
Modeling Distributed Embedded Applications

on an Interface File System

Wilfried Elmenreich, Stefan Pitzek and Martin Schlager
Vienna University of Technology
Institut für Technische Informatik

{wil,pitzek,smartin}@vmars.tuwien.ac.at

May 31, 2005

Abstract – This paper presents a framework
for generic modeling of distributed embedded ap-
plications. An application is decomposed into ser-
vices and mapped on a set of distributed nodes,
whereas each node hosts one or more services.
Each service is described by four interfaces: a real-
time input/output, a configuration and planning
(CP), and a diagnostic and management (DM)
interface. The overall application is described by a
cluster configuration description that specifies the
interaction of services within and across nodes.

The application requirements, the service prop-
erties of a node, and the interaction of the services
as well as the application mapping are described
formally with XML descriptions. The XML for-
mat allows a language-neutral and extensible se-
mantic description of interfaces supporting the
implementation of context-aware tools for model-
ing, scheduling, monitoring, simulation, and vali-
dation.

A central concept of the model is the interface
file system (IFS) that acts as a distributed shared
memory and transparently implements the inter-
faces to services from other nodes. In principle,
the communication system that updates the data
in the IFS data is not bound to a specific imple-
mentation as long as it fulfills the given timing
requirements. The presented concepts are applied
in a case study that uses the time-triggered field-
bus protocol TTP/A for the implementation of a
small sensor fusion application.

1 Introduction

An embedded system is a computer system de-
signed to perform a dedicated or narrow range of
functions with minimal user intervention. By def-
inition, an embedded system can be built either in
a monolithic or a distributed way. In this paper we
focus on distributed embedded systems. Distrib-
uted embedded systems are motivated by several
aspects, i. e., (i) the parts of a system, e. g., sen-
sors and actuators, may be situated spatially far

apart from each other (as it is the case in fac-
tory and building automation), (ii) the need for
parallelism (e. g., grid computing, DSP for special
tasks), (iii) the need for fault tolerance (e. g., by
introducing redundant nodes and channels), and,
(iv) the need for a modular design (e. g., exten-
sions for PCI bus).

Such a distributed embedded system can be
treated as a composition of several subsystems or
components, whereof each component consists of
a hardware and software part. The implemen-
tation of these components may differ in used
programming language (e. g., Assembler, VHDL,
C, C++, Java), timing behavior (in terms of
throughput, worst-case behavior, response time),
I/O types (digital/analog, determinism, ...), and
dependability (reliability, availability, maintain-
ability, ...). Finding an adequate model for such
systems is difficult, since on the one hand, the
model must be rigid in order to describe criti-
cal parameters such as timing and dependability
with sufficient precision, on the other hand, due to
the many different application requirements, the
model should be flexible and extensible.

This paper focuses on the modeling of distrib-
uted embedded applications based on a descrip-
tion of components in an XML-based specifica-
tion language. Each service is mapped onto an
Interface File System (IFS) that forms its input
and output interface. Additionally, the IFS con-
tains configuration and maintenance data of the
subsystem, thus all state information of the sub-
system is contained in the IFS. All other aspects,
such as the syntactic descriptions of the informa-
tion in the IFS, are mapped into an external XML
description of the component. The IFS acts as a
common interface that supports a unified mapping
of interfaces, while the extensible XML descrip-
tions provide an extensible semantic description
for them.

This paper is structured as follows: The next
section outlines important requirements for em-
bedded real-time systems. Section 3 depicts

the conceptual model of the framework. Sec-
tion 4 shows the modeling via the IFS. Section 5
presents the implementation of the framework
in the time-triggered fieldbus network TTP/A.
Section 6 presents a case study application of
the framework for real-time simulation of TTP/A
functions. Section 7 lists related approaches and
Section 8 concludes the paper.

2 Requirements

The following requirements are prevalent in many
distributed embedded systems:

Hard real-time support: A hard real-time sys-
tem is a real-time system in which a guarantee
can be given that a certain action will always
finish before a given deadline. Many embedded
systems require hard real-time behavior in order
to avoid damage to man or machine.

Support of low-cost embedded systems:
Although state-of-the-art technology provides
powerful 32 bit architectures, the presented
modeling approach shall also support applica-
tions on networks of small 8-bit microcontrollers
such as the ATMEL AVR, Microchip PIC,
and the Motorola HC08 families. Still, 8-bit
microcontrollers have the greatest share in the
volume market for microcontrollers.1

Two-level design approach: The two-level de-
sign approach proposes the separation of the im-
plementation of subsystems and the integration
of these subsystem into an overall system. Thus,
the implementor of a subsystem focuses on local
issues such as interfacing local sensors and actu-
ators, while the system integrator focuses on the
interaction of the subsystems.
In order to support a two-level design ap-
proach the architecture must support compos-
ability [12]. An architecture is composable with
respect to a specified property if the system in-
tegration does not invalidate this property when
it was established at the subsystem level.

Reuse of existing systems: Many projects re-
quire that legacy code and legacy components
must be included into an application. Thus, the
presented modeling approach shall support the
reuse of existing solutions.

3 Conceptual Model

A distributed embedded application will be first
described functionally, i. e., by a set of intercon-
nected real-time services. A service is described
by its interfaces, its function, and properties like
timing behavior or reliability requirements.

The interfaces of a service are divided into the
following categories:

1Source: Gartner Dataquest (August 2003)

Service Providing Linking Interface (SPLIF):
This interface provides the real-time service
results to other services (cf. [11]).

Service Requesting Linking Interface (SRLIF):
A service that requires real-time input infor-
mation requests these data via the SRLIF
(cf. [11]).

Diagnostic and Management (DM): This
interface is used to set parameters and to retrieve
information about intermediate and debugging
data, e. g., for the purpose of fault diagnosis. Ac-
cess of the DM interface does not change the (a
priori specified) timing behavior of the service.

Configuration and Planning (CP): This in-
terface is used during the integration phase
to generate the “glue” between the nearly au-
tonomous services (e. g., communication sched-
ules). The CP interface is not time critical.

Local interfaces: The term local interfaces sub-
sumes all kinds of devices, such as sensors, actu-
ators, displays, and input devices, for which the
service creates a unified access via the SPLIF or
SRLIF services. For example, the service may
instrument a physical sensor element by reading
the measurement, calibrating the value, and ex-
porting the measurement via its SPLIF.

Figure 1 depicts the interfaces of a service in a
block diagram.

Service

CP + DM IF

S
R

L
IF

 S
P

L
IF

RT input RT output

Local
Interfaces

Figure 1: Interfaces of a Service

A particular component may comprise only a
subset of the above described interface categories.
Typically, a smart sensor service will implement
a SPLIF, CP, DM, and a local interface to the
physical sensor. An actuator, in contrast, will im-
plement an SRLIF, CP, DM, and a local interface
to the physical actuator.

Data flow over the SPLIF and SRLIF is per-
formed using ports. A port is specified by a name,
a description, and the structure of the data trans-
mitted over the port (e. g., a 16bit measurement
value from a sensor). The port structure consists
of the data type of the expected input or, respec-
tively, the produced output.

The functional behavior of a service is imple-
mented by a service task. The task of a service
consumes the data at its SRLIF and produces an
output at its SPLIF after termination. The data
at the SRLIF must not be changed during task

execution and the data at the SPLIF must not be
read during task execution. The behavior of a task
may also depend on configurations via the DM in-
terface, whereas this configuration is not allowed
to change during task execution.

An application consists of one or more services
that interact with each other via the real-time
interfaces SPLIF and SRLIF. One or more ser-
vices are implemented per node, whereas nodes
are loosely coupled via a real-time communication
system. Services that require local data exchange
communicate via a shared memory interface. Ser-
vices that are required to exchange data between
different nodes communicate via the node’s com-
munication interface.

The representation of an application by its ser-
vices deals with the functional and data flow parts
of the application. In order to completely repre-
sent an actual application, several non-functional
properties must be specified. We distinguish the
following two classes:

• Service-specific properties that must be set
according to requirements of the application
(e. g., the update rate of an actuator).
• End-to-end requirements of the application that
can only be specified over the distributed appli-
cation (e. g., end-to-end signal delay in control
loops).

The service-specific properties are modeled in
the semantic description of the service. The end-
to-end requirements are expressed by so-called de-
pendencies. We have identified the following kinds
of dependencies:

Connection: This dependency represents the
data flow between ports of services. A connec-
tion is directed by having a source and a target
part. An input port may have only one connec-
tion to an output port, while an output may feed
several input ports.

Causal: By defining a causal dependency be-
tween services, all in-between services (on the
directed application graph) must comply to this
dependency. In our context causal dependen-
cies always incur timing requirements. An in-
stant identifies the timing requirements of par-
ticipating services. We distinguish the instant
before and after execution. The before instant
of a service is before the service task is executed,
i. e., the moments when input data must have ar-
rived. The after instant happens after the service
task execution, thus a duration of WCETTASK
after the before instant, where WCETTASK is
the worst case execution time of the service task.

Phase: The phase dependency specifies non-
causal time-related dependencies of instants
among services.

All the presented properties are used to model
the application requirements. All requirements

are expressed in XML descriptions, which sup-
port interaction among tools (e. g., for modeling,
code generation, and verification). A case study
that depicts concrete XML descriptions is shown
in Section 6.

4 Interface Implementation

An interface must establish a common bound-
ary between services and their users. In order
to exchange information across such an interface
the engaged communication partners must share
a common background of concepts [13].

Basically, the interface to a service will be mod-
eled as a structured shared memory. All inter-
faces are modeled upon an Interface File System
(IFS) [13] that provides a common name space by
a uniform addressing scheme. The values that are
mapped into the IFS are organized in a static file
structure. The address space is organized hierar-
chically representing the network structure:

Cluster name: A cluster comprises a network of
fully interconnected nodes. The cluster name
is an 8 bit integer value that identifies a par-
ticular cluster. Native communication (without
routing) among nodes is only possible within the
same cluster.

Node alias: The node alias or logical name se-
lects a particular node. Node aliases can have
values from 0...255, whereas some values have an
associated special function, e. g., alias 0 addresses
all nodes of a cluster at once, i. e., a broadcast
manner [14].

File name: The file name is a 6-bit identifier for
addressing individual files in the nodes. A subset
of files, the system files, have a special meaning
in all nodes. Each service of a node is mapped
onto a file containing sections for SPLIF, SRLIF,
CP, and DM data.

Record number: The record number is an 8-bit
identifier that addresses the record within the
selected file. Each record contains 4 data bytes.
Since each file has a statically assigned number of
records, a file contains only the necessary number
of records.

Actuator

Network
Interface

Interface File
System

Local
Application

(e.g. Control)

Network
Interface

Interface File
System

Local
Application

Communication Backbone

Sensor

Network
Interface

Interface File
System

Local
Application

Figure 2: Physical Network Topology

Figure 2 depicts a possible application with a
network of three nodes. Each node may host one
or multiple services that all use the local IFS as a
data source and sink. The communication system
will perform a periodical time-triggered commu-
nication to copy data from the IFS to the com-
munication system and write received data into
the IFS. Thus, the IFS acts as an interface that
decouples the local services from the communica-
tion subsystem. It is the task of the communica-
tion system to keep consistency among the local
copies of the data stored in the IFS. A predefined
communication schedule defines time, origin, and
destination of each communication action.

As depicted in Figure 3, local applications share
a common view on the IFS. The application pro-
grammer is relieved from considerations concern-
ing low-level communication. Thus, any service
perceives the IFS in a logical network structure as
depicted in Figure 3.

Actuator

Local Sensor
Application

Local Sensor
Application

e.g., Control

Sensor

Distributed Interface File System

Local Sensor
Application

Distributed
Application

Figure 3: Logical Network Structure

The SPLIF, SRLIF, CP, and DM interfaces of
a service are mapped into a file of the IFS on
the node that hosts the service. The IFS maps
the current state of a all process variables into so-
called I/O files. Additionally there may be config-
uration data, for example communication sched-
ules. In [15] we have described the representa-
tion and use of the IFS CP interfaces based on
XML-based descriptions. In the following we will
describe the structure of the SPLIF and SRLIF,
which establish the real-time service.

Each port in the service file specifies a pointer
into the local I/O file of the node. The I/O file
hosts the actual input values and the output val-
ues of the local services. The input values can
be provided either by a local or remote service –
in the latter case, the communication system will
update this value periodically

Besides the ports, the service file contains ser-
vice configuration data (e. g., parameters for a
PID control algorithm) and diagnostic data such
as intermediate results or sensor logs.

5 Communication System

The communication system that performs the up-
dates of the IFS data is not bound to a specific
implementation as long as it provides determinis-
tic timing behavior in order to fulfill the timing
requirements.

Slot 0 SlotnSlot 1 Slot 2
FB(Master)

FB..................Fireworks Byte, sent by master
DataByte......sent either by master or slave

t
...DataByte DataByte DataByte FB(Master) ...

Slot 0

Multipartner Round

Last slot of round

Figure 4: Example for a TTP/A multipartner
round

We use the time-triggered fieldbus protocol
TTP/A, since it meets the timing requirements
and supports low-cost implementations of network
nodes. TTP/A is standardized as part of the Ob-
ject Management Group Smart Transducer Inter-
face Standard [14].

5.1 Principles of Operation

In TTP/A, the bus allocation is controlled by a
Time Division Multiple Access (TDMA) scheme.
Communication is organized into rounds consist-
ing of several TDMA slots. A slot is the unit for
transmission of one byte of data. Data bytes are
transmitted in a standard UART format. Each
communication round is started by the master
with a so-called fireworks byte. The fireworks byte
defines the type of the round and is a reference sig-
nal for clock synchronization. The protocol sup-
ports eight different firework bytes encoded in a
message of one byte using a redundant bit code
supporting error detection. Generally, there are
two types of rounds:

Multipartner round: This round consists of a
configuration dependent number of slots and an
assigned sender node for each slot. The config-
uration of a round is defined in a datastructure
called “RODL” (ROund Descriptor List). The
RODL defines which node transmits in a certain
slot, the operation in each individual slot (read,
write, execute), and the receiving nodes of a slot.
RODLs must be configured in the slave nodes
prior to the execution of the corresponding mul-
tipartner round. An example for a multipartner
round is depicted in Figure 4.

Master/slave round: A master/slave round is
a special round with a fixed layout that estab-
lishes a connection between the master and a
particular slave for accessing data of the node’s
IFS, e. g., the RODL information. In a mas-
ter/slave round the master addresses a data
record using a hierarchical IFS address and spec-
ifies one of the following actions: reading from,
writing to, or executing a record.

The master/slave rounds implement the DM
and the CP interface to the transducer nodes. The
RS interface is provided by periodical multipart-
ner rounds. Master/slave rounds are scheduled

t

MP Round MP RoundMS RoundMS Round

Cluster Cycle Time

Real-Time
Service Data

Diagnostic and
Management Data

Figure 5: Recommended TTP/A Schedule

periodically between multipartner rounds as de-
picted in Figure 5 in order to enable maintenance
and monitoring activities during system operation
without a probe effect [5].

6 Case Study

The case study implements a distributed applica-
tion performing a robust distance measurement.
We will show how an application can be mod-
eled according to the presented concepts, provid-
ing XML-based descriptions for services and appli-
cations and defining an actual low-level mapping
of services to the IFS.

6.1 Application Specification

The case study hardware comprises three infrared
(IR) distance sensors and a display. The applica-
tion shall perform a reliable distance measurement
from the three distance sensors, fuse the measure-
ments and display the result onto the display. All
of the three distance sensors have to perform syn-
chronous measurements. According to the preci-
sion of these measurements, on each sensor a confi-
dence value (0 for lowest confidence, 12 for highest
confidence) is calculated as a result of fusing sub-
sequent measurements from the local sensor. The
fusion service performs a confidence-weighted av-
erage fusion [2] on the three value/confidence data
pairs from the distance measurements.

Figure 6 depicts the service model of the ap-
plication. Blocks represent the services and lines
between blocks show the data flow in the model.
The IR sensor service does not receive messages
from other network participants, thus it has no
service requesting linking interface (SRLIF). The
fusion service takes the outputs from the IR sensor
services (i. e., distance and confidence values from
the IR sensors) as inputs, executes the fusion al-
gorithm, and produces the fused distance and an
according confidence value as outputs. Thus, the
fusion service contains both, a service requesting
linking interface (SRLIF) and a service providing
linking interface (SPLIF). Finally, the display ser-
vice takes the outputs from the fusion service for
displaying it. Since the display service does not
send messages to other services, it does not im-
plement a SPLIF.

As indicated in Figure 6, each service (IR sen-
sor, fusion, display) is also equipped with a con-
figuration and planning (CP) interface and a di-

Service Interface Description

IR sensor SRLIF – (not required)
IR sensor SPLIF provide distance and confidence

values
IR sensor CP configure real-time communica-

tion pattern
IR sensor DM calibrate IR sensor (history val-

ues, precision)

Fusion SRLIF receive distance and confidence
values

Fusion SPLIF provide filtered distance and con-
fidence values

Fusion CP configure real-time communica-
tion pattern

Fusion DM configure fusion algorithm

Display SRLIF receive filtered distance and con-
fidence values

Display SPLIF – (not required)
Display CP configure real-time communica-

tion pattern
Display DM – (not required)

Table 1: Description of Service Interfaces

agnostic and maintenance (DM) interface. The
CP interface is used at setup time in order to con-
figure the time-triggered communication messages
among the nodes. The DM interface can be used
for diagnostic and for configuration of local ser-
vices. Table 1 gives an overview on the services
and interfaces of the case study.

Figure 6 also shows the external XML-based
service descriptions that provide a straightforward
formal representation of the properties of the ser-
vice. These descriptions take a similar role as
classes in object oriented programming, since they
act as generic types of services, which are then in-
stantiated in the application.

Note that the respective elements in the XML
representation are intentionally kept simple for
brevity and easier implementation, but it would
be easy to provide semantically richer specifica-
tions for parts of the descriptions, e. g., using XML
schema for describing the layout of the IFS ele-
ments instead of the currently used proprietary
data type formats.

For the application in this case study we can
identify the following application-specific require-
ments:

1. The value shown on the display must be up-
dated at least every 0.1s (dupdate = 0.1s).

2. IR measurements must be synchronized with a
precision of ±1ms.

3. The temporal accuracy dacc of the value re-
ceived by the display service must be 0.05s.

Figure 7 shows fragments from a description of
the case-study application in XML. The service
elements specify the “instantiated” services of the
application model. Each service element defines
an application-wide unique identifier and refers to

<service id="output:display">
<description>Display service</description>
<SRLIF>

<port name="data">
<description>

 Data to be displayed
 </description>

<type>ByteConf</type>
</port>

</SRLIF>
</service>

<service id="fusion:confweightavg">
 <description>Confidence weighted averaging
 </description>
 <SPLIF>
 <port name="result">
 <description>Confidence weighted result
 </description>
 <type>ByteConf</type>
 </port>
 </SPLIF>
 <SRLIF>
 <port name="input" min-count="2">
 <description>
 Input(s) from the source devices</description>
 <type>ByteConf</type>
 </port>
 </SRLIF>
 <dm-info>
 <item name="count_inputs">
 <description>Number of inputs</description>
 <type>Byte</type>
 </item>
 </dm-info>
</service>

<service id="measure:ir">
 <description>IR Measure Service</description>
 <SPLIF>
 <port name="result">
 <description>Output of the measurement</description>
 <type>ByteConf</type>
 </port>
 </SPLIF>
 <dm-info>
 <item name="smoothing_factor">
 <description>
 Average result over n measurements
 </description>
 <type>Byte</type>
 </item>
 <item name="history">
 <description>
 History values used for smoothing</description>
 <type length="255">Byte</type>
 </item>
 </dm-info>
</service>

IR Sensor 1

SP
LIF

CP DM

IR Sensor 2

SP
LIF

CP DM

IR Sensor 3

SP
LIF

CP DM

Fusion

SR
LIF

SP
LIF

CP DM

Display

SR
LIF

CP DM

Figure 6: Conceptual model of case study

the location of the associated service description
file. Since dupdate is a property of the display ser-
vice, it is defined as part of this local service spec-
ification. The rest of the application is described
using dependency elements.

The property elements used in the dependen-
cies specify the relation between the services in
detail (e. g., defining the required precision, upper
and/or lower bounds for values). For example, the
requirement that the three sensor services should
be synchronized within 1ms is expressed by spec-
ifying that service IR1, IR2, and IR3 must run
within a phase of 0± 1ms.

The third application specific requirement is
modeled as a causal dependency between the IR
service and the display service, i. e., the time be-
tween the start of execution of the IR service and
receiving the fused value by the display service
must not be greater than 0.05s.

6.2 Implementation Model

Figure 8 depicts the mapping of services onto net-
work nodes. The network comprises three au-
tonomous nodes hosting the infrared distance sen-
sors, a node for the display, and a master node
that hosts the fusion service. The master node
acts as a reference clock for the time-triggered
communication within the cluster.

All relevant data of a node has been mapped
in the node’s interface file system (IFS). The IFS

forms the SPLIF, SRLIF, CP, and DM interface
for each node. All services, like measurement,
triggering a fusion process, and updating the dis-
played data are mapped as tasks in corresponding
IFS files.

6.3 Evaluation

The resulting system was implemented on five 8-
bit low-cost microcontrollers (Atmel AVR8 fam-
ily) which are interconnected by an ISO 9141 bus
system running at a communication speed of 9600
Bit/s. Figure 9 depicts the hardware used for the
case study, which consists of a master node (im-
plemented on an AT90S8515), display node (AT-
mega128) with display unit, and three IR sen-
sor nodes (ATmega128) with IR sensors (Sharp
GP2D12).

The timing requirements defined in section 6.1
are fulfilled as follows:

• The display was updated every 25.73ms. X
• The sensor measurements are synchronized
within ±0.104ms. X
• The value received by the display service is
based on sensor measurements made 13.54ms be-
fore the instant of displaying. X

<application>
 <service id="IR1" spec-location="measureIR.xml"/>
 ...
 <service id="DISPLAY" spec-location="display.xml">
 <property name="d_update"><dur bound="maxInclusive">
 0.1<unit>s</unit></dur></property>
 </service>
 <dependency kind="connection">
 <source service="IR1" port="result"/>
 <target service="FUSION" port="input"/>
 </dependency>
 ...
 <dependency kind="connection">
 <source service="FUSION" port="out"/>
 <target service="DISPLAY" port="data"/>
 </dependency>
 <dependency kind="causal">
 <instant service="IR1" type="before"/>
 <instant service="DISPLAY" type="before"/>
 <property name="d_acc"><dur bound="maxExclusive">
 0.05<Unit>s</Unit></dur></property>
 </dependency>
 <dependency kind="causal">
 ...
 </dependency>
 <dependency kind="phase">
 <instant service="IR1" type="before"/>
 <instant service="IR2" type="before"/>

<property name="phase">0<Unit>ms</Unit></property>
 <property name="precision">
 <dur bound="maxInclusive">1<Unit>ms</Unit></dur>
 <dur bound="maxInclusive">-1<Unit>ms</Unit></dur>
 </property>
 </dependency>
 <dependency kind="phase">
 ...
 </dependency>
 ...
</application>

Figure 7: Representation of the application with
XML
6.4 Further Aspects of the Case Study

Given a real-time fieldbus system, the above men-
tioned interface concept eases the seamless inte-
gration of simulation aspects. Each functional ser-
vice is represented as an independent object, that
can be mapped to any existing hardware basis.
Due to such encapsulation, each node of the dis-
tributed system can be emulated through a simu-
lation host with the same functional and temporal
behavior.

In experiments, we emulated two out of the
three IR sensors through a simulation node [16].
The simulation unit communicates via its SPLIF
and SRLIF with the other network participants.

7 Related Work

Many approaches for model- or component-based
application modeling only specify components by
describing their functional interface. In order to
support modeling of real-time applications, addi-
tional properties such as timing and other non-
functional properties (dependability, quality of
service [6]) must be taken into account. There
exist several approaches that address the timing

Host5

TTP/A Communication
Network

Host1 Host2

IR-Sensor IR-Sensor IR-Sensor

Host3

Host4

Distance to Measure

S
e

n
s

o
r

N
o

d
e

 1

S
e

n
s

o
r

N
o

d
e

 2

S
e

n
s

o
r

N
o

d
e

 3

M
a

s
te

r/
F

u
si

o
n

N

o
d

e

D
is

p
la

y
 N

o
d

e

Figure 8: Nodes of the case study application

requirements.
Giotto [9] represents a domain-specific high-

level programming language for control applica-
tions that exactly specifies the real-time interac-
tion between software components and the real
world.

The CIP method (described by Fierz in [4]) de-
composes the construction of embedded systems
into a functional and a connection part.

The BASEMENTTM [8] architecture presents
a high-level application modeling approach based
on software circuits, also taking resource require-
ments and timing into account.

Even though these approaches are targeted to
embedded systems they cannot be easily adopted
to ultra-low cost systems. An approach that can
be compared to the IFS-based modeling approach
is the IEEE1451 standard [10] that specifies an ap-
plication model and a digital low-level interface for
smart transducers. In [3] we discuss the main dif-
ferences in the design decisions between both ap-
proaches. For example, IEEE1451 specifies digital
communication lines as common interface mecha-
nisms, whereas the CORBA STI interfacing mech-
anism is based on a shared memory concept.

XML has already been used for describing
interfaces of conventional software components,
e. g., by Bramley et al.[1], in the Web Services
Description Language (WSDL) [17], and, for the
description of communication and computation
properties, in the Communication-Computation
Description Language (CCDL) for ModelJ com-
ponents [7].

8 Conclusion and Outlook

The presented modeling approach builds on
generic services that are hosted in nodes which

Figure 9: Hardware setup of the case study appli-
cation
are interconnected by a real-time system. The
final application is described by a cluster configu-
ration description that specifies the interaction of
services within and across nodes.

The basic concept of the model is the inter-
face file system, which acts as a distributed shared
memory and transparently maps the interfaces to
services from other nodes. The communication
system that performs the updates of the IFS data
is, in principle, free to choose as soon as it fulfills
the requirements of timeliness and determinism
that allow a static analysis of the timing proper-
ties of the distributed application. In this paper
we have used the time-triggered fieldbus protocol
TTP/A for the communication system.

The presented model supports a top-down as
well as a bottom-up approach. In a top-down ap-
proach, the system will first be described by ab-
stract services, which are then grouped into nodes
and implemented as concrete services in a node ac-
cording to the required service specification. The
implementation may also be done automatically
by employing an embedded code generation tool.

The bottom-up approach will involve existing
implementations of nodes that are used as legacy
systems within the application. In this case it is
necessary to verify that the services of the nodes
comply to the application requirements. Since
both, the application requirements and the service
properties of a node can be described formally in
an XML document, there is an inherent support
for automated tools that verify the implementa-
tion to its specification.

The presented case study has shown a simple
application of the modeling approach. Further
steps will include cluster emulation for more com-
plex applications.

In the future we plan to extend the node and

service XML descriptions by tags describing power
consumption, weight, and dependability proper-
ties. Thus, it will be possible to add constraints
on these properties for the application specifica-
tion of an embedded system.

9 Acknowledgments

We would like to thank our colleagues Wilfried Steiner,
Christian Trödhandl and Ingomar Wenzl for their
comments on earlier versions of this work. This
work was supported in part by the Hochschulju-
biläumsstiftung der Stadt Wien via project CoMa
(H-965/2002) and by DOC [doktorandenpro-
gramm der österreichischen akademie der wis-
senschaften].

References

[1] R. Bramley, K. Chiu, S. Diwan, D. Gannon,
M. Govindaraju, N. Mukhi, B. Temko, and
M. Yechuri. A component based services archi-
tecture for building distributed applications. In
Proceedings of the 9th IEEE International Sympo-
sium on High Performance Distributed Comput-
ing, pages 51–62, August 2000.

[2] W. Elmenreich. Sensor Fusion in Time-Triggered
Systems. PhD thesis, Technische Universität
Wien, Institut für Technische Informatik, Vienna,
Austria, 2002.

[3] W. Elmenreich and S. Pitzek. Smart transducers –
principles, communications, and configuration. In
Proceedings of the 7th IEEE International Con-
ference on Intelligent Engineering Systems, vol-
ume 2, pages 510–515, Assuit – Luxor, Egypt,
March 2003.

[4] H. Fierz. The CIP method: component- and
model-based construction of embedded systems.
In Proceedings of the 7th European Engineering
Conference held jointly with the 7th ACM SIG-
SOFT International Symposium on Foundations
of Software Engineering, pages 375–392. Springer-
Verlag, 1999.

[5] J. Gait. A probe effect in concurrent programs.
Software Practice and Experience, 16(3):225–233,
March 1986.

[6] D.K. Hammer and M.R.V. Chaudron.
Component-based software engineering for
resource-constraint systems: What are the
needs? In Sixth International Workshop on
Object-Oriented Real-Time Dependable Systems
(WORDS’01), pages 91–96, January 2001.

[7] R. Hamouche, B. Miramond, and B. Djafri. Mod-
elJ: Component-based modeling for embedded
systems. In European Conference on Object Ori-
ented Programming (ECOOP’01), June 2001.

[8] H. Hansson, H. Lawson, O. Bridal, C. Eriks-
son, S. Larsson, H. Lön, and M. Strömberg.
BASEMENT: An architecture and methodol-
ogy for distributed automotive real-time systems.
IEEE Transactions on Computers, 46(9):1013–
1027, September 1997.

[9] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido,
and W. Pree. From control models to real-time
code using Giotto. IEEE Control Systems Maga-
zine, 23(1):50–64, 2003.

[10] R. Johnson, K. Lee, J. Wiczer, and S. Woods. A
standard smart transducer interface - IEEE 1451.
Presentation held at the Sensors Expo, Philadel-
phia, October 2001.

[11] C. Jones, M.-O. Killijian, H. Kopetz, E. Mars-
den, N. Moffat, D. Powell, B. Randell, A. Ro-
manovsky, R. Stroud, and V. Issarny. Final ver-
sion of the DSoS conceptual model. DSoS Project
(IST-1999-11585) Deliverable CSDA1, October
2002. Available as Research Report 54/2002 at
http://www.vmars.tuwien.ac.at.

[12] H. Kopetz. Composability in the time-triggered
architecture. SAE World Congress 2000, Detroit,
Michigan, USA, March 2000.

[13] H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A. In-
ternational Journal of Computer System Science
& Engineering, 16(2):71–77, March 2001.

[14] Object Management Group (OMG).
Smart Transducers Interface V1.0, Jan-
uary 2003. Specification available at
http://doc.omg.org/formal/2003-01-01 as docu-
ment ptc/2002-10-02.

[15] S. Pitzek and W. Elmenreich. Configuration and
management of a real-time smart transducer net-
work. In Proceedings of the 9th IEEE Interna-
tional Conference on Emerging Technologies and
Factory Automation, volume 1, pages 407–414,
Lisbon, Portugal, September 2003.

[16] M. Schlager. A simulation architecture for time-
triggered transducer networks. In Proceedings of
the First Workshop on Intelligent Solutions for
Embedded Systems (WISES’03), pages 39–49, Vi-
enna, Austria, June 2003.

[17] World Wide Web Consortium (W3C). Web Ser-
vices Description Language (WSDL) Version 2.0
Part 1: Core Language, November 2003. (W3C
Working Draft 10 November 2003).

