
Benefits and Implications of the DECOS Encapsulation Approach

Martin Schlager, Erwin Erkinger
TTTech Computertechnik AG

Schoenbrunner Strasse 7, 1040 Vienna, Austria
Telephone: +43 1 5853434

Fax: +43 1 5853434 90
{martin.schlager,erwin.erkinger}@tttech.com

Wilfried Elmenreich, Thomas Losert
Vienna University of Technology, Austria

Institute of Computer Engineering
Treitlstrasse 3, 1040 Vienna, Austria
{wil,tl}@vmars.tuwien.ac.at

Research Report 80/2005

Abstract – In contrast to federated architectures,
an integrated architecture provides means to support
mixed-criticality systems, i.e., systems that consist
of distributed application parts (subsystems) with dif-
ferent criticality levels, on top of the same physical
hardware. A major prerequisite for the integration
of subsystems with different criticality levels, is given
by a strong and reliable protection of the subsystems
against each other - both in space and time. Within
DECOS, an Encapsulated Execution Environment is
set-up in order to establish the required level of protec-
tion by providing a mixture of hardware (e.g., mem-
ory protection) and software mechanisms (e.g., real-
time operating system).

The development of an Encapsulated Execution En-
vironment is driven by the enormous advances in the
domain of dependable real-time control systems in the
past decade and the resulting increase of system size
in terms of required hardware components (ECUs).
The paper shall give a survey of the resulting ben-
efits of the chosen approach and will investigate on
its implications. Thereby, it will examine the need
for proper development methods that assist the appli-
cation developer. For instance, the emulation of a
subsystem or its parts within an integrated architec-
ture through a simulation requires new dedicated ap-
proaches resulting from the inherently more complex
structure of the integrated architecture.

1 Introduction

Trends in the transportation sector entail the need
for higher integration of embedded applications. In
particular, companies in the automotive domain can
no longer afford to increase the number of electronic
control units (ECUs) within a car. Today, more then
90 ECUs can be found in German upscale cars [1].
According to [1], a reduction to 10–15 ECUs is ex-
pected within the next decade. Furthermore, the im-
provement of reliability of electronics is an important
challenge. Sustainable innovations in the automotive
industry are increasingly dependent on more complex
electronic and software systems. New safety-relevant
control applications such as driver assistance systems
or advanced chassis control systems require sophisti-
cated fault tolerance mechanisms in order to reach
the required level of dependability. However, accord-
ing to figures of the German automobile association
ADAC, 52% of all breakdowns are directly related
to defects of car electronics. Furthermore, decreased
geometries, lower power voltages, and higher frequen-
cies have a negative impact on reliability [2].

In order to alleviate current problems, a shift from
federated architecture solutions to an integrated ar-
chitecture is foreseeable in the area of dependable
embedded systems [3, 4]. An integrated architecture
establishes a framework for the execution of mixed-
criticality applications on the same hardware by of-
fering methods for resource protection and diagnosis
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on an architectural level.
Traditionally, integration of mixed-criticality ap-

plications to be executed on the same hardware re-
quired all application parts to inherit the highest
criticality level that exists within the overall sys-
tem. In order to reduce development effort, applica-
tion parts with different criticality levels have usually
been implemented as self-contained units with their
own processing and input/output systems (federated
approach). In contrast, current work on integrated
solutions aims at combining the complexity manage-
ment advantages of the federated approach, but also
realizes the functional integration and hardware effi-
ciency benefits of an integrated system [5].

The intention of the European Union Framework
Programme 6 integrated project DECOS [6] is to de-
velop the basic enabling technology for such a move
from a federated distributed architecture to an inte-
grated distributed architecture. A reduction of hard-
ware, development, validation and maintenance cost,
and an increase of dependability of embedded appli-
cations in various application domains is expected by
the results of DECOS.

2 Aspects of Integration

Integration of mixed-criticality applications that pos-
sibly originate from different vendors is beneficial for
a number of reasons. Nevertheless, there are several
requirements for the set up of an integrated architec-
ture. This section gives a short overview over benefits
and implications of integration, state of the art, and
key requirements.

2.1 Benefits and Implications of Inte-
gration

The integration of several federated systems to be
executed on the same hardware platform leads to a
reduction of hardware resources. It follows that a
significant reduction of cost, space, and power con-
sumption can be achieved. Furthermore, the overall
dependability can be improved because of fewer cables
and connectors [7].

Nevertheless, the integrated architecture approach
imposes several difficulties. Integrating several fed-
erated systems (i. e., systems with different critical-
ity levels and from different vendors) into an inte-
grated architecture system adds complexity with re-
spect to design comprehension and requires proper
design methods. Moreover, the functional units of
the previously federated application parts have to be

Property Pre-crash
system

Engine
control
system

Door lock
system

Dependability Ultra-high High Low
Architecture Distributed

redundant
Local Distributed

comple-
mentary

Timing Guaranteed
with fast
response
time (<
1ms)

Periodical
(ca. 1ms)

Sporadically
with re-
sponse
time ≈ 0.5
sec

Table 1: Application requirements for the example
scenario

encapsulated in order to avoid malicious mutual in-
terference and to trace back responsibility to a par-
ticular vendor in case of an error.

Figure 1 depicts an example scenario from the au-
tomotive domain with three federated systems: door
lock system, pre-crash system, and engine control.
Table 1 gives the application requirements for the
subsystems of the example scenario.

We assume that the pre-crash system has the high-
est criticality, because a malfunction of this sub-
system can cause accidents with major damage and
costs. Therefore, the pre-crash system consists of a
set of distributed redundant nodes where the system
stays operational even in case of an arbitrary failure
of one node. Such systems are required to provide
ultra-high dependability, with mean-time-to-failure
(MTTF) rates better than 109 hours [8, 9].

The engine control and the door lock system are of
lesser criticality. The engine control function is exe-
cuted on one ECU locally while the door lock system
is distributed over a small non-fault-tolerant ECU,
which is located at each door.

The door lock system has the lowest criticality
since we assume that there is a mechanical backup
system that allows to lock each door with the car
keys separately.

The engine control subsystem has to manage the
engine cycle which has a duration depending on the
revolutions per minute of the engine. At 6000 RPM,
the engine cycle is 10 ms, which means that the en-
gine control application requires periodic activation
in the order of several ms.

The door lock system is activated sporadically and
requires a comparably long response time. We fur-
ther assume that the pre-crash system is activated in
case of an upcoming accident and must be able to per-

2



form its activities within a very small time frame with
highest priority. In our example, we assume that the
pre-crash system is designed as a distributed fault-
tolerant system with redundant subsystems that are
assigned to different ECUs such that a single fault,
e. g., breakdown of an ECU, can be tolerated.

Figure 1: Example of three federated systems

In case of three autonomous (federated) systems,
each module (pcs1, pcs2, pcs3, . . . ) will be realized
as a stand alone HW/SW component (node) as de-
picted in figure 2 (A). Such a node consists of at least
one processing unit (CPU), storage space (memory)
and I/O. It may interact with other nodes (communi-
cation interface) and with its environment (interface
to environment).

We assume that in an integrated architecture the
three systems of the example can be integrated to be
executed on the same hardware. For such integra-
tion, nodes are required that can host more than one
federated module (refer to figure 2 (B)).

The SW modules that are executed on this inte-
grated node share resources such as processing unit,
storage space, I/O, communication interface and in-
terface to environment.

Figure 2: HW/SW component

Integrating the three federated systems of our ex-
ample requires that the dependability properties that

are established for each single system are not invali-
dated by the integration. Thus, it must be guaran-
teed that a non-safety-relevant application, e. g., the
door lock system, can not interfere with a safety-
relevant application, e. g., the pre-crash system. Two
levels of interference must be avoided:

• First, interference in time must not occur,
i. e., the engine control application must not
block CPU usage or access to (shared) I/O of
the pre-crash system.

• Second, interference in space must be avoided,
i. e., the engine control application must not
overwrite memory regions of the pre-crash sys-
tem.

Furthermore, the integrated architecture must
meet all existing communication requirements. In
our example, an integrated architecture has to pro-
vide communication mechanisms that are fast enough
for the engine control while at the same time guaran-
teeing reliable communication for the pre-crash sys-
tem. In the future, it could be possible that sen-
sor and actuator networks, body electronics, safety-
relevant functions, and even multimedia applications
shall be executed on the same base architecture. In
such a case, very high bandwidth in the gigabit range
would have to be offered while at the same time
guaranteeing reliable and predictable communication
with a priori known latencies and jitter.

2.2 State of the art

The integration of functional units into one physical
system demands a strong and reliable protection of
the units against each other. In order to fulfil this re-
quirement, a mixture of hardware (e. g., memory pro-
tection) and software (e. g., RTOS [10]) is necessary.
In the past, a series of standards (or de facto stan-
dards) have been evolved, covering the needs of the
industry (or application) area in which they are used.
For instance, in December 1985 the Department of
Defence of the United States of America released the
TCSEC Orange Book [11], which is an important ba-
sis of most of the avionics standards, like the AR-
INC653 [12]. The ARINC653 specification contains a
very strict interface for C, C++ and ADA interfaces,
with the focus to define a general-purpose APEX
(APplication/EXecutive) interface between the Op-
erating System (O/S) of an avionics computer re-
source and the application software. ARINC (Aero-
nautical Radio Inc.) itself is a company of which
the United States scheduled airlines are the principal
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stockholders. Several companies have been providing
products that at least partially fulfil the ARINC 653
criteria (e. g., Greenhills [13], Wind River Systems,
Lynux Works [14], BAE Systems [15]). The auto-
motive industry has also developed standards that
deal with multiple functional units within a physical
system (e. g., OSEKtime [16]), but these standards
are not as mature as the standards in the aerospace
industry. All standards/specifications have in com-
mon that they formulate mechanisms to partition and
protect the available resources, i. e., processing time,
memory space and I/O that are shared by the func-
tional units.

Approaches for higher integration can already be
found in series production within the aerospace do-
main. For instance, Airbus developed an integrated
modular avionics (IMA) architecture for the A380 in
order to process numerous aircraft functions on top of
a modularized processing hardware platform. How-
ever, according to [17], the IMA architecture does not
extend to all functions. Several flight-critical systems
are still developed as separate (federated) systems.

2.3 Integrated Architecture Require-
ments

An integrated architecture is aimed at hosting large
and complex real-time computer systems. In order
to properly set up an integrated architecture system,
the following prerequisites have to be established:

• Hardware base: Hardware components must be
provided that offer sufficient processing power,
memory, required I/O and mechanisms to sup-
port physical encapsulation, e. g., by a memory
protection unit, I/O blocks with different access
rights.

• Architectural services: On an architectural level,
dedicated services must be available that pre-
vent unintended mutual influence of application
parts. Furthermore, from the viewpoint of an ap-
plication, the communication interface and the
interface to the environment shall resemble the
interfaces within the federated system. Thus, it
must be possible that different communication
protocols coexist within an integrated architec-
ture.

• Application development support: An inte-
grated architecture system that may consist
of thousands of cooperating sub-units requires
proper design methods and tool support. The

mental complexity must be reduced by the in-
troduction of structure and hierarchical relation-
ships (refer to [18]). Furthermore, the gener-
ation of scheduling information, i. e., schedules
that control communication and schedules that
control the execution of applications must incor-
porate many dependencies that are hard to dis-
solve manually.

3 The DECOS Approach

The goal of DECOS is to develop the basic enabling
technology to move from a federated architecture
towards an integrated architecture [6]. Integration
of mixed-criticality systems, i. e., systems that guar-
antee high dependability for mission-critical system
parts while supporting non-critical system parts on
the same hardware will be supported. The compo-
nents and tools developed within the project will con-
sist of hardware components, software services and
tools for the design of an integrated architecture. The
intersectoral approach of DECOS is driven by the
participation of project partners from aerospace, au-
tomotive, and industry domains.

3.1 Terminology

This section shall give a short definition of impor-
tant terms that are used in the scope of the DECOS
project (refer to [6, 19, 7]):

• Node: A node forms a fault containment region
(FCR) and can contain one or more partitions.
In accordance to [20], a node shall be defined
as a self-contained computer with its own hard-
ware (processor, memory, communication inter-
face, interface to the process environment) and
software (application programs, operating sys-
tem), which performs a set of well-defined func-
tions within the distributed computer system.

• Partition: A partition forms an encapsulated
execution space within a node with a priori
assigned static resources (CPU time, memory)
that can host one job.

• Distributed Application Subsystem (DAS): A
distributed application subsystem (DAS) is a
nearly autonomous application system that per-
forms a specified service (e. g., power train man-
agement, body electronics, multimedia subsys-
tem in a car).
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• Job: A job is defined as a software subsystem of
a DAS that is a unit of distribution.

• Port: A port is an access point of a job for
the sequential sending and receiving of messages
from/to a job.

• Interface: An interface is a set of one or more
related ports of a job.

• Gateway Job: A gateway job is a job that com-
prises two or more interfaces to different DASs
and can act as a gateway between these DASs.

• Physical TT Channel: A physical TT channel is
a time-triggered physical channel between nodes.

• Virtual Channel: The communication system
that transports messages between the ports of
the different jobs of a DAS is called virtual chan-
nel. Many encapsulated virtual channels (event-
triggered and time-triggered) can be imple-
mented on a single physical channel (e. g., CAN
on top of TTP).

3.2 Node Design

In order to allow integration of mixed-criticality ap-
plications, a DECOS node consists of a mixture of
hardware and software components that enable en-
capsulation of jobs. As mentioned above, encapsula-
tion must be guaranteed in time (guaranteed CPU
usage without unintended interference) and space
(guaranteed memory usage without unintended inter-
ference). Furthermore, virtual communication links
are required in order to allow the integration of jobs
with different communication behavior on the same
hardware. Different communication protocols (event-
triggered or time-triggered) may be used. For in-
stance, a safety-relevant job could require the time-
triggered protocol TTP, while the non-safety-relevant
jobs depend on the event-triggered protocols CAN
and LIN or FlexRay.

Setting up protection in space requires hardware
support, i. e., a protection hardware of the employed
microcontroller that assigns memory access rights to
a certain partition. A pure software solution would
not be able to guarantee the same level of trustworthi-
ness as a hardware-enabled solution. In particular, a
software solution, can only detect errors in case of ma-
licious behavior of partitions. In contrast, hardware-
enabled partitioning avoids errors by blocking illegal
requests of malicious partitions.

Within DECOS, a software supported hardware so-
lution will be set up that combines hardware enabled

Figure 3: A DECOS node (example configuration)

partitioning and software error checking. In a hard-
ware/software enabled partitioning scenario, a ded-
icated hardware protection unit provides basic par-
titioning. In addition to basic partitioning, a soft-
ware mechanism (part of the operating system) is re-
sponsible for splitting up the memory regions into
smaller execution spaces by constantly reconfiguring
the memory protection hardware during runtime.

The operating system of a DECOS node will con-
sist of a Core OS part (COS) and a number of parti-
tions that may include their own Partition OS (POS).
The correct function of the COS is critical to the cor-
rect operation of the whole node. Thus, the criticality
level of the COS is determined by the highest exist-
ing criticality level of all jobs that are executed within
the system.

The COS provides partitioning of the available
CPU time by assigning a certain time slot to each
partition in which the job of the partition is granted
access to the CPU. The schedule of the partitions
time slot is statically known, i. e., it is a priori gener-
ated and is not changed during runtime.

Furthermore, the COS provides protection of I/O.
In case of memory mapped devices, the particular
memory region of the device is protected by the hard-
ware protection unit, i. e., the particular memory re-
gion is assigned to exactly one partition. In case
of I/O blocks that shall be shared between different
jobs, a dedicated I/O gateway job has to be set up
that controls I/O access.

A mixed-criticality node requires the execution of
several low-level functions – for instance, the time-
triggered exchange of messages or fault tolerance
tasks. In order to maximize the available CPU time
for the jobs, several low-level functions are imple-
mented as function block units, i. e., with their own
hardware.
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Within DECOS, a newly developed communication
controller, and a supporting layer for virtual commu-
nication and fault tolerance is realized on an FPGA
basis. The communication controller is responsible
for time-triggered communication and decouples the
jobs from the statically scheduled exchange of mes-
sages. A supporting layer for virtual communication
and fault tolerance will provide low-level communica-
tion services like frame packing and unpacking, byte-
order conversion and channel-redundancy handling.

3.3 Architecture Design

A distributed application subsystem consists of a
number of jobs that are assigned to certain partitions
of several nodes. Thus, an integrated architecture
must consist of multiple nodes that are interlinked
by a dedicated communication channel. As depicted
in figure 4, each node has its own local interface to
the environment and to the physical communication
channel that is used for interconnection of the nodes.

Figure 4: DECOS integrated architecture

An integrated architecture for mixed-criticality ap-
plications [7, 6] must be based on a target archi-
tecture that supports the safety requirements of the
highest considered criticality class. This is of particu-
lar importance in systems with safety-critical subsys-
tems, where the physical structure of the integrated
system is determined to a significant extent by the
independence requirement of fault containment re-
gions [21] of the safety-critical subsystem. Thus, an
integrated architecture must be built upon a safety-
critical target platform like the Time-Triggered Ar-
chitecture [22] that provides the following basic ser-
vices:

• Communication infrastructure: Predictable
transport of messages.

• Co-ordination of resources: Fault-tolerant clock
synchronization of global time (sparse time
base [23]).

• Fault/error partitioning: Fault/error isolation
and tolerance.

• Resource awareness and management: Commu-
nication fault diagnosis and deterministic recov-
ery.

In addition to the services of the target architec-
ture, several additional services are required in order
to set up an integrated architecture:

• An encapsulated execution environment, that
provides protection and scheduling of the dis-
tributed application subsystems.

• Virtual communication links that allow the em-
ulation of different time-triggered and event-
triggered communication protocols.

• A diagnostic service in order to improve the
identification of faulty components.

Within DECOS, an encapsulated execution envi-
ronment will be provided on architecture level that
is the basis for the integration of different distrib-
uted application subsystems. The encapsulated exe-
cution environment includes the operating systems
of all nodes together with scheduling information.
The scheduling information must take into account
all constraints that have been identified for the jobs
of the DASs (e. g., periodicity and validity span of
messages, dependencies between jobs).

Virtual communication links and gateways are re-
alized within DECOS in order to support different
communication protocols of the federated applica-
tions. On node level, a job shall suppose the com-
munication link to be real. Thus, virtual communi-
cation links that are emulated on top of a physical
communication link have to be provided on an archi-
tectural level. Furthermore, the interconnection of
virtual communication links and physical communi-
cation links shall be provided by the realization of
gateways.

A diagnostic service will be set up that supports
the diagnosis of transient and intermittent compo-
nent failures and identifies erroneous states on job
level (as opposed to node level). For the diagnostic
service, information from more than one DAS is re-
quired in order to identify frequent transient faults
on a particular node. This is because transient faults
would probably be noticed by jobs from different
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DASs that are executed together on the same node.
Frequent transient faults could be an indication for
an upcoming permanent hardware fault.

3.4 Application Development

The integration of different distributed application
subsystems to be executed on the same hardware
raises the need for proper design methods. The ap-
plication developer must be assisted by appropriate
tools, i.e., tools that automatically generate sched-
ule and configuration files and determine the alloca-
tion of executables to particular nodes. DECOS tool
support extends to middleware resource requirements
calculation, resource allocation for message transmis-
sions and task execution and generation of configu-
ration files for the target hardware. Furthermore,
proper concepts will be elaborated in order to ful-
fil resource allocation requirements within an inte-
grated architecture. Thereby, it has to be guaranteed
that properties established for a particular Distrib-
uted Application Subsystem (DAS) are preserved (at
least to a large extend) in case the DAS is employed
in a different environment.

Further research and development activities could
improve on-line monitoring and simulation capabili-
ties of the DECOS integrated architecture. Real-time
monitoring of the transmitted data on the TT physi-
cal channel assists in determining the system behav-
ior and helps debugging. Real-time simulation, i.e.,
simulation of the behavior of a particular job within
the integrated architecture, is a desirable approach
when it is not permissible to operate on the real sys-
tem. The real system may be not available, either
because it has not yet been built, or because it is lo-
cated at a different physical site. During early test
phases, simulation is a specially preferred approach
for safety reasons, since in these phases the confi-
dence in the correctness of the system is still rather
low. Furthermore, simulation sometimes provides the
only possibility to test the system behavior in ”rare
event scenarios”, because in the real world it would
either be very difficult, unsafe or costly to guide the
system into these situations. E.g., the behavior of a
control system in case of critical temperatures in a
nuclear power plant or crashes of airplanes can not
be tested by establishing the respective situation.

4 Summary and Outlook

The current trend of architecture design for distrib-
uted embedded real-time systems calls for integration

of mixed-criticality subsystems. In the past, each dis-
tributed application subsystem had to be executed on
its own hardware base in order to guarantee elimina-
tion of mutual interference or had to be developed in
accordance to the highest existing criticality level. In
the near future, it shall be possible to execute mixed-
criticality distributed application subsystems on the
same distributed architecture. Furthermore, it may
be a future goal to consider different levels of security
requirements of the software modules.

Goal of the DECOS project is to develop an inte-
grated architecture that offers methods for encapsula-
tion as well as diagnostic services. The deployment of
an integrated architecture solution will decrease de-
velopment, production, and maintenance efforts and
increase the dependability of embedded real-time ap-
plications. In the aerospace domain, effort has al-
ready been invested in order to integrate several sub-
systems within the newest generation of airplanes.
However, within DECOS we expect further develop-
ment of integrated solutions and the exploitation of
the benefits of an integrated architecture in the au-
tomotive and other branches of industry.
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