
A Standard for Real-Time Smart Transducer Interface

Wilfried Elmenreich, Wolfgang Haidinger, Hermann Kopetz
Thomas Losert, Roman Obermaisser, Michael Paulitsch, Philipp Peti

Institut für Technische Informatik
Technische Universität Wien

Treitlstrasse 1-3/182-1, Vienna, Austria
{wil,wh,hk,tl,ro,mp,php}@vmars.tuwien.ac.at

Research Report 35/2002

Abstract

In order to handle the inherent complexity of the mul-
titude of available different transducer components, a
generic interface approach is necessary. Such a univer-
sal smart transducer interface should provide precisely
defined interfaces between smart transducers and their
users, which are simple and precisely specified within
the value domain and the temporal domain.

The Object Management Group adopted a smart
transducer interface standard that incorporates (i) real-
time characteristics and functionalities for the smart
transducer network (ii) online diagnostic service capa-
bility (iii) support for start-up and dynamic configura-
tion (iv) a uniform naming and addressing scheme for
all relevant data in the smart transducer system (v) a
generic interface that enables the smart transducer sys-
tem to interact with other systems via CORBA.

This paper describes the main concepts and imple-
mentation experiences of this smart transducer inter-
face. The approach integrates a time-triggered commu-
nication protocol with an appropriate access scheme,
the so-called interface file system. This interface
file system provides a unique naming and addressing
scheme enabling access to internal transducer data via
a CORBA gateway.

1 Introduction

The decreasing cost of computing power enables de-
centralization of data processing by providing computa-
tional intelligence close to transducers (sensors and ac-
tuators). This enables data abstraction necessary for an
abstract interface definition. Such an interface definition
comprises a major element in software engineering for
embedded systems avoiding an emerging crisis in em-
bedded systems design due to the increasing number of
different transducers in current embedded systems.

In embedded system applications with dramatically
increasing numbers of transducers, as it is the case in
the automotive market, which is marked by an ad-hoc

approach of system engineering with a multitude of dif-
ferent components (and different interface definitions),
a generic approach can significantly reduce the develop-
ment costs.

Some interface descriptions for embedded compo-
nents exist already and are used extensively (e.g., CAN
Kingdom [1], OSEK [2], and IEEE 1451.2 [3]), yet do
address a precise interface description in the time and
space domain and standardization is often supplier spe-
cific. System engineering of a CAN-based approach,
e.g., can be inherently difficult and lead to unintended
system behavior for certain CAN implementation (see
e.g. Meschi et al. [4]).

In this paper we present a generic approach for the or-
ganization of transducers and communication between
transducers that provides features in terms of real-time
guarantees, complexity management, and maintainabil-
ity. Smart transducers integrate an analog or digital
sensor or actuator element and a local microcontroller
that contains the interface circuitry, a processor, mem-
ory, and a network controller within a single unit. A
smart transducer transforms the raw sensor signal to
a standardized digital representation, checks and cali-
brates the signal, and transmits this digital signal via
a standardized communication protocol to its users [5].
The possibility of reducing complexity using the con-
cept of a smart transducer is of paramount benefit as ba-
sic element of a system engineering approach in embed-
ded networks, which cannot be valued highly enough,
though initially overlooked due to the current supply
chain structure.

In addition to providing a building block for a suc-
cessful management of a smooth software engineering
process of embedded systems, a precise interface de-
finition facilitates communication system design. We
present a communication system with guaranteed time-
liness and a deterministic description of communication
traffic. Such a description of a distributed transducer
system design can alleviate system development. Time
partitioning mechanisms on a communication bus de-
crease the wiring loom complexity and provide addi-
tional benefits such as reduced weight, reduced wiring

1



costs, and improve the system reliability due to the de-
creased number of parts with high failure rates such as
connectors.

In December 2000 the Object Management Group
(OMG) called for a proposal (RFP) of a smart trans-
ducer interface (STI) that satisfies the following needs:
(i) real-time characteristics and functionalities for the
smart transducer network (ii) online diagnostic service
capability (iii) support for start-up and dynamic config-
uration (iv) a uniform naming and addressing scheme
for all relevant data in the smart transducer system (v) a
generic interface that enables the smart transducer sys-
tem to interact with other systems via a CORBA (Com-
mon Object Request Broker Architecture) gateway, and
(vi) the support of communication interfaces available
on current low-cost microcontrollers, e. g., UART ports.
In response to this RFP, a time-triggered communication
architecture with a well-defined interface to a CORBA
environment has been submitted jointly by three com-
panies with support of the Vienna University of Tech-
nology. This proposed STI standard has been adopted
and published by the OMG as a world-wide standard in
2003 [6]. In this paper we describe this approach and
present two case study implementations.

2 Related Work
A smart transducer interface should conform to a world-
wide standard. Such a standard for real-time communi-
cation systems has been long sought, but vendors of ex-
isting were reluctant to support such a single common
standard in fear of losing some of their competitive ad-
vantages.

In the field of fieldbus communication, several dif-
ferent fieldbus solutions have been developed and pro-
moted. Some of these existing solutions have been
combined and standardized. The European CENELEC
standard was created by including all national standards
into the standard parts EN 50170 (general purpose), EN
50254 (high efficiency), and EN 50325 (based on Con-
troller Area Network (CAN)). In 1994, the two large
fieldbus groups ISP (Interoperable Systems Project sup-
ported by Fisher-Rosemount, Siemens, Yokogawa, and
others) and the WorldFIP (Flux Information Processus
or Factory Instrumentation Protocol, supported by Hon-
eywell, Bailey, and others) joined to form the Fieldbus
Foundation (FF). It is the stated objective of the FF to
develop a single interoperable fieldbus standard in co-
operation with the International Electrotechnical Com-
mission (IEC) and the Instrumentation Society of Amer-
ica (ISA). The IEC worked out the IEC 61158 stan-
dard, which is based on eight existing fieldbus solutions,
among them Foundation Fieldbus, Profibus, and World-
FIP. The IEC and CENELEC standards have the great
disadvantage that they still keep a diversity of very dif-
ferent solutions [7].

Standards for smart transducers have been developed
apart from the fieldbus standardization efforts. The

IEEE 1451.2 standard [3] deals with the specification
of interfaces for smart transducers. This standard de-
fines electronic data sheets to describe the hardware in-
terface and communication protocols of the smart trans-
ducer interface model. The IEEE 1451 standard in-
cludes an adequate naming/addressing scheme and sup-
ports the configuration of large transducer systems, but
it lacks the explicit specification of real-time communi-
cation among the smart transducers.

3 Design Principles of STI
The architecture of the smart transducer interface has
been guided by the following principles: (i) definition
of common code spaces for naming, time and value do-
main, (ii) separation of interfaces according to their pur-
pose, and (iii) support for integrating separately built
and tested sub-systems.

3.1 Common Code Spaces for Naming,
Time and Value Domain

On an abstract level, the purpose of a real-time smart
transducer interface is the timely exchange of observa-
tions of real-time entities between the engaged subsys-
tems across the provided interfaces. A real-time entity is
a state variable of interest that has a name and a value at
a particular instant. An observation [8] is thus an atomic
triple:

<name, observation instant, value>,

where name is an element of the common name space
of real-time entities, the observation instant is a point in
the time space and value is an element of the chosen
value domain. An observation expresses that the refer-
enced real-time entity possessed the stated value at the
indicated instant. A synchronized global time among all
nodes enables a common notion of time and is a prereq-
uisite for meaningful timestamping of observations.

3.2 Interface Separation

Local Sensor

Application


Sensor or

Actuator


Read and Write Access


Interface File

System


Real-Time Service

Interface


Configuration and

Planning Interface


Diagnostics and

Management Interface


Fig. 1: The Three Interface Types to a Smart Transducer Node

If different user groups access the system for differ-
ent purposes, they should only be provided with an in-
terface to the information relevant for their respective
purpose [9]. Therefore, interfaces for different purposes

2



may differ by the accessible information and in the tem-
poral behavior of the access across the interface. As
depicted in Figure 1 the STI specifies three different in-
terface types to a smart transducer:

DM interface: This is a diagnostic and management
interface. It establishes a connection to a particular
smart transducer node and allows reading or mod-
ifying of specific IFS records. Most sensors need
parametrization and calibration at startup and con-
tinuously collect diagnostic information to support
the maintenance activities. For example a remote
maintenance console can request diagnostic infor-
mation from a certain sensor. The DM interface is
usually not time-critical.

CP interface: The configuration and planning inter-
face allows the integration and setup of newly con-
nected nodes. It is used to generate the “glue” in
the network that enables the components of the net-
work to interact in the intended function. Usually,
the CP interface is not time-critical.

RS interface: The real-time service interface performs
a periodic communication with predictable timing
behavior among the smart transducer nodes. Com-
municated data is usually data from sensors and
for actuators. This view employs sensors for pro-
ducing periodic observations of real-time entities
in the environment. For example, a temperature
sensor periodically sends the observed and locally
preprocessed sensor value to the temporal firewall
of the master. Since in TTP/A the time interval
between sensing the environment and presenting
the sensor value at the temporal firewall [10] of the
master is known a priori, it is possible to perform
a feed-forward state estimation of the sensor value
at the sensor node in such a way, that the delivered
sensor value is a good estimate of the real-time en-
tity’s actual state at the point in time of delivery.

3.3 Temporal Composability
In many engineering disciplines, large systems are built
by the constructive integration of well-specified and pre-
tested subsystems, called components. During the sys-
tem design phase, this requires a two-level design ap-
proach. At the overall system design level, the system
integrator precisely defines the properties and interac-
tions of the overall systems in the value and time do-
main. The cluster design serves as a requirements defi-
nition for the component design where local details can
be defined independently.

The components are characterized by their physical
parameters and the services they provide across well-
specified interfaces. In a composable architecture, this
integration should proceed without unintended side ef-
fects. To be composable, an architecture must adhere to
four necessary principles with respect to the interfaces
of nodes [11]:

Independent Development of Nodes: Nodes can only
be designed independently of each other, if the ar-
chitecture supports the exact specification of all
node services provided to the system. The inter-
face data structures must be precisely specified in
the value domain and in the temporal domain and a
proper conceptual interface model of the node ser-
vice, as viewed by a user of the node, must be avail-
able.

Stability of Prior Services: The stability-of-prior-
service principle ensures that the validated service
of a node - both in the value domain and in the
time domain - is not refuted by the integration of
the node into a system.

Performability of the Communication System:
The performability-of-the-communication-system
principle ensures that if n nodes are already
integrated, the integration of the node n+1 will
not disturb the correct operation of the n already
integrated nodes. A properly configured time-
triggered communication system satisfies this
requirement.

Replica Determinism: If fault tolerance is imple-
mented by the replication of nodes, then the archi-
tecture and the nodes must support replica deter-
minism. A set of replicated nodes is replica deter-
minate if all the members of this set have the same
externally visible state, and produce the same out-
put messages at points in time that are at most an
interval of d time units apart (as seen by an om-
niscient outside observer), where d is the duration
necessary to replace a missing or erroneous mes-
sage by a correct one.

4 Properties of the STI Standard
The STI standard defines a smart transducer system
comprising several clusters with transducer nodes con-
nected to a bus. Via a master node, each cluster is
connected to a CORBA gateway. The master nodes
of each cluster share a synchronized time that supports
coordinated actions (e. g., synchronized measurements)
over transducer nodes in several clusters. Each cluster
can contain up to 250 smart transducers that communi-
cate via a cluster-wide broadcast communication chan-
nel. There may be redundant shadow masters to support
fault tolerance. One active master controls the commu-
nication within a cluster (in the following sections the
term master refers to the active master unless stated oth-
erwise). Since smart transducers are controlled by the
master, they are called slave nodes. Figure 2 depicts an
example for such a smart transducer system.

The interface file system is used to provide a unique
addressing scheme for the interfaces. It is possible to
monitor the smart transducer system via the CORBA in-
terface without disturbing the real-time traffic.

3



CORBA
 ORB

Gateway


Active

Master


Active

Master


Active

Master


Cluster A
 Cluster B
 Cluster
C


Transducer Node


GIOP


Fig. 2: Multi-Cluster Architecture with CORBA Gateway

The hardware requirements for smart transducer
nodes are very flexible. The STI standard requires a
minimum agreed set of services for a smart transducer
implementation, thus supporting low-cost implementa-
tions of smart transducers, while allowing optional im-
plementation of standard features. It is possible to fit a
minimum STI implementation on an embedded micro-
controller with 2k flash memory and 64 bytes of RAM
memory.

4.1 Interface File System
The information transfer between a smart transducer
and its client is achieved by sharing information that
is contained in an internal Interface File System (IFS),
which is encapsulated in each smart transducer. The IFS
provides a unique address scheme for transducer data,
configuration data, self-describing information, and in-
ternal state reports of a smart transducer [5].

Communication via temporal firewalls. A time-
triggered sensor bus will perform a periodical time-
triggered communication to copy data from the IFS to
the fieldbus and write received data into the IFS. Thus,
the IFS is the source and sink for all communication ac-
tivities. Furthermore, the IFS acts as a temporal firewall
that decouples the local transducer application from the
communication activities. A temporal firewall [10] is a
fully specified interface for the unidirectional exchange
of state information between a sender/receiver over a
time-triggered communication system. The basic data
and control transfer of a temporal firewall interface is
depicted in Figure 3, showing the data and control flow
between a sender and a receiver. The IFS at the sender
forms the output firewall of the sender and the IFS of the
receiver forms the input firewall of the receiver.

������
���	

���

����

� ����
���

	 


�
�

� �

�������

����

	
�


����

��
���	���������
���	
�
���������

��������
���	

��� �������

����

	
�


����

��������������
��������	�����������

��
���	�������


���	
�
�����������

Fig. 3: Temporal Firewall

Flow control using information push and pull para-
digms. The sender deposits its output information into
its local IFS according to the information push para-
digm, while the receiver must pull the input informa-
tion out of its local IFS (non-consumable read) [12]. In
the information push model the sender presses informa-
tion on the receiver. It is ideal for the sender, because
the sender can determine the instant for passing out-
going information to the communication system. The
information pull model is ideal for the receiver, since
tasks of the receiver will not be interrupted by incom-
ing messages. The transport of the information is real-
ized by a time-triggered communication system that de-
rives its control signals autonomously from the progres-
sion of time. The instants when typed data structures
are fetched from the senders IFS and the instant when
this typed data structures are delivered to the receivers
IFS are common knowledge of the sender and the re-
ceiver. A predefined communication schedule defines
time, origin, and destination of each protocol commu-
nication. Thus, the IFS acts as a temporally specified
interface that decouples the local transducer application
from the communication task.

App AppApp

Distributed Interface File System

Fig. 4: Logical Network Structure

Naming and addressing. Each transducer can con-
tain up to 64 files in its IFS. An IFS file is an index
sequential array of up to 256 records. A record has a
fixed length of four bytes (32 bits). An IFS record is
the smallest addressable unit within a smart transducer
system. Every record of an IFS file has a unique hierar-
chical address (which also serves as the global name of
the record) consisting of the concatenation of the clus-
ter name, the logical name, the file name, and the record
name.

Besides access via the master node, the local appli-
cations in the smart transducer nodes are also able to
execute a clusterwide application by communicating di-
rectly with each other. Figure 4 depicts the network
view for such a clusterwide application.

The IFS of each smart transducer node can be ac-
cessed via the RS interface, the DM interface, and the
CP interface for different purposes. All three interface
types are mapped onto the fieldbus communication pro-
tocol, but with different semantics regarding timing and
data protection.

4.2 Fieldbus Communication Protocol

A time-triggered communication service following the
specification of the STI has been implemented in the
time-triggered fieldbus protocol TTP/A.

4



The bus allocation is done by a Time-Division
Multiple-Access (TDMA) scheme. Communication is
organized into rounds consisting of several TDMA slots.
A slot is the unit for transmission of one byte of data.
Data bytes are transmitted in a standard UART format.
Each communication round is started by the master with
a so-called fireworks byte. The fireworks byte defines
the type of the round and is a reference signal for clock
synchronization. The protocol supports eight different
firework bytes encoded in a message of one byte using
a redundant bit codesupporting error detection. Gener-
ally, there are two types of rounds:

Multipartner round: This round consists of a con-
figuration dependent number of slots and an as-
signed sender node for each slot. The configura-
tion of a round is defined in a datastructure called
“RODL” (ROund Descriptor List). The RODL de-
fines which node transmits in a certain slot, the
operation in each individual slot, and the receiv-
ing nodes of a slot. RODLs must be configured in
the slave nodes prior to the execution of the cor-
responding multipartner round. An example for a
multipartner round is depicted in Figure 5.

Time

FB
 DataByte
DataByte
DataByte
 DataByte


Slot
 0
 Slot
n
Slot
 1
 Slot
 2
 Slot
 3


FB

DataByte


Fireworks
 Byte,
sent
 by master

sent
either
 by master or slave


Fig. 5: Communication layout of a TTP/A multipartner round

Master/slave round: A master/slave round is a special
round with a fixed layout that establishes a connec-
tion between the master and a particular slave for
accessing data of the node’s IFS, e. g. the RODL
information. In a master/slave round the master
addresses a data record using a hierarchical IFS ad-
dress and specifies an action like reading of, writ-
ing on, or executing that record.

Time


MP
round
 MP
round
 MP
round
MS
round
 MS
round


Fig. 6: Recommended schedule with alternative multipartner and
master/slave rounds

The master/slave rounds establish the DM and the
CP interface to the transducer nodes. The RS in-
terface is provided by periodical multipartner rounds.
Master/slave rounds are scheduled periodically between
multipartner rounds as depicted in Figure 6 in order
to enable maintenance and monitoring activities during
system operation without a probe effect [13].

5 Implementation Experiences
The following two case studies present a proof-of-
concept of the STI standard. A configuration and main-
tenance tool presents additional means supporting con-
venient development and monitoring of applications.

5.1 Robot Arm

Fig. 7: Robot Arm

As a demonstrator for the STI we built a system with
a robot arm. At the application level a human operator
can control a prosthetic arm mounted on top of a linear
thrust unit (see Figure 7). Simplicity of control for the
user is established by the presence of intelligence in the
demonstrator. Smart sensors yield information about the
environmental conditions allowing avoidance of operat-
ing errors and obtaining precise control. Pressure sen-
sors are present for determining the required grip force
to grasp an object in order that no intervention of the
human operator is needed to avoid slipping of an object.
The robot arm is equipped with an angle sensor to allow
limiting the opening of the elbow.

Master Master

Cluster 2Cluster 1

Intercluster

Slave
Motor 1

Slave

Motor 2
Slave

Slave

Slave Slave

Master
Shadow

Angle Joystik

Motor 3 Motor 4

T
T

P
/A

 B
us

T
T

P
/A

 B
us

Slave
Pressure 1

Slave
Pressure 2

Slave
IS: Hand

Master

Fig. 8: Architecture of Robot Arm Transducer Network

The demonstrator was also built to investigate parti-
tioning of nodes into distinct clusters.

The demonstrator consists of two clusters (see Fig-
ure 8). The first cluster contains the nodes for control-
ling the motors of the linear thrust units, the elbow, and
the wrist. Nodes for retrieving the current angle of the
elbow and the joystick commands are also placed in this
cluster. A shadow master can take over control in case
the primary master fails. Both masters are connected
to the intercluster bus and act as intermediate systems.
In addition to their TTP/A master role, they are slaves
of a time-triggered backbone bus. The second cluster
contains a node acting as an interface system for inte-
grating the prosthetic hand into the demonstrator. Two
nodes equipped with pressure sensors obtain measure-
ments for grasping objects intelligently.

5.2 Autonomous Mobile Robot
Another implementation of the STI is shown by a model
car that acts as an autonomous robot with sensory in-
puts. Figure 9 depicts the setup of this “smart car”.

5



The smart car contains a network of seventeen nodes
whereof some of these nodes are implemented on very
small microcontrollers to demonstrate the possibility of
cheap slaves.

As indicated in Figure 10, the network comprises a
smart car equipped with a suit of pivoted distance sen-
sors, an electric drive and a steering unit. Distance sen-
sors, servo motors for sensor pivoting, driving and steer-
ing units are all separate smart transducer nodes. Each
node is implemented on a low-cost microcontroller and
equipped with an STI.

Fig. 9: Smart Car

The STI supports the integration of new connected
smart transducer nodes into a system with predictable
timing behavior. For example, it is possible to add extra
“light” nodes to the car during operation.

��������	��
���


�����
�������	�����

�����
�������	���		��

�����
�������	������

�����
����������

�����
��������		��

�����
�����������

��
���������
���

��������

��
���

�����
�����
���������

�����
�����
����������

�����
����������



�� �!"


�����
���������#

�����
���������$

�����������%������

�����
��������

�����
����	

�����
����������

�����
���������&

�����
�"'������

 ��"����
�����

���
��
�����

%�'�"������
��	�

Fig. 10: Architecture of Smart Car Transducer Network

In order to achieve efficient operation two different
operation modes are defined. The STI standard sup-
ports up to 6 user-definable independent communica-
tion modes, which support applications running differ-
ent modes.

As long as no obstacles are detected within the sen-
sors’ range, the car operates in “rabbit mode”. In this
mode the car drives straight forward at full speed and
two infrared sensors are aimed slightly outward the
driving direction. The main detection of obstacles re-
lies on two ultrasonic sensors. These are capable to re-
port obstacles straight ahead of the car within a range of
about 5m.

In case an obstacle is detected, the car switches to
“turtle mode”. In this mode the car uses a communica-
tion schedule where all infrared sensors and pivot servos
are serviced. The distance sensors are swivelled around
by servo motors so that they are able to scan the area
in front of the robot. The sensors generate a value that

corresponds to the distance of the object they are aimed
at. The data stream provided by the distance sensors
is taken over by a data processing node that fuses the
perceptions from the distance sensors and the directions
they are aimed at with a model of the robot environment.
In this model the shapes of obstacles are stored and as-
signed with a probability value, that decreases with the
progression of time and increases when the object is re-
scanned. From this data a navigation node calculates
the speed and the direction to provide this information
to the speed and steering nodes.

5.3 Monitoring and Configuration Tool
Monitoring and debugging of distributed embedded
real-time systems differ significantly from debugging
and testing programs for desktop computers, because
only few interfaces to the outside world are present.
In addition, a distributed system contains multiple lo-
cations of control and therefore conventional break-
point techniques result in an undesired modification
of the timing behavior. This indeterministic effect is
called the “Probe Effect” [13] or the “Heisenberg Un-
certainty” [14] applied to software. Therefore, a vital
property of a convenient monitoring environment is the
absence of disturbances or intrusions on the system be-
havior. Users expect tools to avoid the probe effect and
to incorporate a deterministic and reproducible behav-
ior.

Fieldbus Smart
Transducer Interface

Fieldbus
Gateway Node

RS232 or any other
Standard Interface

Internet TCP/IP or
CORBA Interface

Smart Sensors and Actuators

Internet or
CORBA ORB
Server

Monitoring
Application
(Local)

Monitoring
Application
(Remote)

Diagnosis
Tools Configuration

Tool

V
ir

tu
al

 A
cc

es
s 

to
an

y
fie

ld
bu

s 
no

de

Fig. 11: System Architecture

6



We have developed a tool set for hard real-time envi-
ronments, which establishes access via the DM and the
CP interface. In contrast to existing tools, relevant node
internal information is accessible without changing the
behavior in either the temporal or value domain of the
RT interface. This property allows evolutionary changes
and monitoring activities of the system during real-time
operation [15].

Figure 11 depicts the architecture of the monitoring
approach. The fieldbus gateway node is connected to
the fieldbus and contains the software and hardware to
establish a connection via a standard PC interface, in
our case an RS232 serial connection. Other possible
connections are RS485, USB, IEEE 1394, or a wireless
connection with IrDA or radio signals. The connection
between fieldbus and server preserves real-time behav-
ior. The server runs a CORBA communication module
and supports local tools for monitoring and configura-
tion. Because the timing behavior of the communication
from the local tools into the fieldbus network provides
a deterministic timing behavior, the local tools can sup-
port deterministic real-time monitoring. However, com-
pared to access at fieldbus level data is accessible at a
lower bandwidth.

The communication module running on the PC is a
CORBA object. The CORBA middleware enables the
transparent access of remote service applications to the
fieldbus network through, e. g. the Internet. This inter-
face is independent of the employed protocols and phys-
ical layers at fieldbus level.

6 Relation to ISO/OSI Model

Because on the timing requirements of control sys-
tems, fieldbus systems implement several layers of the
OSI (Open Systems Interconnection) model at once, in
most cases there is a representation for the OSI levels 1
(physical layer), 2 (data link layer), and 7 (application)
whereas OSI layers 3...6 are usually void since they have
no counterpart in the fieldbus world.1

The here presented STI standard defines OSI layers
from application layer to link layer, whereas there are no
features defined that would belong to layers 3...6. Fig-
ure 12 defines the relation between the OSI standard and
the OMG smart transducer interface.

The IFS at the top level acts as transparent network in-
terface for the application and as gateway to the CORBA
network. The specified TDMA bus arbitration scheme
and the codification of message length refer to the data
link layer of the OSI model. According to the standard,
the physical layer is open to various implementations,
as long as the communication parameters of the chosen
physical layer match the application’s real-time require-
ments on timing and throughput. Thus, any compatible

1A notable exception is the LON (Local Operating Network) field-
bus, a communication system for building automation, which imple-
ments all 7 layers of the basic OSI model.

Application

Network Process to Application


Representation

Data Representation and


Encryption


Session

Interhost
 Communication


Transport

End-To-End Connections


and Reliability


Network

Path Determination


and
IP
 (Logical Addressing)


Data Link

Media Access Control and


and
Logical Link Control


Physical Layer

Media, Signal and


Binary Transmission


Interface File System

Transparent Network Access,


CORBA
 Gateway


Time-Triggered

FieldbusProtocol


Physical Layer


O
M

G

 S

m
ar

t 
T

ra
n

sd
u

ce
r 

In
te

rf
ac

e 
S

ta
n

d
ar

d



Fig. 12: Relation to layers of OSI model

physical layer standard such as RS 485, ISO 9141, CAN
physical layer, IrDA, etc. may be used.

7 Discussion and Conclusion
One requirement stated in the request for proposal by
the OMG has been the real-time capabilities of the smart
transducer interface. The STI supports hard real-time
communication by introducing a time-triggered com-
munication scheme that is a priori specified before the
RS interface of the system comes into operation. Gener-
ally, time-triggered systems require an increased effort
in the design phase of the system, but provide an eas-
ier verification of the temporal correctness. Since time-
triggered systems are designed according to the princi-
ple of resource adequacy [16], it is guaranteed that suf-
ficient computing resources are available to handle the
specified peak load scenario. On the other hand, time-
triggered systems are often blamed for their bad flexi-
bility. The STI overcomes this limitation by introducing
means to configure the interaction of the components via
the CP interface.

The RS interface provides composability, guaran-
teed timeliness, and hides the components’ internals.
The DM and CP interfaces involve inherently event-
triggered activities, which require an event-triggered
communication service. These interfaces cannot invali-
date the temporal behavior of the RS interface and sup-
port full access to component internals – as required by
a maintenance engineer.

The specification of interfaces should be complete
and of minimal cognitive complexity. Cognitive com-
plexity can be minimized by restricting interactions via
carefully designed interfaces and by providing access
restrictions. The kind of information that must be avail-
able via an interface depends on the purpose of the par-
ticular interface. For example, a properly designed op-
erational interface hides component internals, thereby

7



allowing a component to form a meaningful abstrac-
tion. The corresponding operational interface specifica-
tion stipulated during architecture design should incor-
porate a precise specification of a component’s inputs
and outputs in both the temporal and the value domain.
A maintenance engineer on the other hand, might re-
quire access to intermediate computational results for
locating the origin of an incorrect system behavior.

The STI standard meets the requirement for complete
interfaces of minimal cognitive complexity by introduc-
ing three different types of interfaces of a component.
The separation (RS, DM, and CP interface) is done ac-
cording to the interface purpose, the necessary level of
visibility of component internal information, and the
type of the temporal interaction patterns. Such a sep-
aration minimizes complexity in contrast to a single in-
terface type incorporating support for all possible inter-
actions.

The STI standard also specifies the provision of the
three interface types through a CORBA server. How-
ever, currently there is no CORBA architecture for ef-
fectively supporting the temporal requirements to estab-
lish the RS interface. Current priority-based approaches
like real-time CORBA require complete knowledge
about all other service requests and their correspond-
ing priority values in the whole CORBA network when
guarantees about the temporal behavior are required.
Furthermore, the availability of a global notion of time
allows to record the instant of the acquisition of a real-
time entity’s state in each observation.

As a proof of concept, we have implemented two
case studies of the STI. The first case study comprises a
demonstrator with a robot arm that is instrumented by a
smart transducer network partitioned into two clusters.
The second case study is an autonomous mobile robot,
that shows the integration of new nodes and efficient
communication despite of static communication sched-
ules. The case studies show that the STI standard is an
interesting option for a wide range of networked sensing
and control applications. The STI provides many fea-
tures that are required by fieldbus applications for auto-
motive or automation industries. Supported features are
the real-time capability, the encapsulation of the node’s
internals, and a universal address space with the inter-
face file system. The STI can be implemented on low-
cost Commercial-off-the-Shelf (COTS) hardware and
supports various bus media types.

8 Acknowledgments

We would like to thank Christian El Salloum who gave
valuable inputs to an earlier version of this paper. This
work was supported in part by the Austrian Ministry of
Science project TTSB and by the European IST projects
DSoS under contract No IST-1999-11585 and NextTTA
under contract No IST-2001-32111.

References
[1] Lars-Berno Fredriksson. CanKingdom and dependable CAN

systems. available at http://www.cankingdom.org.

[2] BOSCH. Osek/vxd operating system - version 2.1 revision
1. available at http://www-iiit.etec.uni-karlsruhe.de/ osek/, Dec.
2000.

[3] Institute of Electrical and Electronics Engineers, Inc. IEEE Std
1451.2-1997, Standard for a Smart Transducer Interface for
Sensors and Actuators - Transducer to Micro-processor Com-
munication Protocols and Transducer Electronic Data Sheet
(TEDS) Formats, 1997.

[4] Meschi, Di Natale, and Spuri. Priority inversion at the network
adapter when scheduling messages with earliest deadline tech-
niques. In Proceedings of EURWRTS ’96, pages 243–248, 1996.

[5] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart
transducer interface: TTP/A. International Journal of Computer
System Science & Engineering, 16(2):71–77, March 2001.

[6] Object Management Group (OMG). Smart Transducers
Interface V1.0, January 2003. Specification available at
http://doc.omg.org/formal/2003-01-01 as document ptc/2002-
10-02.

[7] M. Felser and T. Sauter. The fieldbus war: History or short
break between battles? In Proceedings of the 4rd IEEE Inter-
national Workshop on Factory Communication Systems, pages
73–79, Västerås, Sweden, August 2002.

[8] H. Kopetz. Real-Time Systems, Design Principles for Distrib-
uted Embedded Applications. Kluwer Academic Publishers,
Boston, Dordrecht, London, 1997.

[9] A. Ran and J. Xu. Architecting software with interface objects.
In Proceedings of the 8th Israeli Conference on Computer-Based
Systems and Software Engineering, pages 30–37, 1997.

[10] H. Kopetz and R. Nossal. Temporal firewalls in large distributed
real-time systems. Proceedings of the 6th IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS ’97),
pages 310–315, 1997.

[11] H. Kopetz and R. Obermaisser. Temporal composability. IEE’s
Computing & Control Engineering Journal, 2002.

[12] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface design
for smart transducers. In IEEE Instrumentation and Measure-
ment Technology Conference, volume 3, pages 1642–1647, Bu-
dapest, Hungary, May 2001.

[13] J. Gait. A probe effect in concurrent programs. Software Prac-
tice and Experience, 16(3):225–233, March 1986.

[14] C. H. Ledoux and D. Stott Parker. Saving traces for Ada debug-
ging. In Ada in Use (1985 International Ada Conference), pages
97–108, Cambridge, England, May 1985. Cambridge University
Press.

[15] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert. An ar-
chitecture supporting monitoring and configuration in real-time
smart transducer networks. In Proccedings of the 1st IEEE In-
ternational Conference on Sensors (IEEE SENSORS 2002), Or-
lando, Florida, USA, June 2002.

[16] H. W. Lawson. Parallel Processing in Industrial Real-Time Ap-
plications. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

8


