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Abstract

World modelling for mobile autonomous robot is usually a process that uses sensor data
as input and provides a model of the robot’s environment as output. In this paper we investi-
gate on sensor fusion methods for robustness and fault tolerance. We evaluate three methods
according to their performance, memory consumption, and required sensor configurations.

The algorithms have been implemented in a four-wheeled autonomous mobile robot that
uses a set of three infrared sensors to build the world model. We present a performance
analysis of the new algorithms based on simulation and experimental data.

1 Introduction

Autonomous mobile robots belong to a class of applications whose operability depends on sensor
data. Sensors are physical devices converting a physical property into a measurement that can be
interpreted by a computer system. Sensors are affected by several sources of error, like sensor
deprivation, limited spatial or temporal coverage, imprecision, cross-sensitivity, and uncertainty.
Thus, dependable applications may not rely on a single sensor. In order to overcome these prob-
lems, the inputs from several sensors are combined to form a dependable representation of the
environment, theworld model.

For mobile robots, usually the world model is represented as a two-dimensional or, especially
for non-flat outdoor environments, a three-dimensional map of the robot’s surroundings. Typical
approaches to generate such a map are the grid-like division of the environment, like the occu-
pancy grid approach of Elfes [1]. Based on this grid, the navigation and path planning system
decides on the robot’s actions. Erroneous or ambiguous sensor readings can be detected and re-
solved by processing redundant sensor information. Redundant information can be evaluated at
different levels of abstraction. In general, if the evaluation is performed at sensor level, the system
complexity can be kept low at the cost of hardware expenses. If evaluation of redundant informa-
tion is integrated into the application, the performance is better, since at this level more knowledge
about the reasonableness of a particular result is available. However, such sanity checks increase
the system complexity since normal processing functions become intertwined with error-detection
and fault-tolerance functions [2].

Therefore, we propose the integration of fault-tolerant functions with the sensor fusion part. At
fusion level fault-tolerant functions can be efficiently applied with moderate complexity. It is the
objective of this paper to investigate on sensor fusion methods for robustness and fault tolerance
for a grid-like representation of a mobile robot’s world model.



The remainder of the paper is organized as follows: Section 2 describes the system architecture
of a sensor grid application and examines the possibilities and benefits of applying sensor fusion at
particular levels in this model. Section 3 presents certainty grid algorithms that can handle faulty
measurements. Section 4 presents the results from the evaluation, while Section 5 discusses the
results. Section 6 concludes the paper.

2 Architectural Considerations

An autonomous robotic system contains at least a set of sensors and actuators and a control ap-
plication. Sensors and actuators are the interface to the process environment and belong to the
transducer levelof the robotic system, while the control application belongs to thecontrol level.

In general, a system is composed out of components, whereas components are subsystems
like sensors, actuators, processing nodes, and communication channels. As a matter of fact, every
single component of a system will eventually fail [3]. Requirements for highly dependable systems
can only be met, if these failures are taken into account.

Some systems, fail in a manner that they still provide a service, however at a degraded level.
For example, a sensor may be affected by cross-sensitivity and fail to render a measurement with
the specified accuracy – however, the measurement contains still information that can be exploited.

In the following sections we focus on sensor fusion methods in order to exploit the sensors’
information under the presence of faults. Fault-tolerant mechanisms handling failures of micro-
controllers and communication lines are beyond the scope of this paper.

A dependable system needs a redundant sensor configuration for the purpose of competitive
sensor fusion. Competitive sensor fusion can be used to achieverobustnessor fault tolerance.
Robustness means that effects of single sensor faults are attenuated in the result. Fault tolerance
means that a defined set of faults does not affect the result at all, thus faults are masked out. The
defined set of faults is called thefault hypothesis. Fault-tolerant systems do not make any guaranty
about their behavior when faults occur that are not defined in the fault hypothesis.

For the implementation of the necessary tasks to handle faults, the designer of a system has
two main options:

Transducer level: Each transducer can be equipped with a set of redundant sensors and a voting
mechanism. Voting can be seen as the simplest method of sensor fusion. The advantage
of this approach is that the other parts of the application are not aware of the extra sensors
and faults of single sensors are masked out. The disadvantage is the great amount of extra
hardware, which results in increased cost, weight, and power consumption, and possible
problems of mutual sensor inference and, since the sensors are geometrically not exactly at
the same place, parallax errors.

Control level: The application-specific approach uses reasonableness checks that use applica-
tion knowledge to judge whether a value is correct or not. Since the dependability operations
are integrated with (parts of) the application, this approach leads to increased design effort
and application complexity.

However, this approach can be more efficient, since dependable behavior could be achieved
with less hardware expenses [4].

In order to achieve a high efficiency and keep the system complexity low, we propose a com-
promise that performs the sensor fusion at an intermediate level between transducer and control
level, the fusion/dissemination level. Thus, we propose a system model that decomposes the real-
time computer system of a mobile robot into three levels [5]: First, a transducer level, containing
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the sensors and the actuators, second, a fusion/dissemination level that gathers measurements,
performs sensor fusion respectively distributes control information to the actuators, and third, a
control level where a control program makes control decisions based on environmental informa-
tion provided by the fusion level. The interface between fusion/dissemination level and control
level can be made transparent to the transducer configuration, such that the control application can
be implemented independently of the employed sensors and actuators [6].

3 Robust World Modelling

We assume a set of sensors (e. g., ultrasonic, infrared, laser) measuring the distance to the nearest
obstacle. The sensors are mounted on the robot and detect obstacles at particular angles. The goal
is to get a map of the robot’s environment containing obstacles and free space.

The sensors are swept around by a motor for each sensor in order to cover a segment of the
robot’s surroundings over time. The segments overlap partially or fully, hence providing some
redundancy in the coverage of the environment. However, although our architecture is capable of
synchronizing all sensors and motors, it is not feasible to turn any two sensors into the same or at
least approximately the same direction at the same time because of interference problems. Thus,
it is not possible to directly compare sensor readings made at the same time.

Furthermore, from the view of hardware architecture it is almost impossible to mount sensors
in a way that the viewpoint angle from a sensor to an object is perfectly identical to the angle of
the replicated sensor. A replicated sensor will thus always be located slightly offside, thus view-
ing objects from different angles. Even if two sensors are working correctly, they may produce
different results. Figure 1 depicts an example for an object that yields ambiguous sensor readings.
Although both sensors are working according to their specification, sensor B detects an object for
the given region while sensor A does not.

Besides these problems, we assume that a sensor may degrade the quality of its service up to
the case where it permanently delivers faulty measurements. For example, one distance sensor
could refuse to detect any object and always reports “no object nearby”.

Note, that the existing certainty grid method based on Bayesian fusion can handle uncertainty,

Sensor A Sensor B

Region with
ambiguous
detection � �

� �
Object to

detect

Figure1: Discrepancy between sensor A and sensor B due to object shape
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but not faulty measurements. Although the effects of occasional sensor faults on the grid can usu-
ally be neglected [7], permanent faults – as assumed in our fault hypothesis – result in a significant
deviation of the representation in the grid from the actual environment.

For the purpose of handling sensor failures where a sensor permanently submits measurements
with incorrect values, we have derived a robust certainty grid algorithm (also presented in [8]) and
two fault-tolerant algorithms for grid generation.

The problem is solved by analyzing the redundant parts of the certainty grid. The certainty
grid is a two-dimensional array of grid cells that corresponds to the robot’s environment. Each
grid cell contains a probabilistic valueocc ranging from 0 to 1 corresponding to the believe that
this cell is occupied by an object:

cell.occ=



0 free
...

0.5 uncertain
...
1 occupied

Figure 2 gives an example for a certainty grid. Figure 2(a) depicts a mobile robot and an
obstacle, while Figure 2(b) depicts the certainty grid. The values in the grid cells are the occupancy
values. For regions that are not seen by a sensor, the resulting occupancy value is 0.5, that is
unknown territory.

3.1 Fault-Tolerant Certainty Grid

The fault-tolerant certainty grid uses a separate entry of an occupancy value for each sensor. Thus,
each sensor produces its own grid independently of the other sensors. The concise world model
is built by fusing all sensor grids. The proposed fault-tolerance algorithm is similar to the Fault-
Tolerant Average algorithm for clock synchronization [9].

The fault-tolerant fusion is performed as follows: First the measurements from all sensors
for each grid cell are gathered. If the sensors do not update the grid cells simultaneously, the
gathering of the measurement will take some time. It is assumed that the environment does not
change significantly during this phase.

Then the set of proposed certainty values for each grid cell are sorted and thet lowest and
t largest values are removed from the set.t represents the maximum expected number of faulty
sensors per measurement. If the set contains at leastt faulty measurements, these will either be
removed from the set, or the value of the faulty measurements lie between two correct measure-
ments, which will not worsen the result.

The remaining measurements are then fused by Bayesian fusion. Assumingconditional inde-
pendenceandmaximum entropy[10], the fusion formula forn values can be expressed as follows:

1
P(cell.occ|S1,...,Sn)

−1 = ∏n
i=1

(
1

P(cell.occ|Si)
−1

)
There must be at least 2t +1 sensors contributing to each grid cell in order to provide enough

data to keep at least one measurement after removing thet extreme values.
The algorithm tolerates at leastt faulty measurements at a time, however drops also many

correct measurements. This results in an information loss in the fused result, which may degrade
the result in the average case.
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(a)Obstacle in front of robot
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(b) Representation in certainty grid

Figure2: Representation of the robot environment in a certainty grid
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3.2 Fault-Tolerant Median Selection

If the number of expected faults should be maximized, we propose the implementation of fault-
tolerance by selecting the median value from the set of measurements for each grid cell. Thus,
if a cell is updated byn sensors, at leastbn−1

2 c faulty measurements are tolerated. The median
method drops even more correct measurements than the fault-tolerant average algorithm, however
has the big advantage of being adaptive to the number of measurements. Thus if the number of
contributing grid cells is not constant for all grid cells, the median method is easily applied to this
situation, while the fault-tolerant average algorithm is not.

3.3 Robust Certainty Grid

The robust certainty grid algorithm fuses the sensor inputs immediately into a single grid. To-
gether with the grid occupancy valueocceach cell stores the main contributor (i. e., the sensor that
updated this cell most recently) of theoccvalue with the cell. This property of each cell is named
the currentownerof the cell:

cell.owner=


0 unknown
1 sensor 1
...
nsensors sensor n

All grid cells are initialized withcell.occ= 0.5 andcell.owner= unknown. When a new
measurement has to be added to the grid, the followingAddToGridalgorithm is executed (Figure 3
lists the algorithm in pseudocode):

• If the particular grid cell has no contributor listed in its owner field or the cell owner is
identical with the contributing sensor, the measurement of the sensor is taken as is and the
cell stores the index of the sensor as new owner.

procedureAddToGrid( sensor, cell )
begin

if (cell.owner = unknown)or (cell.owner = sensor)then
cell.occ := sensor.measurement;
cell.owner := sensor;

else
comparison := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
weight1 :=abs(cell.occ-0.5)∗cell.owner.conf;
weight2 :=abs(sensor.measurement-0.5)∗sensor.conf;
if weight1 = weight2then

cell.occ := (cell.occ+sensor.measurement) / 2;
else

cell.occ := (cell.occ∗weight1+sensor.measurement∗weight2)
/ (weight1 + weight2);

if comparison> CONFIRMATIONTHRESHOLDthen
inc(cell.owner.conf);
inc(sensor.conf);

if comparison< CONTRADICTIONTHRESHOLDthen
dec(cell.owner.conf);
dec(sensor.conf);

contribution := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
if contribution> CONTRIBUTIONTHRESHOLDthen

cell.owner := sensor;
else

cell.owner := unknown;
end

Figure3: Pseudocode of the AddToGrid algorithm
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• If there is a different contributor, the measurement is first compared to the cell valuecell.occ
by calculating a value namedcomparison. Ifcomparisonis above a particularconfirmation
threshold, we speak of aconfirmationof cell value and new measurement. Ifcomparison
is below a particularcontradiction threshold, we speak of acontradictionof cell value and
new measurement. In case of a confirmation, the confidence values of the new sensor and
the owner are both increased. In case of a contradiction, the confidence values of the new
sensor and the owner are both decreased. Ifcomparisonis not significant, it does neither
yield a confirmation nor a contradiction.

• The new occupancy value of the cell is calculated as a weighted average between old value
and measurement. The weights are derived from the respective confidence values and the
significance of the measurement. A measurement is more significant if it has a greater
absolute distance to theuncertainstate (0.5).

• Thereafter, a new owner is selected. Therefore, a valuecontributionis derived. This value
is calculated the same way as the comparison value, but it uses the newcell.occvalue.

• Thecontribution is a measurement of the consistency of the sensor measurement with the
newcell.occvalue. If thecontributionis above a certain threshold, the contributing sensor
becomes the new owner of the cell. Otherwise thecell.ownervalue is reset tounknown.

4 Evaluation

We used two different test environments to evaluate the proposed algorithms, a real mobile robot
and a simulation environment.

We implemented the robust certainty grid in a mobile robot for demonstration purposes. The
mobile robot comprises a model car (“smart car”) equipped with a suit of pivoted distance sen-
sors, two ultrasonic sensors pointing straight forward, an electric drive, and a steering unit (see
Figure 4).

The certainty grid is built from the input of the Sharp GP2D02 infrared sensors. These type of
sensors provide a rather narrow sensor beam, however it delivers measurements with a significant
amount of error. The quality of the infrared sensor data has been analyzed and presented in [11].
Figure 5 depicts the measured distribution of sensor errors for a sensor sample.

The proposed algorithms have been evaluated versus Bayesian fusion in a simulation program
that emulates an arbitrary number of sensors that are swept around in order to map a given artificial
environment. For each sensor we simulated the measured behavior of the sensor error of a real
GP2D02 sensor. We have assumed that there is no correlation between any two measurements of
different sensors.

In both test environments, we used 8-bit integer values to express the probability values be-
tween 0 and 1. Thus, a value of 0 corresponds to thef ree state, 128 means theuncertainstate
while 255 is used to express theoccupiedstate of a grid cell. The certainty grid had a size of 17
times 11 cells whereas each cell corresponds to a 10 cm times 10 cm square.

Figure 6 shows a comparison of the average results from the simulation. The grid has been gen-
erated several times using the proposed algorithms. The fault-tolerant median selection achieved
the lowest deviation, i. e., best performance. All three proposed algorithms achieved a better per-
formance than the standard Bayesian fusion.

The results obtained from the experiment with the smart car are depicted in Figure 7. Fig-
ure 7(a) shows a photograph of the test environment, while Figures 7(b–d) depict the certainty
grids generated from the sensor data using different algorithms. Since the scanning ranges of the
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Figure4: Smart Car: Autonomous mobile robot with pivoting sensors

smartcar’s sensors do not exactly overlap, the fault-tolerant certainty grid algorithm algorithm
was not tested with the smart car.

5 Discussion

All approaches need at least three sensors in order to compensate a single faulty measurement. In
contrast to the fault-tolerant certainty grid algorithm, the robust certainty grid algorithm and the
median selection gain extra sensor space, because the sensor views must overlap only partially.

The fault-tolerant algorithms need to separately store the grid for each sensor (the resulting grid
may produced on demand), thus requirensensors·gridheight·gridwidth memory elements where
each element stores one certainty value. The robust certainty grid needsgridheight· gridwidth
memory elements for the certainty values anddlog2(nsensors+1)e

8 ·gridheight·gridwidthextra bytes of
memory for the storage for the owner values. The memory requirements for the confidence values
can usually be neglected, since the number of sensors normally is remarkably lower than the total
number of cells in the grid. Thus, the memory requirements of the robust certainty grid algorithm
are considerable lower than the memory consumption of the fault-tolerant approach.

In contrast to Bayesian fusion and the fault-tolerant algorithms, theAddToGridprocedure of
the robust certainty grid is sensitive to the ordering of measurements. Thus, when a grid cell is
updated by subsequent measurements, the order of updates makes a difference in the result.
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Figure5: Error histogram for Sharp GP2D02 infrared sensor (from [11]

Robust certainty grid

StandardBayesian fusion

Fault-tolerant certainty grid

Fault-tolerant median selection

Deviation from environment

Figure6: Comparison of average deviation of generated grid from environment

6 Conclusion

We have presented and evaluated two fault-tolerant and one robust method to handle faulty mea-
surements when building a world model in form of a certainty grid map.

In the presence of faulty measurements, all methods show a better behavior than the Bayesian
fusion. From the examined performance and the resource requirements, the robust certainty grid
algorithm and the fault-tolerant median selection are most promising. While the fault-tolerant me-
dian selection shows the best performance, the robust certainty grid algorithm needs a significantly
less amount of memory to store the certainty grid. However, if the certainty grid is only generated
for a limited space while a second data structure is used as a global map, the resource requirements
for the certainty grid will not be as stringent.
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(a)Experiment setup
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Figure7: Comparison of algorithms on real data
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