
A Comparison of Fieldbus Protocols:

LIN 1.3, LIN 2.0, and TTP/A

Wilfried Elmenreich and Stefan V. Krywult
Vienna University of Technology

Institute of Computer Engineering
Treitlstraße 1-3/182-1, Vienna, Austria
{wil,stefan.krywult}@vmars.tuwien.ac.at

Research Report 3/2004

Abstract – This paper compares the fieldbus proto-
cols LIN 1.3, LIN 2.0, and TTP/A to the require-
ments of low-cost body electronic networks in the au-
tomotive domain. The examined protocols all aim at
distributed smart sensor/actuator networks and pro-
vide support for low-cost implementation on standard
microcontroller nodes.

LIN comes with a rigid specification of the physical
layer in order to support interoperability between LIN
nodes of different vendors. The LIN specification de-
fines also a complete application framework support-
ing developing and configuring LIN networks.

The TTP/A specification describes a pure commu-
nication system and leaves a lot of decisions regard-
ing physical layer, fault detection, redundancy, etc.
to the system designer. The time-triggered schedul-
ing of messages leads to a very high data efficiency,
even for short messages.

1 Introduction

Electronics has become the driving force of inno-
vation in today’s vehicle industry. Communication
networks in automobiles are introduced with several
purposes and requirements. As a consequence, fu-
ture automobiles will concurrently host several net-
works, each optimized for a specific purpose. Exam-
ples for such specific busses will be control busses like
Controller Area Network (CAN) [14], safety-critical
busses like TTP/C [16], Flexray [5], or TTCAN [6],
infotainment busses like MOST [10] and low-cost
busses for body electronics.

Low-cost busses are introduced in automotive ap-
plications in order to interconnect smart sensors and
actuators as an alternative to a full-featured elec-

tronic control unit (ECU). Smart sensors and actua-
tors integrate a transducer element with a microcon-
troller and a network interface. Such a smart trans-
ducer encapsulates and hides the technical details
from the physical transducers and provides a concise
abstract interface of its features. With the advent of
modern microcontrollers it became possible to built
low-cost smart transducers by using commercial-off-
the-shelf microcontrollers that provide a standard
communication interface, such as a UART (Univer-
sal Asynchronous Receiver/Transmitter). As a fur-
ther cost-decreasing factor, single-wire busses like
ISO 9141 are used to interconnect the smart trans-
ducers. As a consequence, bandwidth and depend-
ability of such a communication system is relatively
low, thus, low-cost busses are mainly used for car
body electronic functions.

Two communication protocols that address this
field of application are LIN (Local Interconnect Net-
work) and TTP/A (Time-Triggered Protocol for SAE
class A applications). The LIN protocol was devel-
oped by a consortium of seven automotive partners
(Audi, BMW, DaimlerChrysler, Volvo, Volkswagen,
Motorola and VCT) as a complementary system to
the widely used CAN bus [?]. In 2003, many updates
to reflect the latest off-the-shelf microcontrollers as
well as inputs from the SAE Task Force resulted in
the definition of LIN 2.0. In fact, LIN 2.0 was a com-
plete rework of the existing LIN 1.3 standard, but
backward compatible.

The TTP/A protocol is the low-cost field-bus pro-
tocol that is harmonized with the fault-tolerant sys-
tem bus TTP/C of the time-triggered architecture
(TTA). It is intended for the connection of smart sen-
sors and actuators in embedded real-time systems in

different application domains, e.g., industrial, auto-
motive, etc. It is the objective of TTP/A to pro-
vide all services needed by a smart sensor, includ-
ing timely communication, remote on-line diagnos-
tics, and plug-and-play capability. While LIN is pow-
ered by industrial sponsors, TTP/A is an academic
development started by the Technical University of
Vienna, Austria and then broadened to include the
Technical University of Munich, Germany and the
University of Stuttgart, Germany. The first version
of TTP/A was published at the SAE World Congress
in 1995 [8]. Since then, TTP/A has been extended
by a plug-and-participate function [4] and a unique
interface scheme in form of an IFS [9].

It is the objective of this paper to compare the fea-
tures of LIN 1.0, LIN 2.0, and TTP/A. First we will
discuss the basic requirements for body electronics
busses, then we will describe the common features
and individual characteristics of the protocols. The
paper is concluded by a discussion in Section 8.

2 Requirements on Automo-
tive Body Electronic Busses

Cost factor: Obviously, such a system should be as
low-cost as possible. The ways to achieve this
goal are to reduce wiring costs (e. g., by using a
single wire bus), a protocol based on UART com-
munication (thus avoiding an extra communica-
tion chip), the support of COTS hardware, and
a small footprint of the protocol implementa-
tion enabling the use of cheap microcontrollers.
Moreover, complexity management by an ade-
quate Plug and Play scheme may significantly
reduce set-up costs.

Bandwidth: The provided bandwidth of the com-
munication system should be as high as possible
in order to serve a large set of possible fields
of application, but increasing bandwidth above
a particular level is opposed to the goal of de-
creasing costs.

As an example we will assume that a network
of 32 transducers requires to be instrumented by
a 2 byte message for each transducer at least
every 100 ms. This will result in a minimum net
bandwidth of 1920 Bytes/sec. Depending on the
protocol efficiency, the required total bandwidth
can be much higher.

Real-Time Capabilities: When the acquired sen-
sor information is to be used in a real-time appli-

cation, the determinism of measurements and its
communication is of interest. Therefore we re-
gard the protocols ability to globally synchronize
measurements and to provide periodic measure-
ments with minimal jitter, i. e., the difference be-
tween shortest and longest response time.

Error Diagnosis: Body electronic networks are not
considered safety-critical, however, in order to
keep maintenance costs low, error detection and
diagnosis is required. To meet this diagnostic re-
quirement, it must be possible to address some
internal storage space in each smart transducer
in order to collect extended data on its opera-
tion.

Extensibility: The number of connected nodes of a
body electronics network are not considered to
be constant during the lifetime of the system.
For example, new devices might be attached to
the car in order to enable some features. Thus,
the communication system should support the
connection and integration of new nodes with
respect to new node detection and configuration.

3 Common features of LIN and
TTP/A

Since both protocols have been developed with the
same target application in mind, the systems are alike
in several aspects:

Both protocols use UART frames encoding as basic
communication units. Such a UART frame consists of
a start bit (always low), 8 message bits in non-return-
to-zero (NRZ) encoding, an optional parity bit and a
stop bit (always high). LIN does not use the parity
bit, thus encodes one data byte with 10 bits. TTP/A
always uses the parity bit for error detection, thus
encodes one data byte with 11 bits.

In order to support nodes with unstable clocks, a
periodic synchronization pattern is provided in the
LIN and TTP/A protocol. This allows the use of
microcontrollers with internal RC oscillators for the
implementation of the nodes. Such RC oscillators
change their clock frequency with varying tempera-
ture and supply voltage so that they require frequent
resynchronization.

Both protocols also agree on a time-triggered mes-
sage scheme. This means that the messages are
scheduled to be transmitted at a predefined point in
time. This feature guarantees a collision-free media
access scheme and a predictable message ordering.

The communication is initiated by a dedicated mas-
ter node, the smart transducers are considered the
slave nodes.

4 LIN 1.3 Specific Features

Each message in LIN is encapsulated in a single mes-
sage cycle. The message cycle is initiated by the mas-
ter and contains two parts, the frame header sent
by the master and the frame response, which en-
compasses the actual message and a checksum field.
The frame header contains a sync brake (allowing the
slave to recognize the beginning of a new message), a
sync field with a regular bit pattern for clock synchro-
nization and an identifier field defining the content
type and length of the frame response message. The
identifier is encoded by 6 bit (allowing 64 different
message types) and 2 bits for protection. Figure 1
depicts the frame layout of a LIN message cycle.

The frame response contains up to 8 data bytes
and a checksum byte. Since an addressed slave does
not know a priori to the reception of the respective
frame header that it has to send a message, the re-
sponse time of a slave is specified within a time win-
dow of 140% of the nominal length of the response
frame. This gives the node some time to answer, for
example to perform a measurement on demand, but
introduces a noticeable message jitter for the frame
response.

From the slave’s view, the LIN protocol is a plain
polling protocol, since the slaves only react on the
frame header from the master. It is the master’s task
to issue the respective frame headers for each message
according to a scheduling table. The configuration
of the network must ensure, that each message has
exactly one producer. Several slaves can subscribe to
a particular message.

LIN clusters are configured during the design stage
using the LIN Configuration Language. This lan-
guage can be used to create a LIN description file
(LDF). The LDF describes the complete LIN net-
work. Its syntax is deliberately not specified to allow
for vendor specific implementations.

In addition to the LIN configuration language and

DataByte

Sync break message of 2,4, or 8 data bytesSync field Msg. identifier

0x00

t

...0x55 id DataByte chk

Frame header (from master) Frame response (from master or slave)

Figure 1: LIN frame format

LDF, which are the most important tools to design a
LIN cluster, the LIN specification defines a (manda-
tory) interface to software device drivers written in
C. Also, many tools exist that can parse a LDF and
generate driver modules by themselves. The LIN C
API provides a signal based interaction between the
application and the LIN core (core API).

LIN is supported by multitude of configuration and
maintenance tools.

5 LIN 2.0

In 2003, many updates to reflect the latest off-the-
shelf microcontrollers as well as inputs from the SAE
Task Force resulted in the definition of LIN 2.0. In
fact, LIN 2.0 was a complete rework of the existing
LIN 1.3 standard, but backward compatible, allowing
for the integration of new LIN 2.0 master/slave nodes
in existing LIN 1.2/1.3 clusters 1. New features intro-
duced in LIN 2.0 are an enhanced checksum, sporadic
and event-triggered communication frames, improved
network management (status, diagnostics) according
to ISO 14230-3 / ISO 14229-1 standards, automatic
baudrate detection, standardized LIN product ID for
each node, and an updated configuration language to
reflect the changes.

In addition to the unconditional frames (frames
sent whenever scheduled according to the schedule
table) provided by LIN 1.3, LIN 2.0 introduces event-
triggered frames and sporadic frames.

Similar to unconditional frames, event-triggered
frames begin with the master task transmitting a
frame header. However, corresponding slave tasks
only provide their frame response when the signals
transmitted in the data fields have changed. Unlike
unconditional frames, multiple slave tasks can pro-
vide the frame response to a single event-triggered
frame, assuming that not all signals have actually
changed. In the case of two or more slave tasks writ-
ing the same frame response, the master node has
to detect the collision and resolve it by sequentially
polling (i.e., send unconditional frames) the involved
slave nodes. Event-triggered frames were introduced
to improve the handling of rare-event data changes
by reducing the bus traffic overhead involved with
sequential polling.

Sporadic frames follow a similar approach. They
use a reserved slot in the scheduling table, however,
the master task only generates a frame header when

1however, a cluster with LIN 2.0 slaves requires a LIN 2.0
master, due to the slave nodes’ improved configuration capa-
bilities.

necessary, i.e. involved signals have changed their
values. As this single slot is usually shared by mul-
tiple sporadic frames (assuming that not all of them
are sent simultaneously), conflicts can occur. These
conflicts are resolved using a priority-based approach:
frames with higher priority overrule those with lower
priority.

Each LIN 2.0 node possesses its LIN Product Iden-
tification. This unique number is stored in the mi-
crocontroller’s ROM and encodes information about
this node.

• supplier ID: assigned to each supplier by the LIN
Consortium

• function ID: assigned to each node by supplier

• variant field: modified whenever the product is
changed but its function is unaltered

In addition to signal-bearing messages, LIN 2.0
provides diagnostic messages. These messages use
2 reserved identifiers (0x3c, 0x3d). Diagnostic mes-
sages use a new format in their frame response called
PDU (Packet Data Unit). There are two different
PDU types: requests (issued by the client node) and
responses (issued by the server node).

The LIN 2.0 configuration mode is used to set up
LIN 2.0 slave nodes in a cluster. Configuration re-
quests use SID values between 0xb0 and 0xb4. There
is a set of mandatory requests that all LIN 2.0 nodes
have to implement as well as a set of optional re-
quests. Mandatory requests are:

• Assign Frame Identifier: This request can be
used to set a valid (protected) identifier for the
specified frame.

• Read By Identifier: This request can be used to
obtain supplier identity and other property from
the addressed slave node.

Optional requests are:

• Assign NAD: Assigns a new address to the spec-
ified node. Can be used to resolve address con-
flicts.

• Conditional Change NAD: Allows master node
to detect unknown slave nodes.

• Data Dump: Supplier specific (should be used
with care).

The LIN 2.0 API consists of two sections. In ad-
dition to the LIN Core API that came with LIN 1.x,
there is a new LIN Diagnostic API that is used for

configuration and the diagnostic transport layer. The
LIN node Configuration API is available only to the
master node and mainly implements functions to per-
form diagnostics and configuration [2]. LIN Diagnos-
tic API functions:

• check response: gets the result of the last com-
pleted node configuration call

• assign NAD: assign a new address to slave nodes

• conditional change NAD: used to detect un-
known nodes and assign new addresses to them

The LIN diagnostic transport layer is intro-
duced to provide gatewaying functions between CAN
and LIN slaves. It transports ISO diagnostic re-
quests/responses and provides a simple raw API, as
CAN ISO PDUs are very similar to LIN diagnostic
frames.

6 TTP/A Specific Features

Communication is organized into rounds consisting
of several messages. Each communication round is
started by the master with a so-called fireworks byte.
The fireworks byte defines the type of the round and
is a reference signal for clock synchronization. The
communication pattern for each round is predefined
via the RODL, which is distributively stored in all
nodes. The protocol supports eight different fire-
work bytes encoded in a message of one byte using
a redundant bit codesupporting error detection. One
fireworks byte is a regular bit pattern, which is also
used by slave nodes with an imprecise on-chip oscil-
lator for startup synchronization. This bit pattern is
identical to the sync pattern used in LIN.

Generally, there are two types of rounds:

Multipartner round: This round consists of a con-
figuration dependent number of slots and an as-
signed sender node for each slot. The configu-
ration of a round is defined in a datastructure
called “RODL” (ROund Descriptor List). The
RODL defines which node transmits in a certain
slot, the operation in each individual slot, and
the receiving nodes of a slot. RODLs must be
configured in the slave nodes prior to the exe-
cution of the corresponding multipartner round.
An example for a multipartner round is depicted
in Figure 2.

Master/slave round: A master/slave round is a
special round with a fixed layout that establishes

Slot 0 SlotnSlot 1 Slot 2

FB(Master)

FB..................Fireworks Byte, sent by master

DataByte......sent either by master or slave

t

...DataByte DataByte DataByte FB(Master) ...

Slot 0

Multipartner Round

Last slot of round

Figure 2: Example for a TTP/A multipartner round

a connection between the master and a partic-
ular slave for accessing data of the node’s IFS,
e. g. the RODL information. In a master/slave
round the master addresses a data record using
a hierarchical IFS address and specifies an ac-
tion like reading of, writing on, or executing that
record.

The master/slave rounds are used for diagnostics
and configuration of the smart transducer nodes. The
periodical multipartner rounds provide a predictable
real-time communication among the nodes. Mas-
ter/slave rounds are scheduled periodically between
multipartner rounds as depicted in Figure 3 in or-
der to enable maintenance and monitoring activities
during system operation without a probe effect.

The master/slave rounds allow a point-to-point
connection to a particular node for configuration,
maintenance, and diagnosis purposes. Each node is
assigned a logical node ID that is used in the mas-
ter/slave rounds for addressing a node within a clus-
ter. The logical IDs of TTP/A nodes can be assigned
either at compile time or on-line when the node is in-
tegrated into the cluster. The online-assignment of
logical node IDs is called baptizing. The baptizing
algorithm is performed by the master and is based
on binary search. It make use of the unique iden-
tification number of every TTP/A node, the condi-
tional setting of node identifiers by executing a spe-
cial record in the file system of the node and the
ability to detect simultaneous bus access of multiple
nodes. The baptizing enables true plug and play but
is not mandatory in the TTP/A standard.

The syntactic specification of the TTP/A commu-

t

MP Round MP RoundMS RoundMS Round

Cluster Cycle Time

Real-Time

Service Data

Diagnostics and

Management Data

Figure 3: Recommended TTP/A Schedule

nication interface is part of the Smart Transducer
standard of the Object Management Group (OMG)
[11].

While the TTP/A standard does not define a
particular configuration language for the network
management, such an approach based on XML-
descriptions has been proposed by Pitzek in [12, 13].

7 Comparison

Table 1 depicts the performance differences of LIN
and TTP/A for a typical body electronics applica-
tion. The bus speed of LIN networks is specified to
be flexible, but the maximum specified bus speed is
defined by 19,200 Bit/sec.

7.1 Efficiency

The number on efficiency for LIN varies, because of
the possible delay of 40% in the slave responses. The
first figure for efficiency of LIN 2.0 was calculated
assuming unconditional frames.

When the new feature of event-triggered frames
from LIN 2.0 is used, the best case efficiency is much
better at the cost of worst case behavior. In the ex-
ample in the table, we have assumed that always four
sensors share one event-triggered slot.

The figures on efficiency have been derived as fol-
lows:

The specified 16 messages with 2 bytes each require
at least Tnet = 16 · 2 · 8 = 256 bit to be sent over the
network.

In case of LIN 1.3 we would have to send 16 frame
headers and 16 unconditional messages with 2 byte
and a check byte. The LIN protocol specification 2.0
2 defines the length of a frame header by a nomi-
nal value of THeader Nominal = 34tbit and a maximum
value of THeader Maximum = (THeader Nominal · 1.4. The
frame response length is given by TResponse Nominal =
10·(NDATA+1) = 30tbit and TResponse Maximum = 1.4·
TResponse Nominal, respectively. Thus, for 16 uncondi-
tional frames we require between 16·(34+10·(2+1)) =
1024 tbit and 16·(34·1.4+(10·(2+1))·1.4) = 1433.6
tbit to communicate the 16 messages, giving an effi-
ciency Tnet/TLIN1.3 between 18% and 25%.

Using event-triggered messages changes the num-
ber of required messages and increases the number
of data bytes per message by 1, since the first data

2In the opinion of the authors, the LIN protocol specifica-
tion 1.3 gives an incorrect formula on the calculation of the
message frame length [?, p. 25], therefore and for consistency
reasons we will use the formula for unconditional frames from
the LIN Protocol Specification 2.0 [2, p. 25]

Characteristic LIN 1.3 LIN 2.0 TTP/A
Bus speed up to 19.2 kBit/s up to 19.2 kBit/s arbitrary, typical up to 50

kBit/s
Message length 1...8 byte 1...8 byte 1...16 byte
Efficiency (for
16 messages of
2 byte, exclud-
ing diagnosis
messages)

18...25% 18...25%(14...86%) 39 %

Typical imple-
mentation foot-
print (Slave)

362B Flash, 19B RAM [1] 2817B Flash, 49B RAM [3] 2672B Flash 63B RAM [15]

Message jitter 40% jitter 40% jitter <1% jitter
Synchronized
Measurements

only subsequent actions
possible

only subsequent actions
possible

full support of synchro-
nized actions

Error detection header 75%
response 99.6%

header 99.9% after re-
sponse
response 99.6%

fireworks byte 98.4%
messages >99.9%

Table 1: Comparison of Performance Characteristics

byte of an event-triggered frame has to carry the pro-
tected identifier of the corresponding unconditional
message. In the best case, i. e., when each set of four
sensors produces at most one update message per re-
quest, the number of messages drops down to 4, giv-
ing 4 · (34 + 10 · (3 + 1)) = 296 tbit as minimum time
to communicate the information of the 16 messages,
giving an efficiency of 86%.

However, in the case that more than one sensor in
an event-triggered set provides an updated value, ex-
tra unconditional frames are necessary to update the
values and besides the 4 event-triggered messages an-
other 16 unconditional messages could be necessary.
Using the maximum frame length, the worst case sce-
nario calculates to 4 · (34 · 1.4 + (10 · (3 + 1)) · 1.4) +
16 · (34 · 1.4 + (10 · (2 + 1)) · 1.4) = 1848 tbit, giving
an efficiency of 14%.

For TTP/A, we assume a RODL with 16 mes-
sages where each message consists of 2 data bytes
and one check byte. Furthermore, we have to take
the fireworks byte and the inter round gap (1 byte
of length) into account giving us a total number of
2 + 16 · (2 + 1) =50 bytes to be sent. Each byte is
encoded in a frame of 13 bit, thus the time to commu-
nicate all 16 messages evaluates to 50 · 13 = 650 tbit,
giving a constant efficiency of 39%.

7.2 Resource Requirements for Imple-
mentation

The minimum implementation footprint of LIN is
much smaller due to the fact that a LIN node does
not require to keep a local copy of the communication
schedule. However, most of the available low-cost 8
bit microcontrollers provide at least the resources re-
quired for the TTP/A slave protocol.

Since a LIN slave is not aware of the global time,
the protocol does not support synchronization of ac-
tions, for example synchronized measurements. This
is inherently supported by the TTP/A protocol.

7.3 Error Detection

The error detection depict a weakness in LIN 1.3 on
the protection with only two extra bit for the mes-
sage identifier of the header message, giving an error
detection probability of only 1 − 1/24 = 0.75. The
header message is critical for a LIN communication,
since an undetected erroneous header message may
cause a wrong slave to answer with a syntactically
correct message.

The response frame of LIN is protected by a
check byte, giving an error detection probability of
1 − 1/28 = 0.9961.

LIN 2.0 solves the problem of the weak error detec-
tion of the header message by specifying an enhanced
checksum for the frame response that includes the

protected message identifier in the checksum calcula-
tion. An erroneous header message may still cause a
wrong slave to answer with a frame response, but the
checksum of the frame response will be different from
the expected one. Thus, there are 10 bits used for er-
ror detection of the header message, giving an error
detection probability of 1−1/210 = 0.9990. However,
note that there is still a chance of 75 % that an er-
roneous header message might cause the wrong slave
to trigger a measurement at the wrong time.

The error protection of unconditional frames in
LIN 2.0 is identical to LIN 1.3, thus rendering also
an error detection probability of 0.9961.

The fireworks byte in TTP/A consists of a data
word of 9 bits (including parity), whereof 3 bit define
the round number and 6 bit are protection, giving
an error detection probability of 1 − 1/26 = 0.9843.
The fireworks byte code has been especially designed
to have a high resilience against frequent error pat-
terns, such as burst errors of length less than 6 and
all possible length of negative or positive pulses. The
Hamming distance of the code is 4 [7].

The figure of 99.9% error detection for TTP/A
messages has been given for the shortest message of
1 data byte (and one check byte), which constitutes
the worst case scenario. For longer TTP/A messages,
the error detection is higher because of the additional
parity bit protection. Generally, the error detection
of a TTP/A message of N bytes protected by one
check byte is 1 − 1/2N+1+8, giving an error detec-
tion probability between 0.9990 and 0,99999997 (for
a message of 16 bytes).

8 Discussion and Conclusion

Most of the new features in LIN 2.0 have greatly im-
proved its applicability, so the diagnostic messages
(which are very similar to the master/slave rounds in
TTP/A) and the standardized LIN product identifi-
cation, and the enhanced checksum which compen-
sates for the comparatively weak protection of the
frame header.

A major limitation of LIN in comparison to
TTP/A might be the maximum communication
speed. The LIN specification defines the maximum
specified bus speed by 19,200 Bit/sec. This fact is
explained by the use of the unshielded ISO k-line
bus. The ISO k implementations, however, typi-
cally support up to 50,000 Bit/sec (according to the
MC33290D datasheet). Taking the large overhead of
LIN messages into account, the achievable net band-
width is rather slow, even for simple body electronics

applications such as windshield wipers or window lift
motors.

LIN 2.0 specification tries to remedy the perfor-
mance problem by the introduction of event-triggered
messages in order to achieve a higher average network
efficiency. The introduction of these event-triggered
messages, however, is not well suited for real-time
data, since it worsens the worst-case behavior. More-
over, event-triggered messages complicate network
diagnosis, since a missing answer from a node could
be interpreted as a crashed node or a correct node
that has not perceived a change in the observed mea-
surement property.

The LIN specification defines also a complete ap-
plication framework supporting developing and con-
figuring LIN networks. This standardization is an
important step to support tool providers.

The TTP/A specification describes a pure commu-
nication system and leaves a lot of decisions regard-
ing physical layer, fault detection, redundancy, etc.
to the system designer. The time-triggered schedul-
ing of messages leads to a high data efficiency, even
for short messages.

TTP/A strongly supports a two-level design ap-
proach. The node developer does not deal with com-
munication and message issues, while the system inte-
grator does not have to deal with node-specific issues.
This property is provided by the introduction of the
IFS, which allows for an abstraction over the commu-
nication system. Therefore, it is possible to modify
the communication system in a great deal supporting
maximum flexibility.

Configuration tools for TTP/A are build on this
IFS and the CORBA interface, which is specified in
the OMG Smart Transducer Standard. Configura-
tion data structures, such as electronic datasheets
are implemented by XML descriptions and respective
tools, but are currently not covered by the standard.

While the minimal footprint of TTP/A and LIN
implementations both support implementations on
low-cost microcontrollers, the protocols follow differ-
ent philosophies. The TTP/A protocol as part of the
OMG Smart Transducer Interface Standard supports
an open and flexible system that can be applied for
different fields of application. On the other hand, the
properties of LIN like bandwidth, physical layer and
message types/lengths are tailored to a subset of au-
tomotive applications and limit the application of the
protocol as a general purpose fieldbus.

Acknowledgments

This work was supported in part by the European
IST project DECOS under contract No. IST-511764.
We would like to thank the anonymous reviewers and
our colleagues at the Institute of Computer Engineer-
ing for their valuable comments on earlier versions of
this paper.

References

[1] Atmel Corporation. AVR 308: Software LIN
Slave, May 2002. Application note available at
http://www.atmel.com.

[2] Audi AG, B. AG, D. AG, M. Inc. V. C. T. AB,
V. AG, and V. C. Corporation. LIN specification
v2.0, 2003.

[3] P. Cholasta. LIN 2.0 mirror unit slave based on the
MC68HC908EY16 MCU and the LIN 2.0 communi-
cation protocol. Application Note AN2885, Rev. 0,
11/2004, Freescale Semiconductor, 2004.

[4] W. Elmenreich, W. Haidinger, P. Peti, and
L. Schneider. New node integration for master-
slave fieldbus networks. In Proceedings of the 20th
IASTED International Conference on Applied Infor-
matics (AI 2002), pages 173–178, Feb. 2002.

[5] J. B. et al. FlexRay–The communication system for
advanced automotive control systems. SAE World
Congress 2001, Detroit, Michigan, USA, Mar. 2001.

[6] T. Fuhrer, B. Muller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther. Time triggered commu-
nication on CAN. Technical report, Robert Bosch
GmbH, http://www.can.bosch.com/, 2000.

[7] W. Haidinger and R. Huber. Generation and analy-
sis of the codes for TTP/A fireworks bytes. Re-
search Report 5/2000, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Austria,
2000.

[8] H. Kopetz. TTP/A – A time-triggered protocol
for body electronics using standard uarts. In In-
ternational Congress and Exposition, Detroit, MI,
USA, Feb.-Mar. 1995. The Engineering Society for
Advancing Mobility Land Sea Air and Space, SAE
International.

[9] H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A. In-
ternational Journal of Computer System Science &

Engineering, 16(2):71–77, Mar. 2001.
[10] MOST cooperation. MOST Specification Framework

Rev 1.1, Nov. 1999. http://www.mostnet.de.
[11] Object Management Group (OMG). Smart Trans-

ducers Interface V1.0, Jan. 2003. Specification
available at http://doc.omg.org/formal/2003-01-01
as document ptc/2002-10-02.

[12] S. Pitzek. Description mechanisms supporting the
configuration and management of TTP/A fieldbus
systems. Master’s thesis, Technische Universität

Wien, Institut für Technische Informatik, Vienna,
Austria, 2002.

[13] S. Pitzek and W. Elmenreich. Configuration and
management of a real-time smart transducer net-
work. In Proceedings of the 9th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 2003), Lisbon, Portugal, Sept.
2003.

[14] SAE. Controller Area Network CAN, an in-vehicle
serial communication protocol. In SAE Handbook
1992, pages 20.341–20.355. SAE Press, 1990.

[15] C. Trödhandl. Architectural requirements for
TTP/A nodes. Master’s thesis, Technische Univer-
sität Wien, Institut für Technische Informatik, Vi-
enna, Austria, 2002.

[16] TTAGroup. Specification of the TTP/C
Protocol. TTAGroup, 2003. Available at
http://www.ttagroup.org.

