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Abstract – Time-triggered systems are advanta-
geous for embedded applications, when determinism,
hard real-time behavior, and a straightforward way
for certification are required. However, when it comes
to flexibility, time-triggered systems often require that
possible extensions have been planned in advance,
which makes it difficult to apply unforeseen changes
to such a system. This paper presents an approach
that overcomes this problem by an automatic con-
figuration of time-triggered distributed applications.
Each application is decomposed into jobs and mapped
on a set of distributed nodes, whereas each node hosts
one or more jobs. Each job is defined by the following
interfaces: a real-time input/output, a configuration
and planning, and a diagnostic and management in-
terface. Jobs, nodes, the application, and the global
system configuration are represented with XML-based
description formats, that provide a language-neutral
semantic specification of the respective properties. A
scheduling tool uses these descriptions to generate a
time-triggered application that complies to the appli-
cation specification.

1 Introduction

The time-triggered approach is a well-suited ap-
proach for building distributed hard real-time sys-
tems. Time-triggered systems have the great ad-
vantage over traditional event-triggered systems that
they are easier to understand and to analyze [1]. Fur-
thermore, the time-triggered paradigm supports com-
posability with respect to the temporal behavior [10]
of a system. Since many applications of transducer
networks have real-time requirements, using a time-
triggered communication architecture becomes an in-

teresting option for interconnecting smart transduc-
ers.

However, due to the static scheduling approach of
time-triggered systems, event-triggered systems are
more flexible than time-triggered ones [4]. One rea-
son for this difference in flexibility is the higher off-
line configuration effort required for time-triggered
systems, since communication usually depends on
schedules that must be calculated a priori. Accord-
ingly, manual configuration becomes difficult or even
infeasible very fast, so adequate tool support is es-
pecially important. Since time plays such a central
role, the automatic creation of communication sched-
ules is essential for automating configuration tasks for
time-triggered systems.

In the literature, there exist the following ap-
proaches to increase flexibility in time-triggered sys-
tems: Almeida et al. present a flexible time-triggered
communication approach that operates on a CAN
network [2]. In this approach, messages are sched-
uled by a central authority, which allows for a com-
promise between flexibility and run-time overhead of
the planning scheduler. Other approaches [16, 3, 17]
follow an integration between a safety-critical static
time-triggered communication channel with a flexible
event-triggered channel. Lisner proposes a flexible
TDMA slotting scheme, where communication part-
ners have a fixed schedule in a regular part and may
request extra slots in an extension part [15]. On the
other hand, model-based approaches like Giotto [8]
target the problem from a different side by separat-
ing the temporal properties of an application from
its implementation. This facilitates the problem of
modifying the static schedule, since the schedule is
automatically created from the application specifi-
cation by a re-run of the compiler tool. However,



the Giotto approach poses considerable resource re-
quirements on the particular nodes, which makes this
approach less feasible to be used for low-cost smart
transducer systems.

In this paper we propose a model-based approach
to support flexibility and composability for a time-
triggered system by presenting a scheduling tool that
generates time-triggered message schedules based on
an application description. Since a scheduler can-
not perform actual configuration tasks by itself, we
also outline the overall system model and how the
scheduling tool interacts with other parts of the sys-
tem. The distributed target application is decom-
posed into jobs, where each job is described by its
interfaces, i. e., a real-time input/output, a config-
uration and planning (CP), and a diagnostic and
management (DM) interface. The overall application
is defined by the annotated communications among
jobs, specified with XML descriptions. A scheduling
tool uses this formal description to generate the static
schedule for the time-triggered application and veri-
fies whether the schedule fulfills the temporal require-
ments or not. The unused bandwidth is used for di-
agnostic and management purposes. When a change
or extension of the application is necessary, the XML
descriptions are adapted and the tool recreates the
time-triggered schedule and performs the verification
again. If verification fails, the tool reports that the
given resources (e. g., bandwidth) are not sufficient
for creating a valid schedule.

The approach has been implemented on embedded
hardware using TTP/A [13] as time-triggered com-
munication protocol.

The remainder of the paper is organized as follows:
Section 2 deals with the underlying conceptual model
of this approach. Section 3 presents the scheduling
tool and algorithm and Section 4 applies the tool in
a case study. Section 5 concludes the paper and gives
an outlook.

2 Conceptual Model

A distributed embedded application is described by
a set of interconnected jobs, implemented as single
tasks which receive their input prior their execution
and provide their output after execution.

The target system is a set of distributed embedded
nodes. A node can host one ore more jobs, as long
as it is guaranteed that the job can fulfill its service
in terms of required resources. For example, a job
that performs I/O operations on a sensor can only
be hosted on a node that is connected to this par-

ticular sensor. Some jobs might also be required to
be hosted on a particular node due to legacy issues
(job and node come as a packet) or fault-tolerance
requirements (jobs are required to be run on inde-
pendent hardware).

The described architecture follows the conceptual
model of the integrated architecture presented by
Kopetz in [11]. In the scope of this paper, we focus
on a single distributed embedded application and as-
sume that each job is implemented by a single task
as described above.

A job is described by its operational interface. In
embedded real-time systems we can distinguish the
following interface classes:

Service Providing Linking Interface (SPLIF):
This interface provides the real-time services to
other jobs (cf. [9]).

Service Requesting Linking Interface (SRLIF):
A job that requires real-time input requests
these data via the SRLIF (cf. [9]).

Diagnostic and Management (DM): This in-
terface is used to set parameters and to retrieve
information about intermediate and debugging
data, e. g., for the purpose of fault diagnosis.
Access of the DM interface does not change
the (a priori specified) timing behavior of the
service.

Configuration and Planning (CP): This inter-
face is used during the integration phase to gen-
erate the “glue” between the nearly autonomous
services (e. g., communication schedules). The
CP interface is not time critical.

The task implementing a job may also use local in-
terfaces to physical sensors, actuators, displays, and
input devices. When another job needs to access this
information, there must be a consistent access to this
data via the SPLIF or SRLIF interfaces.

An distributed application consists of one or more
jobs that interact with each other via the real-time
interfaces SPLIF and SRLIF. One or more jobs can
be hosted on a node, whereas nodes communicate via
a real-time communication system. Jobs that require
local data exchange communicate via a shared mem-
ory interface. Jobs that are required to exchange data
between different nodes communicate via the node’s
communication interface. Since at component level it
is not yet defined, if a data exchange will we local or
remote, the real-time interfaces of each job are uni-
formly implemented as ports whereas each port can



be connected locally or via network to a matching
port of another service.

The representation of an application by jobs and
their interfaces only deals with the functional and
data flow parts of the application. Additionally, we
also require a temporal specification of a job that
deals with the following properties:

• Properties that must be configured depending
on the requirements of the application (e. g., the
sample rate of a sensor).

• End-to-end requirements of the application that
can only be specified and verified at the level
of the distributed application (e. g., end-to-end
signal delay in control loops).

We use the so-called Interface File System
(IFS) [12] as central interfacing mechanisms to the
smart transducer nodes. The IFS is an “extended”
shared memory that acts as a temporal firewall be-
tween smart transducer nodes and the network. The
memory is organized as a simple flat file systems,
where files store data and can be executed. All
application and configuration related information is
mapped to the IFS and thus available at the network
level over the respective interfaces. Thus, it also hides
internals of the node for complexity reduction.

The specific properties are modeled in the semantic
description of the job. The end-to-end requirements
of the application are expressed by so-called depen-
dencies. We have identified the following kinds of
dependencies:

Connection: This dependency represents the data
flow between ports of jobs. A connection is di-
rected by having a source and a target part. An
input port may have only one connection to an
output port, while an output may feed several
input ports.

Causal: By defining a causal dependency between
execution of two jobs, all in-between jobs (on the
directed application graph) must comply to this
dependency, i. e., execute subsequently. In our
context causal dependencies always incur timing
requirements. An instant identifies the timing
requirements of participating jobs. We distin-
guish the instant before and after execution. The
before instant of a job is before its executed, i. e.,
the moment when input data must have arrived.
The after instant happens after the job execu-
tion, thus a duration of WCETTASK after the
before instant, where WCETTASK is the worst

case execution time of the task implementing the
job.

Phase: The phase dependency specifies non-causal
time-related dependencies of instants among
jobs.

All the presented properties are used to model the
application requirements. All requirements are ex-
pressed in XML descriptions, which support interac-
tion among tools (e. g., for modeling, code generation,
and verification).

3 Scheduler for a Time-
Triggered Real-Time System

This section presents a scheduling and verification
tool that uses the XML application descriptions that
have been defined in [7].

3.1 Scheduling Algorithm

The operation of the TTP/A Scheduling Algorithm
produces a Round Definition List (RODL) for each
application in the cluster configuration description
written in XML. This algorithm had been imple-
mented in a tool called the TTP/A Scheduler.

The main idea of the TTP/A Scheduling Algo-
rithm is to represent the set of jobs and their depen-
dencies as a graph, the so-called Precedence Graph.
Each vertex of the graph embodies an associated task
of a job, whereas an edge represents a causal depen-
dency between the bordering vertices, i. e., two jobs.
Additionally, (causal) edges are directed to represent
the direction of the data flow and precedence of that
dependency. An undirected edge in the Precedence
Graph corresponds to a phase dependency. Figure 1
shows the Precedence Graph of a simple control ap-
plication.

We define three conditions that a valid Precedence
Graph must satisfy:

• A job must not depend on results from itself,
neither directly nor indirectly. In terms of graph
theory we can say, that the Precedence Graph
must not include loops among any vertices. Note
that closed control loops do not fall into this cat-
egory, since the feedback signal is provided by
the control environment in that case, thus using
uor approach we can model all kind of control
loops.

• Only one directed causal edge, in each direction,
is allowed between a pair of jobs.
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Figure 1: the Precedence Graph of the smart fusion
application

• Jobs mutually depending on each other must not
be “in phase”. Hence there may not be a phase
dependency between a pair of jobs, if we already
have a path of causal edges between the associ-
ated vertices.

Phase dependencies are transitive. For instance in
Figure 1 we see that jobs “Sensor1” and “Sensor2”
are in phase, as well as “Sensor2” and “Sensor3”.
Due to the transitivity we conclude that “Sensor1”
and “Sensor3” are also in phase. Therefore it is not
necessary to draw a phase edge between “Sensor1”
and “Sensor3”.

Figure 2 outlines in pseudocode how the sched-
ule works. The TTP/A Scheduler runs the TTP/A
Scheduling Algorithm on the Precedence Graph for
several iterations. In each iteration the algorithm
searches for all those jobs that are not dependent on
any other service task. We call this subset the Can-
didates. A Candidate can be recognized by the fact,
that its vertex does not possess incoming causal edges

S . . . set of jobs
K . . . set of causual dependencies
C . . . set of connection dependencies
P . . . set of phase dependencies
V . . . set of vertices in the Precedence Graph (PG)

whi le ( the re e x i s t unmarked v e r t i c e s in PG)

Candidates = {x ∈ (V |= S) | N+(x) = {∅}}
∀a, b ∈ Candidates, a 6= b, ϕ = (a, b) ∈ P

b.offset = b.offset + |ϕ|

∀c ∈ Candidates
TargetNode(c).RODL[RODLindex + c.offset] =

OP EXEC
RODLindex = c.offset + ExecutionT ime(c)

TargetNode(c).RODL[RODLindex] = OP SEND

Receivers = {y ∈ (V |= S) | (c, y) ∈ C}
∀r ∈ Receivers

TargetNode(r).RODL[RODLindex] =
OP RECEIV E

RODLindex = RODLindex + #SendBytes

mark in PG(c)

Figure 2: Pseudocode representation of the schedul-
ing algorithm

in the Precedence Graph. Candidates are sorted us-
ing the Earliest Deadline First algorithm.

Phase dependencies may cause a drift for the start-
ing point of a pair of Candidates. Thus, for each pair
of Candidates in phase, the one with the higher dead-
line is assigned the value of the phase offset.

Next, the Candidates are marked as done and the
appropriate number of TTP/A slots for execution of
each job is reserved in the RODL of the assigned tar-
get node. In case of an existing connection of any
type (phase or causal) between a Candidate and some
other service the scheduler inserts some TTP/A slots
for the sending operation in the RODL of the Candi-
date’s target node. In addition, the dependent jobs,
i. e., the receivers, will have to perform a receive op-
eration in the same TTP/A slot (at the same time).
Consequently, the scheduler reserves receive slots in
the RODLs of the target nodes involved with the jobs’
tasks.

The design of the TTP/A Scheduling Algorithm
guarantees an implicit collision avoidance at the real-
time communication system level. For that purpose
each target node possesses a local “RODL index”,
which points at the last occupied TTP/A slot in the



RODL.

In addition, there exists one “global index”. It
points at the last TTP/A Slot, which has been oc-
cupied by communication from some job at the real-
time communication system. When an execution of
a task is to be entered at the target node’s RODL,
the local index determines the starting slot. Then
the phase offset of that job is added. The local index
will be increased by the phase offset plus the number
of occupied execution slots.

Moreover, the RODL index serves to determine,
whether the communication system is occupied, when
a target node intends to send the output of a job. If
the local index is greater than the global one then no
other node uses the bus. The node may send imme-
diately after the completion of its execution, the local
index is increased and the global index is adjusted ac-
cordingly. Conversely – if the global index is greater
– the bus is occupied by somebody else and the time
when the node has to trigger its sending operation is
after the globally indexed TTP/A slot has passed by.
Then the global index is increased by the number of
used TTP/A slots and the local index is adjusted.

The execution of the Candidates leads to the re-
lease of causal dependencies. Hence in the next it-
eration other jobs are defined as Candidates, which
had been dependent on other jobs in the prior itera-
tion. The algorithm will terminate when all jobs are
marked as done.

Finally, the tool performs a deadline check to ver-
ify whether the deadline specified by the application
description hold for the generated RODLs. There-
fore, the points of start and completion, as well as
the arrival times of sent data for each job’s LIF and
dependencies are compared to the deadline specifi-
cations in the cluster configuration description. The
overall points in time must be lower than the dead-
lines, otherwise a deadline miss occurs. This exam-
ination will be conducted by the TTP/A Scheduler
after the termination of the scheduling algorithm. In
case of at least one deadline miss the result has to
be discarded, because the algorithm could not deter-
mine a valid schedule. This indicates that the spec-
ified available resources of the environment are not
sufficient for the specified application.

In short the TTP/A Scheduling Algorithm is a
greedy algorithm with a simple, but efficient opera-
tion and data structure. It might not, however, pro-
duce the optimal result for a schedule of the RODL,
but it guarantees that all specified deadlines will hold,
when a valid schedule has been found.

4 Case Study

In order to show the capabilities of our architecture
and the scheduling and verification tool, we have
devised a distributed embedded application as case
study.

We use the time-triggered protocol for SAE Class A
applications TTP/A [14] as communication system.
TTP/A is a low-cost fieldbus for smart transducer
applications that implements the interfaces using the
IFS concept and provides interfaces for real-time ser-
vice, configuration/planning, and diagnostics/main-
tenance.

4.1 Initial Set-Up

The case study comprises two jobs using infrared sen-
sors to measure a distance, a fusion job, a PID con-
troller job and a job instrumenting an actuator. The
application shall synchronously perform a distance
measurement from the distance sensors, fuse the
measurements, calculate a set value and instrument
the actuator accordingly. We use the confidence-
weighted average [5] method as fusion algorithm.

The temporal requirements of the application are
as follows:

1. The set value of the actuator must be updated
at least every 100 ms (dupdate = 0.1s).

2. Sensor measurements must be synchronized with
a precision of ±1ms.

3. The temporal accuracy dacc of the value received
by the actuator job must be 80 ms.

Figure 3 depicts the jobs, connections, and the
mapping of jobs to physical nodes.

The initial set-up of the application requires four
steps.

First, the firmware containing generic TTP/A
communication and specific I/O jobs has to be pro-
grammed into the nodes. In industrial applications,
this task belongs to the smart transducer vendor.

Second, all transducer nodes have to be connected
to the TTP/A bus and their respective external hard-
ware.

Third, the scheduling and verification tool is ap-
plied to the application description. In addition to
the application descriptions, the tool also requires
information on auxiliary constraints, e. g., the in-
tended communication bandwidth, for the verifica-
tion process.
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Figure 3: Interaction of jobs in case study. The dashed lines mark the assignment to physical nodes.

cycle temporal sensing
length accuracy synchrony

1200 Bit/s 97.47 ms 75.84 ms 0.83 ms
√

4800 Bit/s 24.37 ms 18.96 ms 0.21 ms
√

9600 Bit/s 12.19 ms 9.48 ms 0.104 ms
√

Table 1: Timing properties for created schedule with
2 sensor jobs at varying communication speeds

Finally, if the verification holds, the schedule is up-
loaded to the network nodes using the configuration
and planning interface of each transducer node.

Table 1 depicts the results from the Scheduling and
Verification tool for the described application. As we
can see, the deadlines of the temporal accuracy dacc

and the cycle time dupdate hold for communication
speeds of 4800 and 9600 bit/s. However, the temporal
accuracy at 1200 bit/s fails with 75, 84 ms, whereas
the cycle time is on the brinck of missing its limit of
100 ms with 97, 47 ms.

4.2 Configuration with Three Sensors

As a case study for extending a configuration, we
assume that the application should be extended to
three sensors instead of two. Since the fusion algo-
rithm is scalable, the application description can be
easily extended by adding another sensor.

After running the Scheduling and Verification tool
with the new application description we received
a positive verification for communication speeds of
4800 and 9600 Bit/s, but not for 1200 Bit/s1 (see Ta-
ble 2). The temporal accuracy dacc exceeded its dead-

1We have selected rather low bit rates in this example in
order to depict a case where the verification fails. The intended
hardware would support communication speeds up to 50000
Bit/s.

cycle temporal sensing
length accuracy synchrony

1200 Bit/s 108 .3 ms 86 .64 ms 0.83 ms ×
4800 Bit/s 27.08 ms 21.66 ms 0.21 ms

√

9600 Bit/s 13.54 ms 10.83 ms 0.104 ms
√

Table 2: Timing properties for created schedule with
3 sensor jobs at varying communication speeds

line of 80 ms with 86, 64 ms as well as the maximum
allowed cycle time dupdate = 0.1s with 108, 3 ms.

Updating of the previous system to the extended
one requires the following steps:

First the additional node must be connected to the
network. Then the plug and participate facility [6]
of TTP/A automatically assigns a free node ID to
the new node. Now the modified schedules can be
downloaded to the nodes, either on-line via the CP
interface, if the RODL files of the IFS reside in the
RAM of the smart transducer, or off-line by using
conventional programming tools. Since the configu-
ration state of the fusion job is also represented in
the IFS, the configuration of the fusion job can be
also changed over the CP interface, so that it knows
how many source jobs are connected to it.

With the above mentioned configuration facilities
and the scheduling tool it is now possible to support
the fully automatic execution of configuration opera-
tions, thus greatly enhancing the flexibility of system
management.

5 Conclusion

In this paper we proposed a model-based approach to
support flexibility for a time-triggered smart trans-
ducer system.



The application is described as a network of in-
teracting jobs and temporal end-to-end requirements
using a formal representation of this information in
XML created in earlier work. The XML data is used
as input to a scheduling tool that creates the static
schedule and verifies the specified temporal require-
ments.

It is possible to change or extend the application by
feeding the new description into the scheduling tool
and upload the new configuration via the configura-
tion and planning interfaces of the smart transducers
in the network.

If the available bandwidth is not sufficient to fulfill
the temporal requirements of the application, the tool
reports on a deadline miss, otherwise it can be guar-
anteed that the generated schedule meets the speci-
fied timing requirements.

Since the scheduling tool parses the XML descrip-
tions off-line on a maintenance computer, the re-
source requirements on the embedded nodes are ex-
tremely low. Implementation experiences have shown
that the smart transducer interface can be imple-
mented on low-cost 8-Bit microcontroller nodes.
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