
Considerations on the Complexity of Embedded Real-Time System

Design Tasks

Bernhard Rumpler and Wilfried Elmenreich
Vienna University of Technology

Institute of Computer Engineering, Real-Time Systems Group
Treitlstraße 3/3, 1040 Vienna, Austria
{rumpler,wil}@vmars.tuwien.ac.at

Research Report 70/2006

Abstract – In this paper, relational complexity the-
ory is used to discuss various aspects of the complex-
ity of computer system design tasks, with a special
focus on embedded real-time systems for high depend-
ability environments. Designing such systems is of-
ten especially complex as various timing and depend-
ability constraints must be met. An approach is pre-
sented that allows for a strict conceptual separation
of components by minimizing the relational proper-
ties of components. An example component structure
that adheres to the presented concepts is shortly de-
scribed.

1 Introduction

1.1 Complexity in Embedded Real-
Time System Design

Embedded real-time systems are becoming increas-
ingly important in many areas of our life. Especially
in industrial, automotive, and avionics control ap-
plications there are high dependability requirements
as a failure can have fatal consequences, including
loss of life. Design faults often have their roots in
lacking understanding or overlooking of some system
aspects. To be able to avoid design faults, the com-
plexity of the design process must be limited. Com-
plexity management is receiving increasing attention
in recent years but there are no universal theories
or techniques describing how to deal with complex
design tasks. This paper tries to focus attention on
some basic issues in the domain of embedded real-
time systems where solutions for dealing with some
aspects of complex systems have been found.

1.2 Cognitive Complexity

In this paper the terms complexity and cognitive com-
plexity are used interchangeably as complexity is con-
sidered only from a cognitive perspective. The cogni-
tive complexity of a given task describes the amount
of cognitive resources that are required to perform
the task. If a task has high resource requirements
this becomes manifest in the increased time required
for the task and in the number of errors that occur.

1.3 Objectives

To be able to make statements on the complexity of
design tasks of embedded real-time systems, a con-
ceptual framework that has its roots in cognitive psy-
chology is needed. The characteristics of human cog-
nition are the reason for what we perceive as either
simple or complex.

This work uses relational complexity theory [1] as
a theoretical framework to discuss various aspects of
computer system design. It is explained which factors
affect component complexity and which properties of
component interfaces help to reduce the complexity
of design tasks. This paper describes a construc-
tive design approach for embedded real-time systems
in high dependability domains where latent design
faults caused by unmanaged complexity cannot be
tolerated. It is argued that design for simplicity is an
important principle for the creation of these systems
which must be understandable and certifiable to the
highest criticality levels.

1.4 Related Work

There exist various approaches to measure complex-
ity of software systems, most of which focus on pro-



gram code complexity [2]. There also exists some
work on measuring the architectural complexity of
software. These approaches focus on the high-level
structure rather than on the implementation details
of any specific source module [3, 4, 5].

Complexity metrics can be used to assess the over-
all design of a system according to some properties
and then use this assessment to perform corrective
actions early in the development process [5] or use
it for re-engineering purposes [3]. Thus, while com-
plexity metrics give an overview over some specific
characteristics of system properties (those measured
by the metric), metrics in general do not consider the
complexity of individual tasks. For instance, a metric
that measures the overall architectural regularity of
a system may return a high value, which means that
the system is highly regular and should thus be easy
to understand. Nonetheless, tasks performed with
this system, even “general understanding” tasks, may
be very hard as the measure does not consider the
complexity of the tasks to be performed. But it is
the tasks that the developers are performing, which
must receive attention when making statements on
design complexity. This paper focuses on the task-
based theory of relational complexity.

Visual models that depict the relationships be-
tween the components of a system support compre-
hension [6]. These techniques are orthogonal to the
concepts presented in this paper.

2 Basic Concepts

2.1 Relational Complexity

Relational complexity is a theory from cognitive psy-
chology that is supported by a wide variety of em-
pirical data [1, 7, 8]. According to the theory, the
processing load of a cognitive task is determined
by the complexity of the relations that must be
processed in a given step. The arity of a relation
describes its dimension, i.e., the number of indepen-
dent elements that must be considered simultane-
ously. For example, BIG(dog) is a binding between
the unary relation BIG and one argument. The re-
lation can be interpreted as expressing a state or an
attribute. Class membership, e.g., DOG(fido) can
also be expressed as a unary relation. A binary re-
lation such as BIGGER(dog,mouse) relates two com-
ponents. Univariate functions and unary operators
can be represented at this level. Ternary relations
are needed to represent bivariate functions and con-
cepts such as transitivity or class inclusion. Formal

similarity mappings, independent of content, can also
be made at this level. Greater abstraction is thus
related to higher dimensionality [9]. Quaternary re-
lations are the most complex we can handle [7]. At
this level four-way comparisons are possible. Exam-
ples for quaternary relations are matching tasks of ob-
jects according to four independent attributes, such
as color, shape, filling pattern, and orientation.

Relational complexity theory proposes that the
cognitive demand can be reduced through conceptual
chunking and segmentation [1]. Conceptual chunking
means recoding of a relation to lower dimensionality.
For instance, velocity can be considered as a function
of distance and time (v = s/t) which is a ternary re-
lation. It can, however, also be considered as a unary
relation if it is conceptualized as SPEED(50km/h).
The chunked variables become inaccessible, i.e., they
cannot be considered. Segmentation means to re-
duce problems of high dimensionality into a number
of tasks of lower dimensionality that can be solved se-
rially. However, not all relations can be decomposed
into simpler relations and then recomposed into the
original relation. Even when relations are decompos-
able, people may not have the necessary strategies.
This explains the dependence on expertise of higher
cognitive processes [9].

2.2 Computer System Architectures

A computer system architecture describes the overall
design of a class of computer systems that share a
set of common characteristics. This definition is not
constrained to pure hardware but also includes soft-
ware aspects. Architecting is a consequence of sys-
tem complexity [10]. Architectures reduce the effort
of the design process as they guide the designers by
constraining the design. Examples for computer sys-
tem architectures according to this definition are, for
instance, the DECOS architecture [11] which is men-
tioned in more detail in section 5.2, and AUTOSAR
[12], which is an architecture for automotive control
systems. Also the well-known personal computers we
all use in our homes and offices, together with the op-
erating system and device drivers represent computer
system architectures according to the definition used
in this paper.

2.3 Task-Based Complexity

To be able to develop a theory on design complexity,
the basics of what makes a task complex have to be
considered. From this viewpoint it does not make
sense to consider the overall complexity of the whole



system, as the complexity always depends on the task
that must be performed. The central concern of this
paper is thus task-based complexity.

There are two main factors that affect the perfor-
mance of a task. First, the knowledge (or expertise)
in the problem domain and second, the inherent com-
plexity of the task itself [9].

Unfortunately, there exist no cognitive process
models for design tasks of computer systems. As such
models must be developed for the various computer
system architectures and are not yet available, this
paper focuses on the task of general system under-
standing which is—without doubt—involved in many
tasks including, e.g., constructive design and mainte-
nance.

2.4 Components

A component is a self-contained subsystem that can
be used as a building block for a larger system.
This definition of component reflects its most general
meaning in technical systems without being restricted
to pure software components on the one hand and
software-hardware components on the other hand.
Besides the constructive system design approach that
uses components to build up a larger system, com-
ponents can also be seen as the result of a top-down
design process in which a large system is decomposed
into a number of smaller components, e.g., for com-
plexity management.

Low coupling between modules and high cohesion
inside each module are commonly accepted features
of good software design [13, 14]. From a complex-
ity management viewpoint it is important to define
these terms in more detail and to create a theoretical
framework that describes which properties of com-
ponents either simplify or complicate specific design
tasks.

2.5 Interfaces

An interface is a boundary between subsystems. The
purpose of an interface is information exchange be-
tween subsystems. A component interacts with its
environment via linking interfaces (LIFs) [15]. The
environment may either be other components or sen-
sors and actuators that are connected to the compo-
nent.

For a constructive system integration, the proper-
ties of the interfaces determine the complexity of the
integration process [16]. The integration process is
a part of the system design. Usually, large systems
are constructively built from a number of subsystems.

The subsystem design can either be part of the sys-
tem design or the designers can use existing compo-
nents.

2.6 Design Tasks

To be able to reason about the complexity of a design
task it is important to have a process model of the
way the task is performed. Usually, a design task,
such as “develop a brake-by-wire” system consists of
a number of subtasks. For each of the subtasks, the
complexity analysis must be performed. The sub-
tasks can be seen as some natural segmentation of
the larger design tasks.

It is important to identify the most complex sub-
task as it is not the number of tasks but the cognitive
resources required by a single task, that influences the
design task complexity.

A design task is well-defined if it is clear how ex-
actly the task can be performed, i.e., if there is a
process model on how to accomplish the task. Well-
defined tasks are typical for architectural design ap-
proaches, especially if there exist design tools that
guide the system developers.

A design task is ill-defined if the designer has no
clear conceptualization how the task can be done.

It is clear that just well-defined tasks can be ana-
lyzed so to make judgments about the task complex-
ity. The goal of any computer system architecture
must be to make all tasks well-defined.

A design task must support segmentation and
chunking to such a level of complexity that can be
handled by the designer. To develop segmentation
strategies, it is usually necessary to understand the
whole structure.

Architectures can support segmentation and
chunking strategies by structuring the system ap-
propriately and guiding the developers by providing
strategies, algorithms, and tools.

Unfortunately, design tasks are usually not ana-
lyzed according to their cognitive process models.
One reason for this might be that, in general, sys-
tems are designed according to an ad-hoc fashion or
according to design patterns, but rarely according to
well-defined architectures. As there is a trend to-
wards architectural system development, design task
analysis will become an essential prerequisite for as-
sessments of the cognitive complexity of the design
process.



3 Complexity in Computer
System Design

Large computer systems, e.g., integrated architec-
tures for automotive and aerospace control applica-
tions [11], have a high level of complexity. It is impos-
sible to consider and understand the whole system at
once. Thus, the system design process must be mod-
ular so that the system can be built from components.
Each design step must have a level of complexity that
can be handled. According to relational complexity
theory the effective complexity must not exceed rela-
tions including more than four dimensions.

3.1 Attributive vs. Relational Prop-
erties

We can categorize component properties as either at-
tributive or relational. An attributive property is self-
contained in the sense that it has a meaning if it is
considered in the context of the component. A re-
lational property only has meaning with respect to
some other component, i.e., a relation must be estab-
lished so that the attribute can be understood.

Ideally, a component should have only minimal re-
lational properties as this minimizes the relational
complexity of tasks involving these attributes. De-
pending on the number of entities that are uniquely
related to a relational attribute the arity and thus
the relational complexity of the tasks increases.

An example for an attributive property is that a
device supports a standard communication interface
like USB or IEEE 1394. However, if a data sheet
of a device states a serial RS232 interface, the user
needs to adjust several relational properties, e.g.,
baud rate, parity mode, number of stop bits, and
type of flow control between the two communication
partners, which increases the complexity for setting
up a working system.

3.2 Message-Based Communication

When components communicate via messages, there
are two possible classes of data semantics [17]: State
information describes the state of a real-time entity
at a particular instant, e.g., the temperature of a ves-
sel. Event information describes an event. It con-
tains the difference between the state before the event
and the state after the event, e.g., that the position
of a valve has changed by 3 degrees.

Messages that contain event information are called
event messages, state information is transmitted via

state messages.
As the data used in automotive and avionics con-

trol systems usually are simple sensor and effector
data values that are used and transformed by the
components of the computer system [18], a message
based communication seems to be appropriate.

A precise specification of a message-based interface
in the time and value domain allows to consider the
component interface in isolation. It thus supports
a clean conceptual separation at the interface: For
the component designer or component integrator it
is sufficient to know the interface specification. It
is not necessary to think “beyond” the interface as
it fully describes the information flow into and out
of the component. This is an important characteris-
tic of message-based interfaces regarding complexity
management.

3.3 State Messages

As described above, a state message is self-contained.
This means that a state message can describe the
state of some entity, without any dependence to other
messages.

In terms of relational complexity, the task of un-
derstanding the state of an entity as described by a
single state message represents a unary relation, as
the message is self-contained. It requires no knowl-
edge about the history of state changes to understand
the state.

3.4 Event Messages

An event message describes an event and does not
contain the full state of the entity it describes. It is
thus not self-contained and usually needs some inte-
gration with the history of past events.

The task of understanding the state of an entity
after receiving a single event message represents a
binary relation as the message is not self-contained.
It requires the integration of the previous state and
the state change described by the event message.

Thus, while the transmission of a data stream con-
taining value updates using event messages can save
considerable bandwidth, from the perspective of re-
lational complexity this makes understanding tasks
more complex.

3.5 Function or Object-Based Inter-
faces

A subsystem can have a function-based or object-
based interface. Such an interface does not communi-



cate via simple messages, but the subsystem provides
functions to other components. However, such a com-
ponent is not self-contained. Each component needs
knowledge about other components and the functions
supported by the other components. This view of
components corresponds to objects in object-oriented
programming languages.

For object-based interfaces, the objects usually
present their interfaces to a number of potential
users. This is some kind of client-server relation-
ship. The server often does not need to know about
the clients, but the clients need knowledge about the
server to be able to use its interface. Thus, an ex-
plicit relation must be established between client and
server. The client is not conceptually independent of
the server.

Moreover, the direct invocation of methods of other
objects that is not coordinated globally may lead
to processing and network overloads that must be
considered during system design. This is an issue
that has not yet been solved satisfactorily for object-
oriented approaches. Such systems are, in general,
not composable [19].

Despite these drawbacks, the advantage of the
object-oriented approach is that data being passed
around can be chunked without losing the chunked
dimensions as those dimensions are still available by
querying the object that represents the chunk. With
a message-based approach chunking can either be
“real” chunking, i.e., losing the chunked dimensions,
or the dimensions that are not needed can be consid-
ered opaque.

4 Segmentation and Chunking

As mentioned in section 2.1, segmentation and con-
ceptual chunking are the primary mechanisms that
allow to perform complex tasks. In the following sub-
sections, segmentation and chunking are discussed in
the context of computer system design.

4.1 Conceptual Chunking

Chunking means to reduce the dimensionality of the
problem space by hiding information that is not
needed for the task at hand [1]. Interfaces support
chunking by hiding component-internal details and
are thus the primary technique used for conceptual
chunking, often implicitly.

Ideally, an interface hides as much information as
possible for the given task, thus reduces the dimen-
sionality of the task to the lowest possible level. To

achieve this reduction, the interface must be designed
with the task in mind. If very different tasks must be
supported it is thus likely that the component must
provide separate interfaces for those tasks so to sup-
port all tasks optimally.

4.2 Segmentation

Segmentation means to split a task into a number
of subtasks that can be performed serially [1]. For
complex problems it is often not obvious how to find
appropriate segmentation strategies. Regarding the
general understanding task, segmentation on the sys-
tem level means to decompose the large system into
smaller components each of which has some degree
of independence from other components so that the
segmentation is of any use.

Segmentation is also possible at the interface level
of each component. There, it can help by providing
appropriately structured information and functional-
ity. If the interface is badly structured or does not ex-
hibit any obvious structure at all, the user first has to
find an appropriate segmentation strategy, i.e., split
the interface into parts and identify the ones that are
needed for the task at hand. Such a search for a
segmentation strategy of course takes some time and
cognitive effort.

A primary source for concepts that are hard to un-
derstand is if the relational complexity is high, i.e., if
a component consists of many different aspects that
are hard to integrate into a coherent concept.

5 Structuring Systems

To structure a system, the designers usually apply a
combination of conceptual chunking and segmenta-
tion.

Large systems with a regular substructure are sim-
ple to create and maintain, whereas even relatively
small systems with no obvious regularities are per-
ceived as being far more complicated. This can be
explained—at least in part—by a re-use of chunking
and segmentation techniques that can be applied to a
large number of subsystems, thereby limiting the to-
tal amount of chunking and segmentation techniques
required. This is a very strong argument to limit the
types of components and their interaction. A com-
puter system architecture that minimizes the types
of components is the DECOS integrated architecture
[11, 16].



5.1 The System-Level Perspective

The system comprises a number of components that
interact with each other to implement some service.
The tasks that must be performed at this level,
e.g., component integration, usually require an un-
derstanding of what the system components do and
how they interact to deliver the emerging services.
This is especially important if there are multiple de-
velopers working at different parts of the system, or
if pre-fabricated components are used. Thus, a gen-
eral overview over the system—the “big picture”—is
needed. Also for maintenance, obtaining a general
understanding of the system is usually needed if the
maintenance is done long after system development
and the developers are either no longer familiar with
the system or if the maintenance tasks are performed
by different people.

For these system-level tasks the need for chunking
and segmentation is obvious. In the optimal case,
the conceptual structures that result from the seg-
mentation and chunking process are also reflected by
the system structure. This means that the concep-
tual borders between the subsystems coincide with
the interfaces between the subsystems. The reason
for this is that such a system structure allows for
“built-in” chunking and segmentation. The devel-
oper trying to get an understanding of the system
does not have to develop her own chunking and seg-
mentation strategies but can simply take the system
components as chunks. If the components and con-
ceptual chunks that are required to understand the
system do not match, this causes increased cogni-
tive effort as both structures must be considered si-
multaneously and the required underlying concepts
must first be detected. The structure of the system
is not easily detectable or relies on some abstract or
hidden mechanisms which considerably complicates
the creation of appropriate chunking and segmenta-
tion strategies. Moreover, complexity depends on the
number of relational properties of a component, i.e.,
the degree of concept independence. The next sub-
section discusses some properties of components that
allow for this conceptual separation.

Moreover, each component should represent a
meaningful concept. If the system is chunked and seg-
mented into ill-defined concepts, understanding suf-
fers significantly.

5.2 Case Study: A Self-Contained
Component

A component interface provides the component ser-
vice to its users. The characteristics of the compo-
nent interface determine whether a clean conceptual
separation between the components is possible or not.
This section discusses the properties of components
called jobs that are used to compose a distributed
application subsystem in the DECOS integrated ar-
chitecture [11, 20].

The DECOS architecture provides a distributed
execution platform for dependable embedded com-
puter systems. DECOS is based on the Time-
Triggered Architecture (TTA) [21] and provides
strong encapsulation of communication and task ex-
ecution. The architecture supports the integration
of software modules with different criticality levels
from different sources (vendors) by providing effective
partitioning—not only at architecture level, but even
at the level of a single hardware unit (ECU). Thus,
a malfunctioning subsystem cannot interfere with
other subsystems by monopolizing memory, process-
ing time or communication bandwidth.

Figure 1: Four jobs communicating via ports

The jobs of a distributed application subsystem
implement a specific functionality, such as a steer-
by-wire system. A job has a number of ports to send
messages to and receive messages from other jobs.
For safety-critical applications the messages are time-
triggered state messages. A time-triggered communi-
cation system is responsible for the reliable message
transport [17]. The interface between a job and the
communication system is a strict data-sharing inter-
face based on state messages.

Figure 1 shows a simple distributed application
subsystem consisting of four jobs sending and receiv-
ing various state messages. Job 1 sends a message
depicted by the gray port symbol which is received
by jobs 3 and 4. Similarly, the ports shaded in other
values depict other messages. The communication
system decouples the jobs from each other. There is
no information or control flow besides the messages.



The self-containedness property of the messages
and the autonomous message transport by the com-
munication system allow for a strong conceptual iso-
lation of the component which is a prerequisite for
composability [22]. Except for the message content,
the communicating jobs do not need any information
about each other. For the communication system the
messages are just opaque data entities. The commu-
nication schedule is derived from the timing require-
ments of the jobs which are part of the job interface
specification.

No complex structural relations are established by
this approach. The system developers are limited to
simple message-based interactions. This concept has
proven to successfully deal even with a large number
of components and messages.

Other approaches such as object-oriented systems
do not exhibit this strong conceptual isolation of com-
ponents, but on the other hand support more diverse
system structures. Objects may depend on various
other objects or can be passed around. In general,
they have a far more diverse interface structure, with-
out strict conceptual borders between the objects.
Object-oriented systems tend to introduce more re-
lations than the message-based approach described
above due to their inherently relational interfaces.
Thus, such systems usually have a higher relational
complexity for the general understanding task. For a
similar effect as the conceptual separation described
above, lots of restrictions would have to be imposed.

6 Conclusion and Outlook

For embedded systems, where there are usually se-
vere resource, timing and dependability constraints,
an important issue is to manage the complexity that
arises by the interactions of the components. Rela-
tional complexity theory has been used to describe
what is needed to support a general understanding
of a computer system. It is important to limit the
effective complexity of design tasks to four indepen-
dent dimensions. For more complex tasks, concep-
tual chunking and segmentation strategies must be
provided. This is possible with an architectural ap-
proach that guides the developers accordingly.

Understanding a large system is significantly eas-
ier if the conceptual chunks required for understand-
ing match those of the system components. More-
over, it has been shown that the choice of communi-
cation mechanism severely influences the complexity
of design and maintenance tasks. An approach with
state-message based interfaces allows for simple sys-

tem structuring to manage complexity by minimizing
relational component properties and thus limiting the
scope of consideration to a single component.

To be able to make statements about the com-
plexity of more specific design and maintenance tasks
than for the general understanding task described in
this paper, cognitive process models must be devel-
oped. These models will heavily depend on the cho-
sen architecture. Moreover, empirical evaluation of
the predictions made in this paper will have to be
done.

Acknowledgments

This work has been supported by the FIT-IT pro-
gram of the Austrian Federal Ministry of Transport,
Innovation, and Technology, project number 809442
and by the European IST project DECOS, project
number IST-511764.

References

[1] Graeme S. Halford, William H. Wilson, and
Steven Phillips. Processing capacity defined
by relational complexity: Implications for com-
parative, developmental, and cognitive psychol-
ogy. Behavioral and Brain Sciences, 21:803–831,
1998.

[2] Brian Henderson-Sellers. Object-oriented met-
rics : measures of complexity. Prentice-Hall, Up-
per Saddle River, New Jersey, 1996.

[3] Rick Kazman and Marcus Burth. Assessing ar-
chitectural complexity. In 2nd Euromicro Con-
ference on Software Maintenance and Reengi-
neering, pages 104–112, Florence, Italy, March
1998. IEEE Computer Society.

[4] Jianjun Zhao. On assessing the complexity of
software architectures. In Third International
Workshop in Software Architecture, pages 163–
166, Orlando, Florida, 1998. ACM Press.

[5] Thomas J. McCabe and Charles W. Butler.
Design complexity measurement and testing.
Communications of the ACM, 32(12):1415–1425,
1998.

[6] Object Management Group (OMG). OMG Uni-
fied Modeling Language Specification. Technical
report, OMG, 2003.



[7] Graeme S. Halford, Rosemary Baker, Julie E.
McCredden, and John D. Bain. How many vari-
ables can humans process? Psychological Sci-
ence, 16(1):70–76, January 2005.

[8] Damian Patrick Birney. The Measurement of
Task Complexity and Cognitive Ability: Rela-
tional Complexity in Adult Reasoning. PhD the-
sis, School of Psychology, University of Queens-
land, St. Lucia, Queensland, Australia, March
2002.

[9] Graeme S. Halford, William H. Wilson, and
Steven Phillips. Abstraction: Nature, costs, and
benefits. International Journal of Educational
Research, pages 21–35, 1997.

[10] Eberhardt Rechtin. Systems Architecting: creat-
ing and building complex systems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

[11] Hermann Kopetz, Roman Obermaisser, Phillip
Peti, and Neeraj Suri. From a federated to
an integrated architecture for dependable real-
time embedded systems. Technical report, Vi-
enna University of Technology, Austria; Darm-
stadt University of Technology, Germany, Au-
gust 2004.

[12] H. Heinecke et al. Automotive open sys-
tem architecture—an industry-wide initiative to
manage the complexity of emerging automo-
tive e/e-architectures. In Convergence Inter-
national Congress, Detroit, MI, USA, October
2004. Convergence Transportation Electronics
Association.

[13] Edward Yourdon and Larry L. Constantine.
Structured Design:Fundamentals of a Disci-
pline of Computer Program and System Design.
Prentice-Hall, 1979.

[14] Arthur J. Riel. Object-Oriented Design Heuris-
tics. Addison Wesley, 1996.

[15] Hermann Kopetz and Neeraj Suri. Composi-
tional design of rt systems: A conceptual basis
for specificatiom of linking interfaces. 6th IEEE
International Symposium on Object-Oriented
Real-Time Computing (ISORC’03), May 2003.

[16] Bernhard Rumpler. Complexity management for
composable real-time systems. In Proceedings of
the 9th IEEE International Symposium on Ob-
ject and component-oriented Real-time distrib-
uted Computing, Gyeongju, Korea, April 2006.
IEEE.

[17] Herman Kopetz. Real-Time Systems: Design
Principles for Distributed Embedded Applica-
tions, volume 395 of Kluwer International Series
in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, 1997.

[18] Doug Lea. Design patterns for avionics control
systems. Technical report, SUNY Oswego & NY
CASE Center, DSSA Adage Project ADAGE-
OSW-94-01, 1994.

[19] Thomas Losert. Extending CORBA for Hard
Real-Time Systems. PhD thesis, Vienna Uni-
versity of Technology, May 2005.

[20] Phillip Peti, Roman Obermaisser, F. Tagliabo,
A. Marino, and S. Cerchio. An integrated archi-
tecture for future car generations. In Proceed-
ings of the 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Com-
puting (ISORC’05), pages 2–13, Seattle, Wash-
ington, USA, May 2005.

[21] Hermann Kopetz and Günther Bauer. The time-
triggered architecture. In Proceedings of the
IEEE, volume 91, pages 112–126, January 2003.

[22] Hermann Kopetz and Roman Obermaisser.
Temporal composability. Computing & Con-
trol Engineering Journal, pages 156–162, August
2002.


