
Plug-and-Play: Bridging the Semantic Gap

Between Application and Transducers

Stefan Pitzek and Wilfried Elmenreich
Vienna University of Technology

Institute of Computer Engineering
Treitlstraße 1-3/182-1, Vienna, Austria

{pitzek,wil}@vmars.tuwien.ac.at

Research Report 64/2005

Abstract – Plug-and-play is an important mecha-
nism for achieving component integration and im-
proving interoperability in smart transducer systems.
While recent research in smart transducer interfaces
has achieved a syntactically well-defined interface to
arbitrary sensors and actuators, current plug-and-
play approaches are limited by the semantic gap be-
tween the control application and the generic smart
transducers.

In this paper we propose a solution to this prob-
lem by establishing a smart interface system that con-
sumes the sensor data from the smart transducers
and provides a syntactically and semantically stan-
dardized interface to the control application. The
smart interface system will be configured using data
from the transducer meta-description, a system meta-
description and the requirements from generic sensor
data processing.

As case study for such an interface system we
present a generic high-level application component in
form of the generic certainty grid, a sensor fusion al-
gorithm for obstacle detection, and an approach for
automatically configuring this application component
and its associated smart transducer nodes in a plug-
and-play like manner.

1 Introduction

Plug-and-play describes a feature for the automatic
integration of a newly connected device into a sys-
tem without user intervention. While this feature
has been in use for some time in personal comput-
ers within an office environment, it is quite difficult
to achieve fully automatic configuration behavior for
automation systems, since, without user intervention,

there is usually not enough information, what to do
with the data from a new sensor or how an actuator
should be instrumented.

Therefore, in the automation domain the term
plug-and-participate better describes these abilities
of recognizing and integrating new transducers,
i. e., sensors and actuators. For example, after con-
necting a new sensor to a network, it can be automat-
ically detected, given a local name and assigned to a
communication slot; but a human system integrator
is still necessary to decide on the further processing
and usage of the sensor data.

Plug-and-participate thus only covers the basic-
level issues of connecting and recognizing a new smart
transducer, and is usually realized by providing some
self-identification information on the component to
be integrated and by using commonly shared tem-
plates, profiles, data types and message formats.

Trying to realize true plug-and-play exceeds the
above described basic services and leads to a series of
new problems, such as connecting different sensors to
the correct inputs of an application component and a
dependence of some configuration-relevant properties
on the target system.

Consider for example, a steer-by-wire application
that uses two identical actuators for electromechani-
cal steering (one for each front tire). While plug-and-
participate allows recognizing and addressing these
nodes, this is not sufficient for successfully setting
up the application, because each actuator requires at
least information on its location, i. e., either at the
right or left front tire.

Our approach introduces an interface system be-
tween a high-level application component and the
transducers. This interface system abstracts from the
connected sensors and exports the sensor information

in a generic format, which is independent of the ac-
tual sensor configuration.

In this paper we address this problem by means of
a common conceptual domain model that allows the
integration of information from the intended applica-
tion, the smart transducers, and the target system,
so that all required parts can be configured with min-
imal human intervention.

We demonstrate this approach with an application
that creates a map of the environment of a mobile
robot. The map is implemented by a so-called two-
dimensional certainty grid, which maps the environ-
ment to a set of grid cells. Each grid cell is assigned
a probability that the area corresponding to the grid
cell is covered by an object. The certainty grid can be
updated by different sensors, like infrared, ultrasonic,
LIDAR, etc. Each of these sensors can be connected
and integrated into the application in a truly plug-
and-play manner, that is, without user intervention.

The remaining part of this paper is structured as
follows:

Section 2 presents related work on plug-and-play,
common data models, and generic applications in the
robotics domain. Section 3 describes the proposed
system architecture. Section 4 presents a case study
application for examining the configuration aspects in
detail. In Section 5 we discuss the proposed approach
and conclude the paper.

2 Related work

Several existing approaches from the automation and
fieldbus domain deal with interoperability by defining
shared models of the system.

The OPC foundation published a set of standards
for interoperability based on COM technology for ac-
cessing control data using common models [15]. Ven-
zke, Weyer and Turau [17] work with high level con-
ceptual models based on web services technologies
for automation systems, but focus on vertical inte-
gration. The European Installation Bus (EIB) [2]
also uses a high-level interworking approach. Unlike
the target applications for our approach, both verti-
cal integration and home automation are usually not
considered time-critical.

Plug-and-play capabilities are becoming increas-
ingly important in the domain of smart transducer
networks, as becomes evident with the recently ac-
cepted IEEE 1451.4 standard [9]. IEEE 1451.4 spec-
ifies a very compact template-based representation
format for transducers, their parameters and opera-
tion values, which can be used for self-identification

and low-level plug-and-play operation.
In the field of robotics, plug-and-play features for

sensors and actuators are desired1, but only a few im-
plementations go further than a plug-and-participate
approach. A prerequisite for plug-and-play features
is a modular design of robotic components. Such an
approach is followed by the GenoM [12] modules for
distributed robot architectures. Another approach
for software reuse is given by the CLARAty architec-
ture [13] and an application of CLARAty by a generic
framework for robotic navigation [18]. In this work,
Ursom, Simmons and Nesnas describe a framework of
generic software components operating along sense-
think-act lines. In contrast to our approach, the
components are regarded as software components, in-
stead of hardware/software units as it is the case with
smart transducers.

3 Conceptual Model for Smart
Transducer Systems

A smart transducer system consists of multiple nodes
that communicate via a shared bus. A smart trans-
ducer application is built from components that in-
teract using a shared interface system. For configura-
tion we require specifications for the application, the
target system, and the interfaces.

3.1 Application Model and Specifica-
tion

Considering the overall application of a smart trans-
ducer system we divide the application into three lev-
els (see Figure 1). For this purpose we use a mod-
ified version of the three-level sensor fusion model
proposed in [3].

At the top-most level, the control level a control
application defines the functional and temporal re-
quirements and behavior of the overall application.
At this level, the application developer should only
have to operate with semantically rich, abstract data
structures and not have to deal with low-level system
specifics (e. g., hardware dependencies, low-level data
encoding).

In [7] we proposed an XML-format for mod-
elling real-time smart transducer applications as net-
works of interacting application components (ser-
vices), using a data-flow-graph notation. Addition-

1Eventually a modular plug-and-play system will be de-
veloped to control a variety of drive and actuating systems
whether servo, stepper or pneumatic in nature. [1]

ActuatorsSensors

Environment
Controlled Object

Transducer Level

Transducer Abstraction
Level

Control LevelControl Application

Sensor Abstraction Actuator Abstraction

Generic data
describing
situation

Generic
commands

Smart
Transducers

Interface

Smart
Transducers

Interface

Figure 1: Application Model

ally, the specification format also allows defining fur-
ther global constraints, such as end-to-end timing be-
havior and dependencies (phase, causal) between dif-
ferent components in the system.

The intermediate level, the transducer abstrac-
tion level, contains the hardware and software that
acts as the glue between the control application and
the transducer nodes in the system. In this paper
we focus on the sensor abstraction part, which has
to mediate between newly connected sensors and the
control application.

Finally, the transducer level refers to the actual
sensors and actuators that interface the environment.
An important aspect at this level is the interfacing
approach to the nodes, which allows hiding specifics
of the underlying sensor/actuator hardware. As ex-
amples for such generic smart transducer interfaces
see for example the IEEE 1451.2 standard [?] or the
CORBA Smart Transducer Interfaces Standard [14]
(see [6] for a comparison of both approaches).

This separation reduces configuration complexity
by reducing the interaction between high and low-
level system parts. In the remainder of this work the
term application will refer to the control application.

3.2 Target System Specification

Since the application specification should be indepen-
dent of the underlying hardware (as far as this is rea-
sonably possible), we require a specification of the
actual physical target system.

This specification deals with properties of the tar-
get system, such as network specific properties (phys-
ical layer, communication protocol), the list of con-
nected transducer and processing nodes in the net-
work, and information on the physical layout of the

target system (e. g., physical dimensions, possible lo-
cations for transducers).

In general the specification is used, together with
the application specification, for integrating the dif-
ferent components and setting up and configuring
the final system. This includes among other things,
recognizing the connected network nodes, setting up
the communication (e. g., by creating the communica-
tion schedules in case of an underlying time-triggered
communication protocol), and connecting the avail-
able transducer nodes to the high-level application
components.

In [16] we proposed formats for representing a
smart transducer node and cluster; but these ap-
proaches only partially cover these requirements.

3.3 Interface Model and Specification

All interactions in the system occur via a common,
well-defined interface system. For the area of distrib-
uted real-time systems Kopetz and Suri propose the
separation of the interfaces into the following inter-
face classes [10]:

• The Service Providing Linking Interface
(SPLIF) offers the service of the component to
other components.

• The Service Requesting Linking Interface (SR-
LIF) is used for requesting services from other
components, whereas a user may not be aware
that a component requests the services from other
components [10].

• The Configuration Planning (CP) Interface al-
lows setting up the ’glue’ (e. g., configuring com-
ponents, setting up the communication) between
the interacting components so that the system
can provide the intended service.

• The Diagnostic and Management (DM) Inter-
face allows selective access to the (operational)
internals of the component for monitoring and
diagnostic purposes [10].

For the specification of the Linking Interfaces,
Kopetz and Suri distinguish the operational and
meta-level service specification of an interface. The
former deals with syntactical and temporal properties
of the data transmitted over the interface. The latter
shall give a deeper meaning to the data chunks trans-
mitted over the interface by relating these chunks to
a shared conceptual interface model [10]. The au-
thors mainly focus on the gap between the informa-
tional and the user’s level, but this conceptual service

model, if sufficiently formalized, can also be used for
supporting our intended configuration operations. In
the case study in Section 4 we will shortly outline a
simple shared conceptual model that we use for this
purpose.

4 Plug-and-play configuration
of a Certainty Grid

A certainty grid is a multidimensional (typically 2D
or 3D) representation of a robot’s environment. The
observed space is subdivided into cells, where each
cell stores information about the corresponding en-
vironment and an estimated probability for the cor-
rectness of this information. Typically, a cell state
can be “free”, if the place appears to be void, or “oc-
cupied” if an object has been detected for that cell.
Cells not reached by sensors reflect an “uncertain”
state. The cell state and the probabilistic estimate of
its correctness can be mapped into a single number
reflecting the confidence of a cell to be free. Basically,
it is assumed, that the application using the certainty
grid has no a priori knowledge of the geometry of its
environment and the objects in this environment are
mostly static.

free cell

undetermined

occupied cell

real location

of object

R
o

b
o

t

distance sensor

Figure 2: Example for a certainty grid

4.1 Case Study Setup

In the case study we use a small sensor fusion applica-
tion for demonstrating our approach. Figure 2 gives
an overview on the example application. A set of
distance sensors delivers measurements about the dis-
tance to objects situated in the viewing direction of
the sensors to the generic certainty grid component.
By using the information about the current position
and orientation in world coordinates, the generic cer-
tainty grid algorithm updates the map of the envi-
ronment (in form of a regular grid) and presents this

information to the navigation component. The nav-
igation component runs a path planning algorithm
and instruments the steering and motor actuators,
which will move the robot according to the intended
path.

Generic Certainity

Grid
Position Estimator

Steering

Decision Making

 world orientation

 world position

G
rid

Distance

Sensor

Distance

Sensor

Motor
 motor set value

 motor set value

 M
easu

rement

 M
ea

su
re

m
en

t

Figure 3: Components of the case study application

In this work we focus on the plug-and-play con-
figuration of the generic certainty grid component.
In order to configure the example system we require
the following specifications in a formal computer-
processable way:

Specification of the application. The applica-
tion specification consists of a set of (high-level) ap-
plication components, parametrization information
for these components and a specification of timing
requirements between components (end-to-end tim-
ing, phase relations). For the given example only
the timing requirements and the description of the
Generic Certainty Grid (GCG) are important. While
the description of application components and their
interconnection as described in Figure 3 is platform-
independent, the mapping of components to the ac-
tual nodes must also be created. In our case this
mapping is specified by the user as part of the appli-
cation description.

Specification of the target system. The target
system specification consists of a description of net-
work properties, the available nodes in the network,
and other information that is relevant for configu-
ration. For the case study we need to specify the
following information:

• Dimension of the target system (the robot car):
We treat the robot’s dimension as a plain rec-
tangle with coordinate (0,0) as reference point
located in the center.

• Possible locations (Transducer Slots) for smart
transducers: each transducer slot has an identi-
fier (a 4 bit value that is encoded in the sockets),

a two-dimensional (metric) ’coordinate’ in rela-
tion to the reference point, and an orientation
(as an angle). In this application, we assume
that the orientation is fixed for each transducer
slot.

Specification of the transducers. For successful
configuration we also require a specification of the
transducers, distance sensors in case of the GCG,
involved in the configuration process. Section 4.3
presents our approach for representing a generic sen-
sor.

Specification of the Generic Certainty Grid.
Section 4.4 presents the specification of the GCG in
detail.

Shared interface system. For accessing the
nodes in the network and setting up the communi-
cation between the components we require a shared
interface system. We use the CORBA Smart Trans-
ducer Interface [14] for this purpose, since it fol-
lows the interface approach outlined in section 3.3,
i. e., it supports an interface for hard real-time data
exchange, as well as a non-time critical configuration
interface. In particular, we use the TTP/A proto-
col [11], which is the reference implementation of the
CORBA STI, as the underlying communication pro-
tocol. In TTP/A, configuration data is guaranteed
not to interfere with the real-time traffic, since it uses
a fixed amount of reserved bandwidth. All interface
data are mapped to a common interface mechanism,
the Interface File System (IFS), which is similar to a
shared memory that is organized as a simple flat file
system.

4.2 Properties, Components, and
Shared Concepts

In order to integrate information from the different
specifications we require a common representation
format and system model, interfacing mechanisms to
the different system entities (hardware and software
components), and configuration tools.

We opted for using an ontology format as common
representation format. According to Gruber an on-
tology is a “a specification of a conceptualization” [8].
In particular, the following properties of ontologies
are advantageous for our purpose:

• Support for creating networks of interconnected
concepts

• Uniform access for all represented information

• Generic support for reasoning and querying

• Can be used as meta-data for existing formats
(which are accessible from the meta-data by ref-
erence)

• Concepts in the model are templates for in-
stances, which can be used to represent actual
systems and system parts during configuration

Since the full domain models are far beyond the
scope of this paper we will only present the most im-
portant shared concepts and how they are organized:

Data items represent the data chunks that are
used (transmitted, configured) in the system. In our
case we distinguish several sub-concepts. Measure-
ments and Set Values are data items with an ad-
ditional transducer data type property that specifies
the kind of measurement or set value (e. g., distance,
speed). The possible values for this property are rep-
resented in the shared domain model as instances.
Configuration parameters allow controlling the
behavior of an entity in the system and are treated as
type-value pairs, whereas the value usually will have
a simple data type (number, string).

Properties represent configuration-relevant at-
tributes of an entity in the system. They represent
concepts from the domain model (e.g., location) and
convey information by their presence and their inter-
connection with other concepts in the domain model.
Additionally, they can also have values of arbitrary
type, either a simple data type or any other concept.

Most entities in the model (nodes, target system,
application components) can have properties. Ex-
ample properties in the context of our case study are
Location or Measurement Range. Strictly speak-
ing, configuration parameters, measurements and set
values should also be considered as properties.

Nodes represent the physical transducer and
processing nodes in the network. Main property for
configuration is a list of hosted application compo-
nents. Smart Transducer Nodes also have sen-
sor/actor specific properties (e.g., scattering angle for
distance sensors, active/passive). During configura-
tion we distinguish between generic nodes that only
represent properties that are independent of a par-
ticular target system (static information on a node,
similar to the information provided in data sheets),

and nodes that are part of a target system and also
store the nodes’ current configuration state.

Application components represent the main
functional building blocks of an application. They
consume/process/provide application data, and
shield the application from ’lower level specifics’ of
the system. As a unit of functionality an applica-
tion component is specified by its interface, i. e., by
the data it receives (e. g. measurements), the data
it provides (e. g. set values), and configuration para-
meters that allow modifying its behavior (e. g. num-
ber of connected nodes). In addition, the component
specification can also define restrictions on the data.
For example, a component can require that a distance
measurement must fall into a range from 0.5− 1m.

What is important for this approach is that the
configuration framework does not deal with most of
the interpretation of the actual data chunks that are
moved between the different parts of the network,
but defers the interpretation to the parties that pro-
duce/consume the data. Since the semantic infor-
mation annotates the existing data formats as meta-
information, the respective tools need not interpret
the meta-information and the configuration frame-
work need not interpret the actual content of the data
formats.

Data that should be processed by the configura-
tion framework must adhere to the data model of the
domain model, which should be at a high level of
abstraction (e.g., data items represented as numbers
using SI units).

4.3 Specification of a Generic Dis-
tance Sensor

A distance sensor as used in our example is a com-
ponent that produces a measurement on the distance
to the next object in line of sight. The width of the
measurement beam is defined by the scattering an-
gle, e. g., a LIDAR laser sensor will have a very small
scattering angle, while an ultrasonic sensor has a very
broad sensing field. The sensor’s measurement is also
assigned a confidence value, which indicates the re-
liability of the measurement. The confidence value
may be static for a given sensor type or be trans-
mitted as a real-time value indicating the reliability
of the actual measurement. In this case, confidence
values are estimated by self diagnosis of the smart
sensor. Sensors delivering different types of measure-
ments (image, temperature, etc.) are not suitable
to be automatically configured and included in the

case-study application.
Basically, we treat a sensor like any other applica-

tion component, i. e., by specifying its real-time and
configuration data; but unlike high-level application
components it will usually not directly be interfaced
by the application developer. Smart transducers
are often treated as software/hardware components
with pre-defined functionality. To fit our application
model, where we treat an application component as
independent of the physical node it is mapped to,
we distinguish between the software component re-
sponsible for communicating the measurement (mea-
surement component) and the smart transducer as a
physical device. In this case, the mapping from ap-
plication component to node is already defined in the
transducer description.

This example measurement component has no con-
figuration parameters or further properties; but the
underlying smart transducer has properties that are
required for configuration, which are the scattering
angle, measurement range, and location.

4.4 Generic Certainty Grid

The output of the generic certainty grid (GCG) is
an abstract data structure representing a certainty
grid that can be passed on to other components for
high-level decision processes like path-finding, etc.

Figure 4 depicts the GCG component in terms of
the interface model outlined in Section 3.3. The DM
interface is not depicted in the figure, since it is not
relevant for this work.

SRLIF

Certainty grid
sensor measurement (S1)

SPLIF

sensor measurement (S2)

confidence value (S1)

confidence value (S2)

.

.

.

CP Interface

Generic Certainty Grid

Configuration framework

Configuration data:
 - no. of distance sensors

 - grid dimension

 - grid resolution

 for each sensor:
 - location of the sensor
 - orientation of the sensor
 - measurement range
 - confidence
 - scattering angle

world orientation

world position

Figure 4: Interfaces of the Generic Certainty Grid
Component

The underlined items displayed in the figure are
specified by the user as part of the control applica-
tion. The others are only available to the configura-
tion framework.

Table 1 gives an overview on the configuration pa-
rameters. ’Obtained from’ denotes the source of the

Configuration

framework

Distance Sensor Spec.

Scattering Angle

Location: id=1

Configurator
Generic Certainty Grid

DS1:

DS2: ...

 Scattering Angle

 Coordinate

 Orientation

Grid dimension

Grid resolution

Communication Interface

Distance Sensor

Communication Interface

Scheduler

Target System Spec.

Transducer Slot: id=1

Transducer Slot: id=2 ...

Dimension

 Coordinate

 Orientation

Node List: (PN, DS1, ...)

Appl. Spec.

Component List:

GCG
of nodes

Grid dimension

Grid resolution

Component-Node Map

Timing Constraints

Distance Sensor

Communication Interface

Figure 5: Data flow in the configuration framework

description of the configuration information (for ob-
taining the structural/conceptual meta-information
required for interpreting the data), ’established by’
denotes the entity that is responsible for creating the
actual configuration value (either the user or the con-
figuration environment).

From the configuration parameters, the user must
explicitly specify the number of connected sensors,
since the configuration environment requires this in-
formation for reserving memory space in the interface
system on the node hosting the GCG (in the IFS) for
the data coming from the sensors.

The location must be obtained from the connected
sensor (by the configuration framework; if the sen-
sor cannot obtain its location from the environment,
the user must configure the sensor accordingly). The
scattering angle is a property of the connected sensor
(and available from the sensor description).

Table 2 shows the real-time data pro-
duced/consumed by the GCG. ’Connected to’
specifies producer/consumer of the currently de-
scribed data in relation to the overall application.
The interaction with other application components
is specified by the user and, thus, available in the
application description.

The configuration tool must set up the communi-
cation connection between the connected sensors and
the application component by using the data format
that is ’specified in’ the sensor description.

4.5 Configuring the Generic Cer-
tainty Grid

We assume that there is a valid application descrip-
tion and a physically correctly configured system, i.e.,
the required transducers are placed at suitable loca-
tions of the target system and connected to the net-
work, and all nodes use the same protocol and iden-
tical communication parameters.

The basic idea behind the configuration process
is to first identify the parameters required for the
configuration of an entity in the system (applica-
tion component, node), and then obtaining the re-
quired configuration values from the available spec-
ifications (either directly or after processing by the
configuration framework). To enable this approach
all configuration-related data must be available, and
’connected’ to the common system model, so that it
is accessible to the configuration framework.

Figure 5 depicts the system entities involved during

Configuration data
Data obtained from (during configuration) established by
Dimension of grid in m Application description User
Resolution of grid in cells Application description User
of connected sensors Application description User
For each connected sensor
Location of sensor Sensor/System description Config system
Orientation of sensor System description Config system
Scattering angle Sensor description Config system

Table 1: Configuration data of the GCG

Real-time data
Data connected to (during run-time) specified in
Car orientation Position estimator component Application description
Car position Position estimator component Application description
From each connected distance sensor
Distance measurement Distance sensor Sensor description
Measurement reliability Distance sensor Sensor description

Table 2: Real-time data of the GCG

configuration.

Configuration proceeds as follows: connect and
detect sensors (plug-and-participate), configure new
sensors, configure the GCG, set up real-time commu-
nication. First, the network is scanned for the avail-
able transducer nodes. This is done using the baptize
algorithm in TTP/A [4]. After this step we can ad-
dress and access all connected transducers via a non-
real-time configuration interface. In this particular
example application the distance sensors require no
further configuration by the configuration tool.

The location property of a sensor is undefined be-
fore the sensor is mounted and connected to the ro-
bot. When the smart transducer is actually placed in
the system, the location information becomes avail-
able. This can be either done by setting dip switches
on the sensors or by using encoded sockets. Each
socket in the system is then encoded with an iden-
tifier that indicates the physical location on the ro-
bot. When a sensor is plugged in, it reads the socket
identifier and provides this information to the config-
uration tool. The configuration tool can then derive
the actual location information and orientation, for
configuring the respective configuration parameters
of the GCG, from the system description and the
socket identifier. The last configuration parameter
is the scattering angle, which is available from the
sensor description.

The maximum number of possible connected dis-

tance sensors is limited by the number of physical
sockets and available bandwidth in the communica-
tion schedule.

Note the difference between parameters that can
only be interpreted in context of a particular target
system (e. g., location identifier) and generic parame-
ters that are required for the function of a component
(e. g., metric coordinates, scattering angle). The lat-
ter should be represented using common (preferably
standardized) formats.

After the GCG and the connected sensors have
been successfully configured we can setup the real-
time communication, with the target that the correct
transducer delivers its information to the respective
correct input of the high-level application component.
Since we know which sensor outputs are associated
with the respective inputs of the GCG we can reserve
memory space for the input data on the node hosting
the GCG and adopt the communication schedule by
feeding the resulting list of components and the user
specified timing constraints to a scheduling tool [5],
which creates the scheduling tables for all nodes con-
nected to the network.

All these configuration parameters can then be
downloaded to the cluster via the CP interface.

5 Discussion and Conclusion

In this paper we outlined an approach for bridging
the semantic gap between a control application and
transducers by applying a smart interface system that
preprocesses the sensor data and provides it to the
control application in a standardized form indepen-
dent from the employed transducer types. This sys-
tem allows the connection of new sensors of arbitrary
type. If the sensor’s meta description matches the
requirements of the interface system, the sensor can
be integrated into the application without changing
the software.

By treating all the information from the different
sources in the same framework, we avoid inconsis-
tencies and conversion problems (or at least remove
them from the central configuration problems) that
may arise by directly combining information from
heterogenous sources.

Currently we perform the major part of the config-
uration, i. e., interpretation of the meta-data, creat-
ing schedules, off-line on a host PC. This has the ad-
vantage of reducing the overhead on the smart trans-
ducer nodes to a minimum, which is important, since
our current implementations mainly focus on low-
cost 8bit micro-controllers. Since there is hardly any
meta-data that must be stored in the nodes’ memo-
ries, the amount of configuration data that must be
transmitted to the cluster is very small; in the order
of a few hundred bytes including the communication
schedules.

Integrating the plug-and-play functionality into the
embedded system is possible, although an increased
overhead onto the network nodes can be expected.

Although the approach is limited by the number
of physical sockets and the available communication
bandwidth, it is a significant improvement from the
trivial approach of pre-reserving fixed communication
slots for each particular possible new sensor, since our
generic approach allows the connection of arbitrary
distance sensors, even if a particular sensor type has
not been expected at design time of the system.

In the presented case study we focused on sensor
properties that are relatively simple to process. In
the future we intend to include more complex rela-
tions between sensors and between transducers and
the environment into the common model. For exam-
ple, if an application uses multiple active sensors of
the same type, this can lead to interferences. In this
case the configuration tool must recognize this inter-
ference and schedule the measurements sequentially.

6 Acknowledgments

This work was supported in part by the FIT-IT project

“SDSTI” under contract No. 808693 and by the European

IST project DECOS under contract No. IST-511764.

FIT-IT is funded by the Austrian ministry for transport,

innovation and technology (BM-VIT). We would like to

thank our colleagues at the Institute of Computer Engi-

neering for their valuable comments on earlier versions of

this paper.

References

[1] G. Bright and J. Potgieter. PC-based mechatronic
robotic plug and play system for part assembly op-
erations. In Proceedings of the IEEE International
Symposium on Industrial Electronics, pages 426–
429, Pretoria, South Africa, July 1998.

[2] EIBA Association. EIBA Handbook Series Release
3.0, Mar. 1999.

[3] W. Elmenreich. Sensor Fusion in Time-Triggered
Systems. PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Austria,
2002.

[4] W. Elmenreich, W. Haidinger, P. Peti, and
L. Schneider. New node integration for master-
slave fieldbus networks. In Proceedings of the 20th
IASTED International Conference on Applied Infor-
matics (AI 2002), pages 173–178, Feb. 2002.

[5] W. Elmenreich, C. Paukovits, and S. Pitzek.
Scheduling tool for reconfigurable time-triggered
embedded sensor networks. Research Report
29/2005, Technische Universität Wien, Institut für
Technische Informatik, Vienna, Austria, 2005.

[6] W. Elmenreich and S. Pitzek. Smart transducers –
principles, communications, and configuration. In
Proceedings of the 7th IEEE International Confer-
ence on Intelligent Engineering Systems, volume 2,
pages 510–515, Assuit – Luxor, Egypt, Mar. 2003.

[7] W. Elmenreich, S. Pitzek, and M. Schlager. Model-
ing distributed embedded applications on an inter-
face file system. In Proceedings of the Seventh IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing, pages 175–182, May
2004.

[8] T. Gruber. A translation approach to portable on-
tologies. Knowledge Aquisition, 5(2):199–220, June
1993.

[9] Institute of Electrical and Electronics Engineers,
Inc. IEEE Std 1451.4-2004, IEEE Standard for A
Smart Transducer Interface for Sensors and Actu-
ators - Mixed-Mode Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats,
Dec. 2004.

[10] H. Kopetz and N. Suri. Compositional design of
rt systems: A conceptual basis for specification of

linking interfaces. 6th IEEE International Sym-
posium on Object-Oriented Real-Time Computing
(ISORC03), May 14 - 16, 2003, Hokkaido, Japan,
May. 2003.

[11] H. Kopetz et al. Specification of the TTP/A proto-
col. Technical report, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Austria,
Sept. 2002. Version 2.00.

[12] A. Mallet, S. Fleury, and H. Bruyninckx. Genom:
A tool for the specification and the implementa-
tion of operating modules in a distributed robot ar-
chitecture. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS), page 22922297, Lausanne, Switzer-
land, Oct. 2002.

[13] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, and W. S. Kim. CLARAty: An architec-
ture for reusable robotic software. In Proceedings of
SPIE Aerosense Conference, Orlando, Florida, 2003.

[14] Object Management Group (OMG). Smart Trans-
ducers Interface V1.0, Jan. 2003. Specification
available at http://doc.omg.org/formal/2003-01-01
as document formal/2003-01-01.

[15] OPC Task Force. OPC Overview — Version 1.0,
Oct. 1998.

[16] S. Pitzek and W. Elmenreich. Configuration and
management of a real-time smart transducer net-
work. In Proceedings of the 9th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 2003), Lisbon, Portugal, Sept.
2003.

[17] V. Turau, M. Venzke, and C. Weyer. Vertical inte-
gration of TTP/A fielbus systems using web services.
In Proc. of the First Int. Conf. on Informatics in
Control, Automation and Robotics (ICINCO), Aug.
2004.

[18] C. Urmson, R. Simmons, and I. Nesnas. A generic
framework for robotic navigation. In Proceedings
of the IEEE Aerospace Conference, volume 5, pages
2463–2470, Montana, Mar. 2003.

