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Abstract – Sensor measurements are typically viti-
ated by a measurement error caused by the sensor’s
imperfectness or external disturbances. Whenever
this measurement error is to large to be neglected it is
necessary to fuse measurements from multiple sensors
into a more dependable estimation of the measure-
ment value. This paper derives a fusion method for
fusing tuples of sensor measurements and confidence
markers representing the respective variance of the
measurement. Assuming calibrated sensors with un-
correlated error functions, this Confidence-Weighted
Averaging (CWA) is optimal for producing the mini-
mum possible expected error of the result.

1 Introduction

Due to the availability of cheap sensing elements and
larger, integrated systems, the number of sensor data
sources in typical embedded applications will increase
in the future. For example, the DECOS integrated
architecture [1] proposes a concept where sensor data
from different distributed application subsystems in
an automobile is made available to each other via
gateways. Furthermore, the advent of sensor net-
works in the cabled and wireless domain makes it pos-
sible to easily access a large number of sensors. This
allows applications to take advantage of more sensor
information about the environment, however requires
means to systematically combine sensor information
from sensors with different accuracy and reliability.
The fused result should be more exact and more de-
pendable than the single sensor measurements.

In this paper we focus on the problem of fusing
a sample of several continuous-valued sensor mea-
surements into a more robust and more accurate

estimation of the measurand using a statistical ap-
proach. Since we do not assume to have a model of
the process environment, we do not regard previous
measurements (series), but only concurrent measure-
ments from the same real-time entity. By taking ad-
vantage of the smart transducer concept [2], we can
expect each measurement to be pre-calibrated and
assigned with a confidence marker that gives an esti-
mation of the quality of the measurement. The algo-
rithm fuses the measurements with respect to their
variance into a more accurate estimation of the mea-
surand and gives an estimation of the result’s confi-
dence.

The rest of the paper is structured as follows: Sec-
tion 2 describes the fusion problem to be solved. Sec-
tion 3 gives an overview on related work. Section 4
elaborates on a representation of confidence in a dig-
ital format. The algorithm and its analysis is pre-
sented in Section 5. Section 6 presents experimental
results from a multi-sensor case study. The paper is
concluded in Section 7.

2 The Fusion Problem

Given is a set of sensors that measure the same real-
time entity in the process environment. We assume
the sensors to be calibrated1, so that the measure-
ment errors are only of stochastic nature. Further-
more, the correlation between the sensor’s error func-
tion needs to be insignificant. We will show in Sec-
tion 6 that these assumptions hold for real sensor
networks.

1Note that there are cases, where a systematic error can-
not be removed by calibration, e. g., when values beyond the
sensor’s measurement range are mapped to a default value.
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Analysis of real sensors have shown that it is diffi-
cult to make any assumption on the error distribution
of a sensor, as depicted in Figure 1. Therefore, the
probability distribution function of the sensors’ mea-
surement errors remains uncharacterized.

Figure 1: Error histogram for Sharp GP2D02 infrared
sensor (from [3])

The sensors will produce a sample of observations,
where an observation consists of the measurement
value, the measurement instant, a confidence marker
and the respective name of the measured entity.

Furthermore we assume that the observations are
taken synchronuously within a time window that is
sufficiently small so that the variable to be measured
does not change significantly within that interval.

3 Related Work

In the literature, several methods can be found for
classifier fusion or decision fusion based on sen-
sor information. Some examples are voting mecha-
nisms [4], based on reliability of each sensor or clas-
sifier ([5]) or, as in [6], also considering correlations
between the sources. Other more complex methods
include Hidden Markov Models or Neural Networks
(e.g.[7]), all with the intention to minimize the ex-
pected error of the fused result.

Focusing at fusion of continuous-valued sensor
measurements, the fault-tolerant sensor averaging al-
gorithm proposed by Marzullo in [8], is closely re-
lated to our approach. Unlike the Kalman filter [9],
Marzullo’s approach is stateless, thus does not re-
quire data from previous measurements in the fusion

process.
We will compare the results from our Confidence-

Weighted Averaging (CWA) algorithm to the fault-
tolerant sensor averaging algorithm in Section 6.

A scheme for confidence markers in digital systems
is presented by Parhami in [10]. The proposed ap-
proach attaches so-called dependability tags to each
data object and updates these tags according to op-
erations performed on these data objects.

Another idea that contributed to the work in this
paper is given by sensor validation for fieldbus nodes.
So-called self-validating sensors are able to provide
a standardized digital signal and generate diagnos-
tic information. In the Oxford SEVA system [11],
each measurement is delivered as a validated value,
together with the validated uncertainty and a mea-
surement value status.

4 Representation of Confidence
Markers

The confidence measure will be introduced as an inte-
ger value between 0 and conf max, where 0 is defined
to be the lowest confidence and conf max is the high-
est confidence.

We have chosen the statistical variance as a recip-
rocal measure for confidence. The Guide to the Ex-
pression of Uncertainty in Measurement [12] already
suggested statistical variance as a measure for uncer-
tainty.

In order to enable operations based on the confi-
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Figure 2: Conversion function for confi-
dence/variance values (based on a logarithmic
scale)
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dence of observations from different sources, the con-
fidence has to be standardized. We assume, that in
the best case, variance will be close to 0, thus corre-
sponding to the maximum confidence. In the worst
case, a sensor will deliver a random value within its
measurement range for the measurement. The worst-
case variance can thus be calculated as the variance
of a uniformly distributed random function between
the limits a and b:

V[S] =
(b− a)2

12
(1)

where a and b are the minimum and maximum values
of the expected uniformly distributed random func-
tion. It is possible to find a probability distribution
function that produces even greater variances, how-
ever we assume that all measurements with variances
of Vmax or greater are nearly useless and therefore are
mapped into the same class of minimum confidence.
The TTP/A protocol [13] offers a standard message
format with values between 0 and 200. Thus, a worst-
case variance can be calculated according to equa-
tion 1. The worst-case V[S] equals 2002

12 or 3333.33.
Using a linear transformation between confidence val-
ues and variance would not be feasible, since the
variances that indicate exact measurements are of
greater interest than measurements with large vari-
ance. Therefore, we use a logarithmic scale to define
the confidence values between minconf and maxconf

(see figure 2). Due to the expected computational
load when doing logarithmic and exponential oper-
ations on embedded systems, we suggest the imple-
mentation of look-up tables for the conversion from
confidence value to variance. Table 1 depicts such a
conversion table for 16 different levels of confidence.

5 Confidence-Weighted Aver-
aging

We suggest an algorithm for fusing data from repli-
cated sensors based on weighted averages. The fused
value xFUSED is calculated as the weighted average
of all measurement xi, the weights wi being derived
from the reciprocal of the variance of each sensor Si.

xFUSED =
n∑

i=1

xiwi (2)

with

wi =
1

V(Si)
n∑

j=1

1
V(Sj)

(3)

where n is the number of observations, xi repre-
sents a measurement taken by sensor Si and V(Si)
is the estimated variance associated to that sensor.
Under the assumption of independence of errors be-
tween sensors and supposing that the expected error
E[xi − x] is equal to 0 , this method minimizes the
expected variance of the fused value.

Proof. XFUSED is a weighted average of i inde-
pendent random variables Xi. The weights wi should
be chosen so that they minimize the mean squared
error of the fused variable XFUSED. Furthermore,
we require that the fused estimate is unbiased, that
is that the average deviation from the true measure-
ment X is equal to 0.

E[XFUSED −X] = E[
n∑

i=1

wixi − x] = 0 (4)

The expected squared error of the fused result can
be expressed as

E[(XFUSED −X)2] = σ2
FUSED =

n∑
i=1

w2
i σ2

i . (5)

Given that E[xi − x] = 0 and E[x] = x we deduce
that

∑n
i=1 wi = 1. Looking for the weights wi that

minimize the expression in 5, we substitute w1 =
1 −

∑n
j=2 wj and calculate the partial derivative for

each weight:

∂σ2
FUSED

∂wi
= −2σ2

1(1−
n∑

j=2

wj) + 2wiσ
2
i = 0 (6)

Setting all partial derivatives equal we can derive
the expression

σ2
1

(
1−

n∑
j=2

wj

)
= w2σ

2
2 = ... = wnσ2

n (7)

We see that all weights wi, i = 2...n are propor-
tional to the reciprocal of the corresponding σ2

i . We
can therefore express them as

wi = ξ/σ2
i (8)

3



and receive the expression

σ2
1

(
1−

n∑
j=2

ξ

σ2
j

)
=

ξ

σ2
2

σ2
2 = ... =

ξ

σ2
n

σ2
n (9)

We can now solve for ξ as follows:

σ2
1

(
1−

n∑
j=2

ξ

σ2
j

)
= ξ (10)

1−
n∑

j=2

ξ

σ2
j

=
ξ

σ2
1

(11)

1 =
ξ

σ2
1

+
n∑

j=2

ξ

σ2
j

(12)

1 = ξ
n∑

j=1

1
σ2

j

(13)

ξ =
1

n∑
j=1

1
σ2

j

(14)

Substituting 14 into 8 we receive 15 as the optimal
weight for each xi

wi =
1

σ2
i

n∑
j=1

1
σ2

j

(15)

To ensure that the solution is in fact a mini-
mum, we derive the second partial derivative which is
greater than 0, since σ2

1 and σ2
2 are in all cases greater

than 0:

∂2σ2
FUSED

∂w2
i

= 2σ2
1 + 2σ2

i > 0 (16)

The formula for calculating the fused value
xFUSED is therefore

xFUSED =

n∑
i=1

xi

V(Si)
n∑

i=1

1
V(Si)

(17)

The variance of XFUSED being always smaller
than any of the input variances and is derived as fol-
lows:

σ2
FUSED =

n∑
i=1

w2
i σ2

i (18)

=
n∑

i=1

σ2
i

σ4
i

( n∑
j=1

1
σ2

j

)2
(19)

=

n∑
i=1

1
σ2

i( n∑
i=1

1
σ2

i

)2
(20)

=
1

n∑
i=1

1
σ2

i

(21)

The fused variance of the fusion result, which can
be interpreted as a virtual sensor SFUSED is thus

V(SFUSED) =
1

n∑
i=1

1
V(Si)

. (22)

This method is optimal in the sense that it mini-
mizes the expected variance of the fused result.

6 Experimental Results

To evaluate the possible improvements of CWA, we
have fused data from three infrared sensors of type
Sharp GP2D02 and two Polaroid 6500 series ultra-
sonic sensors.

The infrared sensors are designed for measuring
distances within the range of 10-80cm. They show
problematic behavior when there is no object within
detection range which is as far as about 110 cm. In
this case the returned data is unreliable and may cor-
respond to arbitrary measurements within the range.
To detect such erroneous measurements a filtering al-
gorithm was applied, that considers four subsequent
measurements of a sensor and determines that there
is no object within range if the jitter of these mea-
surements is larger than a particular threshold.

Table 2 shows the results of the fusion with the
CWA algorithm. The first column indicates which
sensor sources have been used for the fusion and if
the above described filtering has been applied to the
IR sensors. The next three columns contain the error
and variance of the fused result.
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Confidence value Interval for uniformly
distributed error

Statistical Variance

0 [-100.0,100.0] 3333.33
1 [-70.2,70.2] 1644.65
2 [-49.3,49.3] 811.47
3 [-34.7,34.7] 400.37
4 [-24.3,24.3] 197.54
5 [-17.1,17.1] 97.47
6 [-12.0,12.0] 48.09
7 [-8.4,8.4] 23.73
8 [-5.9,5.9] 11.71
9 [-4.2,4.2] 5.78
10 [-2.9,2.9] 2.85
11 [-2.1,2.1] 1.41
12 [-1.4,1.4] 0.69
13 [-1.0,1.0] 0.34
14 [-0.7,0.7] 0.17
15 [-0.5,0.5] 0.08

Table 1: Conversion table for 16 different levels of confidence

Fusion sources Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

(cm2) (cm) (cm2)
US1 + US 2 9.29 1.52 8.54

IR 1 + IR2 + IR3 129.00 7.29 119.52
(unfiltered)
US1 + IR1 7.41 1.66 6.96
(unfiltered)
US1 + IR1 6.98 1.63 6.56
(filtered)
IR 3 + IR2 + IR3 55.97 4.88 49.83
(filtered)
US1+US2+IR1+IR2+ 6.65 1.37 6.14
+ IR3 (unfiltered)
US1+US2+IR1+IR2+ 5.32 1.31 4.87
+ IR3 (filtered)

Table 2: Performance of the CWA algorithm for the examined sensor configurations
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Fusion sources t Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

(cm2) (cm) (cm2)
US1 + US 2 0 10.02 1.99 9.57

1 10.99 2.08 10.65
IR 1+IR2+IR3 0 477.09 10.60 430.41
(unfiltered) 1 130.63 7.39 113.77

2 190.63 10.51 180.11
IR 1+IR2+IR3 0 2061.90 26.25 1492.08
(filtered) 1 82.95 6.72 76.87

2 100.67 7.33 90.49
US1 + IR1 0 1129.60 14.32 986.78
(unfiltered) 1 212.35 10.87 173.71
US1 + IR1 0 1300.40 16.74 1092.96
(filtered) 1 212.08 11.18 181.74
US1 + US 2 + 0 1646.96 18.84 1376.00
+IR1+IR2+IR3 1 260.00 3.96 257.69
(unfiltered) 2 48.25 4.57 45.55

3 117.55 7.21 101.87
4 190.63 10.51 180.11

US1 + US 2 + 0 2387.56 28.88 1680.39
+IR1+IR2+IR3 1 139.74 3.45 138.99
(filtered) 2 12.21 2.49 11.86

3 70.08 6.44 63.15
4 100.67 7.33 90.49

Table 3: Performance of Marzullo’s fault-tolerant sensor averaging algorithm for the examined sensor con-
figurations. t represents the number of faulty sensors to be tolerated
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For comparison we have fused the same data set
with the the fault-tolerant sensor averaging algorithm
proposed by Marzullo [8].

In Marzullo’s algorithm each sensor measurement
is modeled by an interval that should contains the
real sensor measurement. If a sensor delivers a mea-
surement with the real value outside this interval, the
sensor is considered faulty. It is required to parame-
trize the expected number of faulty sensors at once
as t. Since the distribution function of the employed
real sensors makes it difficult to a priori estimate the
best t for a given configuration we have performed
multiple runs of the fault-tolerant sensor averaging
algorithm for each possible t. Table 3 lists the results
obtained from the different runs using various sensor
configurations.

In comparison to the results from the CWA algo-
rithm, the performance is similar for homogeneous
sensor configurations while CWA performs much bet-
ter for heterogeneous sensor configurations.

7 Conclusion and Outlook

We have proposed an algorithm for fusing measure-
ment samples from multiple sensors into a depend-
able robust estimation of a variable in the control
environment. This Confidence-Weighted Averaging
(CWA) algorithm takes values annotated with confi-
dence markers as inputs and output. The confidence
marker corresponds to the respective variance of the
value. We have shown that this algorithm is opti-
mal for producing the minimum possible variance of
the average result for calibrated sensors with uncor-
related error functions.

However, CWA is based on the independence of
measurement errors, an assumption that cannot gen-
erally be made in sensor fusion applications. In the
future work we will extend our algorithm by taking
correlated error functions into account. Thus, we ex-
pect a more accurate estimation for fusing measure-
ments taken by the same type of sensors.
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