controlling interface to the robot is done by
special input and output neurons. The input neu-
rons produce the sensor data on its output inde-
pendently of the values on their input. The output
neurons behave like normal neurons in the network,
but their output is also forwarded to the actuators.
Therefore, the actuator interface has been linearly
scaled to operate within the limits of a neuron’s
output. For example, the steering actuator has
been scaled in order that a value of -1.0 represents
the maximum turning angle to the right. The ex-
tra nodes which are not characterized as input or
output nodes are the so-called hidden neurons.

The network is implemented in software and ex-
ecuted in discrete steps. At each step, each neuron
i builds the sum over its bias bi and its incoming
weights wji multiplied by the current outputs of
the neurons j = 1, 2, ..., n feeding the connections.



Then, an activation function F is applied to value
in order to calculate the output of the neuron for
step k + 1:

oi(k + 1) = F (
n∑

j=0

wjioj(k) + bi)

where F is a simple linear threshold function

F (x) =

 −1.0 if x ≤ −1.0
x if − 1.0 < x < 0.992

0.992 if x ≥ 0.992

The employed network has three input neurons
producing the distance value of each sensor (scaled
by a factor of 1

128 in order to fit the data type).
Two output nodes are mapped to the steering and
motor actuator.

The input neurons are updated periodically in
intervals of 100 ms. After each update, two steps of
the network are executed. The second step is nec-
essary to enable the hidden neurons to take the cur-
rent input into account (first step) and contribute
to the output neurons (second step).

5 Evolution method

The evolution method involves a genetic algorithm
that searches for solutions with a high fitness re-
garding the intended purpose. Basically, multiple
solutions are created using stochastic methods and
evaluated in parallel while the best ones are selected
for the next generation.

We used a versatile framework [15] for ge-
netic evolution of ANNs that supports mutation,
crossover, elite selection, random selection, and co-
evolution of multiple populations. Algorithm 1 de-
picts the basic elements of the genetic algorithm.
Each version of an ANN is represented by the
weight matrix and the biases of each neuron, which
we also call the genome of the network.

The selection applies elite selection, that is keep-
ing kelite networks with best scores, and a random
selection, where networks with higher scores and
greater diversity to the already selected networks
have a higher chance of being selected.

The mutation feature applies random variations
to the genome, whereas the maximum change rate
is proportional to the previous value. Thus, small
values are changed by a small random range, while

Algorithm 1 Genetic algorithm with multiple
populations

1: create n networks in m populations and initial-
ize them with random values

2:

3: for generations
4: for p=0 to m
5: for i=0 to n
6: evaluate networkp, i and store score
7: rank networks according to their score (best

first)
8:

9: for p=0 to m
10: for i=0 to n
11: keep some networks
12: create mutations of kept networks
13: create offsprings of kept networks
14: create some networks anew and initialize

them with random values

large values may receive larger variations. Thus,
the mutation introduces sufficient change on the
one hand and is able to make fine variations to
small values one the other hand.

The design of the crossover operator for ANNs is
non-trivial. If not done carefully, offsprings do not
inherit the capabilities of their parents but show
a new unintended behavior that does not fit the
purpose of the task. Since existing crossover op-
erators [4, 7] do not apply to our type of network
we designed a new crossover algorithm by taking
into account the ideas of the related, not directly
applicable, approaches.

First we avoid splitting the genome between the
input weights and biases of a neuron, thus a neu-
ron is treated in an atomic way. Our experiments
have shown that this approach is advantageous over
splitting up the components of a neuron. Second,
we try to identifying parts of the network with high
connectivity which may act as so-called organs with
a certain independence. Then we assign a lower
probability of splitting inside organs than splitting
between organs.

Random selection is expected to avoid stagna-
tion of the algorithm for local maxima of the fit-
ness value. Another means to overcome this prob-
lem is co-evolution, where multiple populations are
evolved separately so that the genetic diversity
is increased. After a number of generations the



crossover method is allowed to create offsprings
from genomes from different populations so that
the separately evolved features can be combined in
order to find a solution with better performance.
In our simulation runs, we selected an interval of
10 generations between inter-population breeding.

6 Experiment setup

Figure 3 depicts the set up of the artificial test en-
vironment that was used in the simulations. There
are several starting points with different coordi-
nates and headings in order to avoid the situation
that a robot becomes trained for only one partic-
ular trail. The rectangle in the bottom left in the
figure depicts the simulacrum of the robot. The
test field covers an area of 6m x 6m.

The general goal of the control application was to
make the robot exploring its environment without
colliding with the walls. In order to quantify that
goal we measure periodically the euclidean distance
between the robots starting position and its cur-
rent position. The maximum distance represents
the score of a simulation run. When the robot hits
an obstacle or is not able to increase its score dur-
ing a given time, the evaluation is ended and the
current score is returned as the fitness value.

We conducted several experiments for the pur-
pose of evaluating the best parameters and setups
for the evaluation regarding appropriate population
sizes and number off hidden nodes, evaluation of
the effectiveness of mutation and crossover meth-
ods, and a performance comparison to the engi-
neered approach based on certainty grid [3] and
vector histogram navigation [1].

In order to provide a measure for the quality of
the results we have also evaluated the hand-written

Figure 3: Experimental test environment

vision and navigation system based on the cer-
tainty grid/vector field histogram approach using
the same framework.

7 Results and evaluation

Table 1 depicts the value of the fitness function
after 10, 50, 100 and 200 generations. The best
performing configuration was the one with 12 hid-
den nodes evolved by 2 independent populations.
Note that the evolution of this network type, and
in general of larger networks is slower than for net-
works with fewer number of nodes. The genetic
algorithm tends also to stagnate at local maxima
if the number of parameters to optimize is large,
therefore we have employed the parallel evolution
scheme for the setups with more than 10 neurons,
also it slowed down the evolution process.

Figure 4: Efficiency of New, Mutation and
Crossover operators

Figure 4 depicts the efficiency of the modify op-
erations in our genetic algorithm. The new mod-
ifier has its main benefit in the start phase, while
the mutation modifier supports the evolution of the
population over the whole process. However, after
50 generations, the crossover operator outperforms
the other two. Note that this does not mean one
can replace the three operators just by the best per-
forming one – the new operator is important since
it introduces the biggest diversity, and the muta-
tion and crossover benefit from each other in order
to achieve individuals with better fitness.

The most interesting result of this experiment
is the performance comparison to the tradition-
ally implemented navigation system. For the given
purpose, the ANN approach outperforms the engi-
neered solution after 50 generations.



Table 1: Simulation results of different configurations
fitness after generation

network configurationa 10 50 100 200
3 input nodes, 4 hidden nodes, 2 output nodes, 15%
elite selection, 12% random selection, 5% renewed,
20% mutants, 48% offsprings, 1 populations of 100
nets

148 224 245 312

2 population of 50 nets, 8 hidden nodes 162 175 190 200
2 populations of 50 nets, 12 hidden nodes 134 259 296 356
68% mutants, 0% offsprings 150 184 207 211
Certainty grid/vector histogram approachb 160

aThe first configuration is the standard setting for the experiments, the lines below only denote the changes with respect
to the standard configuration.

bThis approach does not evolve over generations.

Table 2: Memory requirements for ANN controllers (3input, 12hidden, 2 output nodes) and certainty
grid/vector histogram approach

Program Code (Flash) Data tables (Flash) Variables (RAM)
Neural network with
fixed point arithmetics

502 Bytes 640 Bytes 36 Bytes

Neural network with
floating point arith-
metics

3982 Bytes 1280 Bytes 140 Bytes

Certainty grid/vector
histogram navigation

23973 Bytes – 3168 Bytes

We evaluated the fitness of the ANN approach
for embedded devices by the example of an imple-
mentation in C for the Atmel AVR architecture1.
Table 2 depicts the resulting memory statistics. As
a benchmark for our fixed point integer arithmetics
approach, we depict also the values for a float-
ing point version of the ANN. The ANN controller
using fixed point integer arithmetic shows a very
frugal memory consumption. Note that some 8-
bit microcontrollers provide only a few kilobytes
of Flash memory and even less SRAM memory,
so that a small memory footprint is of great rel-
evance for compact designs without external mem-
ory circuitry. The execution time for feeding the
measurements into the ANN, performing two steps
(see Section 4 for an explanation of the two steps)
and forwarding the output to steering and motor
control required 1.61 ms in fixed point arithmetic
and 109.6 ms in floating point arithmetics on an

1http://www.atmel.com/products/avr/

Atmel ATmega128 running at 14.7456 MHz. The
computation time has no measurable jitter since
the operations are executed in several loops with a
constant number of iterations. The execution time
for the fixed point version is considerable fast, since
the update time of the sensors of around 70 ms is
the limiting factor of the processing speed.

Note, however, that the execution time and Flash
memory requirements of the ANN will scale with
the square value of the number of neurons. The
RAM requirements are direct proportional to the
number of neurons (excluding input nodes). For ex-
ample, a network with 200 neurons will have 200 ms
computation time and require 80 kB of Flash mem-
ory and 400 Bytes of RAM memory, thus will still
fit into one of the larger 8-bit microcontrollers. Net-
works significantly above that size cannot be rea-
sonably used on 8-bit microcontrollers2. However,
the limiting factor on the network size is rather on

2This applies only to fully connected networks.



the training method than on the time complexity of
its implementation, since a genetic algorithm might
not be able to cope with a network of that size.

8 Related work

An early inspiration for our work has been given
by Braitenberg’s vehicles [2]. In these thought ex-
periment Braitenberg proposed simple control de-
signs with very few circuitry (or equivalent program
code, but Braitenberg’s vehicles typically do not
have a central processing unit) that behave in an
“intelligent” way.

Genetic algorithms have been applied in several
ways to evolve ANNs. Meeden [12] proposes a so-
lution solely based on mutation and selection with-
out crossovers. Also simpler, the learning process is
much slower as a consequence and requires several
thousand generations in Meedens example. Using
our framework we can confirm that there is a sig-
nificant difference in learning speed between mu-
tation/selection and crossover/mutation/selection
approaches.

Floreano and Mondada [6] describe the evolving
of a navigation system based on discrete-time re-
current networks, as it is the case in our paper.
They successfully evolve a network for controlling a
Khepera robot with 12 input nodes, 5 hidden nodes
and 2 output nodes over 100 generations. Their ap-
proach differs from our task mainly in the mobility
of the employed robot, since the Khepera is a two
wheeled system that can turn on its place. As a
consequence, the control system for our robot re-
quires more hidden nodes in order to perform well.

9 Conclusion

The performance results of the evolved network are
significant better than the engineered approach.
While saving time on implementation of control
strategies on the one hand, considerable effort has
to be put into the modeling of the simulation en-
vironment on the other hand. Furthermore, it is
necessary to fine-tune the system in the real hard-
ware by performing another few iterations of the
genetic algorithm.

Although the implementation of the ANN has
been done in software, due to choosing fixed-point

arithmetics, the implementation is very resource-
efficient and suited for the deployment on small em-
bedded microcontrollers like the Atmel AVR series.

The ANN approach is also interesting when ap-
plied in real-time systems, where the maximum ex-
ecution time of a task must be known in order to
provide guarantees on the system’s response time.
Since a step of the ANN is very regular in terms of
instruction sequence, the task’s execution time is
constant and the worst-case execution time of the
tasks can be measured directly for typical micro-
controller architectures without caches. However,
for critical applications, it becomes difficult to guar-
antee for a particular behavior and to reason about
this in safety-case issues.
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