
Introduction to TTP/C and TTP/A

Wilfried Elmenreich Richard Ipp
Institut für Technische Informatik TTTech Computertechnik
Vienna University of Technology Schönbrunnerstraße 7

Vienna, Austria Vienna, Austria
wil@vmars.tuwien.ac.at ipp@tttech.com

TTP/C and TTP/A are the real-time proto-
cols of the Time-Triggered Architecture (TTA).
Both protocols use a Time-Division Multiple Ac-
cess (TDMA) scheme to enable collision-free bus
allocation.

TTP/C focuses on the interconnection of com-
ponents in order to form a highly dependable real-
time system that is sufficient for critical appli-
cations such as X-by-wire in the automotive and
avionics domains. TTP/C implements a repli-
cated bus system and a guardian that prevents
babbling idiot failures.

TTP/A aims at an easy and economically inte-
gration of sensors and actuators into a network.
TTP/A can be implemented on low-cost micro-
controllers, which suggests each transducer hav-
ing a TTP/A interface. The interface concept of
TTP/A supports a modular design and an easy
integration and management of transducers.

1 Introduction

Distributed electronic control systems promise an
improvement of cost, safety, weight reduction,
and maintainability in several domains. The de-
creasing cost of electronic microcontrollers has led
to a shift from traditional electro-mechanical so-
lutions to distributed electronic control systems in
the automotive domain. Avionic systems depend
on reliable communication systems with a second
focus on weight. The requirements from these do-
mains call for a dependable real-time communica-
tion system that interconnects the control nodes.

Complemental to such a communication system
will be a transducer bus that provides an inter-
face to the various sensors and actuators of such
a system. Besides real-time capabilities such a
transducer bus must also support non-real-time
access for configuration and maintenance.

It is the objective of this paper to describe two
time-triggered protocols that fulfill the above de-
scribed requirements. The TTP/C protocol pro-
vides a highly dependable real-time communica-
tion service with a fault-tolerant clock synchro-
nization and membership service. TTP/C is suit-
able for X-by-wire systems in the automotive and
avionics domain.

The time-triggered fieldbus TTP/A is intended
for the integration of smart transducers in all
types of distributed real-time control systems.
Although the first target are automotive appli-
cations, TTP/A has been designed to meet the
requirements of process control systems as well.
TTP/A provides a well-defined smart transducer
interface to the sensors and actuators of a net-
work. TTP/A has no fault tolerance mechanisms
by default, but supports deterministic real-time
communication with low latency and small jit-
ter. TTP/A supports low cost implementations
on wide set of available component-off-the-shelf
microcontrollers.

The following sections of this paper are orga-
nized as follows: Section 2 explains the principles
of the Time-Triggered Architecture that are com-
mon to both protocols. Section 3 introduces the
principles of operation of TTP/C. Section 4 ex-

Workshop on Time-Triggered and Real-Time Communication Systems

plains the principles of operation of the TTP/A
protocol. Section 5 compares both approaches
and depicts an architecture that integrates both
protocols. The paper is concluded in Section 6.

2 The Time-Triggered
Architecture

The Time-Triggered Architecture (TTA) [1] es-
tablishes a framework for the implementation of
dependable distributed real-time embedded ap-
plications.

The basic building block of the TTA is a node,
which comprises a network interface, a time-
triggered communication controller, and a host
computer. Nodes within a TTA cluster exchange
data using the TTP/C communication protocol,
which uses a TDMA scheme for bus arbitra-
tion. Each node forms a fault containment re-
gion. In order to tolerate the loss of a commu-
nication channel, two replicated channels connect
the nodes to build a cluster.

Host Computer

Communication
Controller

CNI

Bus Guardian

Host Computer

Communication
Controller

CNI

Bus Guardian

Host Computer

Communication
Controller

CNI

Bus Guardian

Host Computer

Communication
Controller

CNI

Bus Guardian

replicated Bus

Fi
el

db
us

w

ith

Tr
an

sd
uc

er
s

Fi
el

db
us

w

ith

Tr
an

sd
uc

er
s

Figure 1: Bus network topology

Currently, the TTA supports two network
topologies, the bus and the star topology. In the
bus topology (see Figure 1) each node is equipped
with a bus guardian component that controls ac-
cess of the node’s communication controller to
the communication medium. The bus guardian
is implemented as a separate component so that
in case of failure of a component the node is pre-
vented from sending outside its assigned time slot,
i. e., preventing a babbling idiot failure of a node.

The star topology implements two star couplers
that act as central bus guardians (see Figure 2).
The star approach has several advantages over the
bus approach:

Host Computer

Communication
Controller

CNI

Host Computer

Communication
Controller

CNI

Host Computer

Communication
Controller

CNI

Host Computer

Communication
Controller

CNI

Central
Guardian

Central
Guardian

Fi
el

db
us

w

ith

Tr
an

sd
uc

er
s

Fi
el

db
us

w

ith

Tr
an

sd
uc

er
s

Figure 2: Star network topology

• Since the star coupler is spatially apart
from the nodes the star topology is resistant
against spatial proximity faults.

• The central guardians isolate arbitrary node
failures. Slightly-off-specification faults,
which are not caught in the bus topology are
handled by performing a signal reshaping of
the sender’s message.

• Since only one bus guardian per channel is
necessary, the star approach is economically
attractive [2].

3 The TTP/C Protocol

TTP/C is a fault-tolerant time-triggered protocol
that provides:

• An autonomous fault-tolerant message trans-
port at known times and with minimal jitter
between the CNIs of the nodes of a cluster by
employing a TDMA strategy on replicated
communication channels.

• A fault-tolerant clock synchronization that
establishes the global time base without re-
lying on a central time server.

• A Membership service to inform every cor-
rect node about the consistency of data
transmission. This service can be viewed as a

2

Introduction to TTP/C and TTP/A

distributed acknowledgment service that in-
forms the application promptly if an error in
the communication system has occurred.

• Clique avoidance to detect faults outside the
fault hypothesis, which cannot be tolerated
at the protocol level.

In TTP/C communication is organized into
TDMA rounds as depicted in Figure 3. A TDMA
round is divided into slots. Each node in the com-
munication system has its sending slot and must
send frames in every round. The frame size allo-
cated to a node can vary from 2 to 240 bytes in
length, each frame usually carrying several mes-
sages. The cluster cycle is a recurring sequence of
TDMA rounds; in different rounds different mes-
sages can be transmitted in the frames, but in
each cluster cycle the complete set of state mes-
sages is repeated. The data is protected by a
24 bit CRC (Cyclic Redundancy Check). The
schedule is stored in the message descriptor list
(MEDL) within the communication controller.

The clock synchronization is necessary to pro-
vide all nodes with an equivalent time concept. In
doing so it makes use of the common knowledge
of the send schedule. Each node measures the
difference between the a priori known expected
and the observed arrival time of a correct message
to learn about the difference between the senders
clock and the receivers clock. A fault-tolerant
average algorithm needs this information to peri-
odically calculate a correction term for the local
clock so that the clock is kept in synchrony with
all other clocks of the cluster. The membership
service uses a distributed agreement algorithm to
determine whether, in case of a failure, the out-
going link of the sender or the incoming link of
the receiver has failed.

The core algorithms of TTP/C have been for-
mally verified to prove their correctness. Real
tests with multi-million fault injections and heavy
ion radiation experiments and experiments with
electromagnetic interferences have been carried
out successfully.

3.1 Fault Hypothesis and Fault Handling

Provided that the components of a properly con-
figured TTP/C based system are in different fault

containment regions, each can fail in an arbitrary
way. Under this assumption the probability of
two concurrent independent component failures is
small enough to be considered a rare event that
can be handled by an appropriate never-give-up
(NGU) strategy. However, it should be noted
that a very prompt error detection mechanism
is needed to ensure that two consecutive single
faults are not becoming concurrent.

As for hardware faults, TTP/C is designed to
isolate and tolerate single node faults. By in-
troducing a bus guardian it is guaranteed that
a faulty node cannot prevent correct nodes from
exchanging data. The bus guardian ensures that
a node can only send once in a TDMA round,
thereby eliminating the problem of babbling id-
iots that monopolize the communication medium.

Moreover, TTP/C implements a never-give-up
strategy (NGU) for multiple fault scenarios: if
a node detects faults that are not covered by
the fault hypothesis, it notifies the application.
The application may now decide either to shut-
down in fail-safe environments or to restart in fail-
operational environments with an agreed consis-
tent state among all nodes of the distributed sys-
tem.

3.2 Fault Tolerance

The mechanisms described above ensure fault tol-
erance at the communication subsystem level in
TTP. These mechanisms of the communication
subsystem guarantee that faulty nodes cannot
prevent correct nodes from communicating and
serve as communication platform for the appli-
cation. At the application level fault tolerance
needs to be implemented by a fault tolerance layer
and an appropriate application design. Fault tol-
erance can be realized by replicating a software
subsystem on two failsilent nodes. Tolerance of
a single arbitrary node failure can be ensured by
TMR (Triple Modular Redundancy) voting.

Both mechanisms will tolerate single compo-
nent faults with the respective failure semantics
and are thus fit to handle both transient and per-
manent hardware faults. To re-establish tolerance
to single component faults despite the presence
of a permanent hardware fault, TTP/C supports
the implementation of transparent hot-stand-by
spares.

3

Workshop on Time-Triggered and Real-Time Communication Systems

Figure 3: Frames, messages, slots, TDMA round, and cluster cycle in TTP/C communication

Fault tolerance is realized by a redundant unit
in the network taking over the function of a defec-
tive unit, without being noticed at the function
level. This is why data consistency is necessary.

3.3 Support for Consistency

Data consistency can facilitate the design and de-
velopment of complex distributed systems consid-
erably. In single node systems consistency can be
taken for granted because data written to memory
is available to all software subsystems at the same
time and all subsystems read the same value, pro-
vided that the node is correct. In distributed sys-
tems it is no longer justified to assume this kind
of consistency. There are two reasons for this:
Firstly, message transmission delays that have an
effect on the current state must taken into con-
sideration; it is not guaranteed that a message
arrives at all receivers at the same point in time.
Secondly, individual nodes may fail or messages
may get lost.

Design and programming in a distributed sys-
tem become laborious and difficult, especially for
complex applications, if state consistency is not
supported at the communication platform level
independent from the application. Application-
independent support of state consistency is not
only capable of relieving the application CPU
of executing consistency protocols but, more im-
portant, of verifying the correctness of complex
consistency algorithm for all applications. This
makes it necessary to implement data consistency
at the communication controller side of the CNI.

The huge number of possible node failures,
communication failures, or differences in message
arrival timing and sequence would make the logic
of the application subsystem large and complex.

Therefore state consistency should be supported
as a basic service of the communication subsys-
tem that satisfies the following properties. Pro-
vided that the fault hypothesis holds, a system is
termed consistent if

• All correct nodes agree on the same data,

• All nodes agree on the data sent by a correct
sender

• All correct subsystems deliver the received
value at the same point in time.

It is assumed that a node sends data to a se-
ries of receiving nodes. TTA is designed to sup-
port communication consistency in the hardware
directly on the protocol level. The mechanisms
that support consistency are described in the fol-
lowing.

3.4 Membership and Acknowledgment

A major philosophy in the design of TTP/C is
that the protocol should transmit data consis-
tently to all correct nodes of the distributed sys-
tem and that, in case of a failure, the commu-
nication system should decide on its own which
node is faulty. These properties are achieved by
the membership protocol and an acknowledgment
mechanism.

Each node of a TTP/C based cluster maintains
a membership list with all nodes that are consid-
ered to be correct. This information is updated
locally in accordance with successful (or unsuc-
cessful) data transmissions and thus reflects the
local view of the receiving node on all other nodes.
With each transmission, each receiver sees and
checks the senders membership that is included

4

Introduction to TTP/C and TTP/A

in the senders transmission or hidden in the CRC
calculation.

Acknowledgment: After transmission, node A
seeks acknowledgment from the other nodes
in order to determine whether the transmis-
sion was accepted at the receiver (on the
communication level). This is achieved by
checking the membership list of the first (and
possibly second) successive sender. If these
nodes show node A in their membership list,
they state that As transmission was success-
fully received. Otherwise, A is informed that
the transmission was unsuccessful. Due to
the time-triggered principle, re-transmission
of the state message is done in the next cycle.

Membership Consistency Check: Due to the
strict round-robin scheme of the TDMA
round, each node sees and checks the mem-
bership lists of all other nodes in one TDMA
round. Each sender with a different member-
ship list is assumed as incorrect. This ensures
a consistent view of all nodes, which accept
each other in the membership, i.e., they com-
municate successfully with one another.

Clique Avoidance: In order to detect multiple
component faults and inconsistencies and
to support the never-give-up strategy, the
clique avoidance mechanism is active. Before
each send operation of a node the algorithm
checks if the node is a member of the major-
ity clique. In case the node is in a minor-
ity clique, this means that a very rare fault
scenario outside the fault-hypothesis has oc-
curred which led to an inconsistency. This
condition is signaled to the application soft-
ware, which can decide whether to initiate
fail-stop or fail-operational activities.

The combination of these algorithms together
with the common time base established by the
clock synchronization provides communication
consistency. This guarantees that all correct
nodes receive the same information at the same
point in time. TTA thus provides the applica-
tion software with a very powerful programming
model that allows efficient handling complex dis-
tributed software systems.

Figure 4: Real-time and on-demand frame parti-
tioning

3.5 Consistency and Events

In addition to the mechanisms for guaranteed,
timely, and consistent transmission of real-time
data, TTA also provides mechanisms for the ex-
change of event data. The need for event data
usually arises from on-demand diagnosis, param-
eter calibration, and debugging.

The TTA event transport mechanism is based
on the allocation of dedicated bandwidth for
event data. A TTP/C frame can carry up to
240 bytes. Part of the frame can be used for
event messages. The event-triggered messages are
piggy-backed on TTP/C frames.

This partitioning of each slot in state data,
event data, and spare bandwidth for future ex-
tensions is depicted in Figure 4.

An important property of this scheme is that
the bandwidth for on-demand transmission is ar-
bitrated only among the event messages on each
node, not between the event messages of all nodes
in the system. This node-local arbitration has
the advantage that it ensures full temporal com-
posability. This cannot be attained in case of
global bandwidth contention. Furthermore, all
fault isolation capabilities of the TTA apply to
these dynamically arbitrated channels. A faulty
node cannot possibly occupy the channels of some
correct node. Furthermore all consistency mecha-
nisms described earlier are also valid for the event
messages. This enables TTA to extend full consis-
tency from time-triggered to event-triggered mes-
sages.

Even though the use of a node-local band-
width is less efficient with respect to the overall
bandwidth than the use of a system-wide band-
width, extensive studies with large car manufac-
turers have shown that the described event trans-
port mechanism satisfies their requirements com-
pletely. A standard diagnostic protocol, for ex-
ample, can be implemented with as little as 0.8%
net bandwidth of a 10 Mbit/s TTP/C system.

5

Workshop on Time-Triggered and Real-Time Communication Systems

In order to support the migration of other soft-
ware systems, an implementation of the widely
used TCP/IP protocol and of the CORBA IIOP
protocol on top of the basic TTP/C communica-
tion service is in progress.

4 The TTP/A Protocol

TTP/A is a low-cost fieldbus protocol for the in-
terconnection of smart transducers. The proto-
col has been standardized in 2002 by the Object
Management Group (OMG) as smart transducer
interface standard[3]. The standard comprises
TTP/A as the time-triggered transport service
within a distributed smart transducer subsystem
and defines a well-defined interface between the
transducers and a CORBA network.

The smart sensor technology offers a number of
advantages from the points of view of technology,
cost, and complexity management [4]:

• Electrically weak non-linear sensor signals
can be conditioned, calibrated and trans-
formed into digital form on a single silicon
die without any noise pickup from long ex-
ternal signal transmission lines [5].

• The smart sensor contains a well-specified
digital communication interface to a sensor
bus, offering “plug-and-play” capability if
the sensor contains a reference to its docu-
mentation in form of an electronic data sheet
as it is proposed in the IEEE 1451.2 Stan-
dard [6].

• It is possible to monitor the local operation of
the sensing element via the network and thus
simplify the diagnosis at the system level.

The internal complexity of the smart-sensor
hardware and software and internal failure modes
can be hidden from the user by well-designed fully
specified smart sensor interfaces that provide just
those services that the user is interested in.

4.1 Interface File System

The information transfer between a smart trans-
ducer and its client is achieved by sharing infor-
mation that is contained in an internal interface

Actuator

Local Sensor
Application

Local Sensor
Application

e.g., Control

Sensor

Distributed Interface File System

Local Sensor
Application

Distributed
Application

Figure 5: Logical Network Structure

file system (IFS), which is encapsulated in each
smart transducer.

The IFS provides a unique address scheme
for transducer data, configuration data, self-
describing information and internal state reports
of a smart transducer [7]. It establishes a sta-
ble intermediate structure that is a solid base for
smart transducer services. The implementation
of the IFS is economically feasible to assign lo-
cal intelligence even to low-cost I/O devices like
8-Bit microcontrollers with 4 Kbytes Flash ROM
and less than 64 bytes of RAM memory.

The IFS is the source and sink for all commu-
nication activities and acts as a temporal fire-
wall [8] that decouples the local transducer ap-
plication from the communication activities. A
time-triggered sensor bus will perform a period-
ical time-triggered communication to copy data
from the IFS to the fieldbus and write received
data into the IFS. The ROund Descriptor List
(RODL), a predefined communication schedule
defines time, origin, and destination of each pro-
tocol communication. The instants of updates
are specified a priori and known by the communi-
cants. Thus, the IFS acts as a temporally specified
interface that decouples the local transducer ap-
plication from the communication task.

Each transducer can contain up to 64 files in its
IFS. An IFS file is an index sequential array of up
to 256 records. A record has a fixed length of four
bytes (32 bits). An IFS record is the smallest ad-
dressable unit within a smart transducer system.
Every record of an IFS file has a unique hierarchi-
cal address (which also serves as the global name
of the record) consisting of the concatenation of
the cluster name, the logical name, the file name
and the record name.

Besides access via the master node, the local
applications in the smart transducer nodes are
also able to execute a clusterwide application by
communicating directly with each other. Figure 5

6

Introduction to TTP/C and TTP/A

depicts the logical network view for such a cluster-
wide application.

4.2 The Three Interfaces of a Smart
Transducer

In order to support complexity management and
composability, it is useful to specify distinct in-
terfaces for functional different services [4]. As
depicted in Figure 6, a smart transducer node can
be accessed via three different interfaces.

Real-Time Service (RS) Interface: This inter-
face provides the timely real-time services to
the component during the operation of the
system.

Diagnostic and Maintenance (DM) Interface:
This interface opens a communication
channel to the internals of a component. It
is used to set parameters and to retrieve
information about the internals of a compo-
nent, e. g., for the purpose of fault diagnosis.
The DM interface is available during system
operation without disturbing the real-time
service. Usually, the DM interface is not
time-critical.

Configuration and Planning (CP) Interface:
This interface is necessary to access con-
figuration properties of a node. During
the integration phase this interface is used
to generate the “glue” between the nearly
autonomous components. The CP interface
is not time-critical.

4.3 Principles of Operation

TTP/A is a time-triggered protocol used for
the communication of one active master with or
among smart transducer nodes within a cluster.
This cluster is controlled by the master, which es-
tablishes a common time base among the nodes.
In case of a master failure, a shadow master can
take over control. Every node in this cluster has
a unique alias, an 8 bit (1 byte) integer, which
can be assigned to the node a priori or set via the
configuration interface.

The bus allocation is done by a Time-Division
Multiple-Access (TDMA) scheme. Communica-
tion is organized into rounds consisting of several

Local Sensor
Application

Sensor or
Actuator

Read and Write Access

Interface File
System

Real-Time Service
Interface

Configuration and
Planning Interface

Diagnostics and
Management Interface

Figure 6: Three Interfaces to a Smart Transducer
Node

TDMA slots. A slot is the unit for transmission
of one byte of data. Data bytes are transmitted
in a standard UART format. Each communica-
tion round is started by the master with a so-
called fireworks byte. The fireworks byte defines
the type of the round and is a reference signal for
clock synchronization. The communication pat-
tern for each round is predefined via the RODL,
which is distributively stored in all nodes. The
protocol supports eight different firework bytes
encoded in a message of one byte using a redun-
dant bit codesupporting error detection. One fire-
works byte is a regular bit pattern, which is also
used by slave nodes with an imprecise on-chip os-
cillator for startup synchronization (see figure 7).

Generally, there are two types of rounds:

Multipartner round: This round consists of a
configuration dependent number of slots and
an assigned sender node for each slot. The
configuration of a round is defined in a datas-
tructure called “RODL” (ROund Descriptor
List). The RODL defines which node trans-
mits in a certain slot, the operation in each

0 1 2 3 4 6 75 od
d

Synchronize Pattern

IRG

UART−Frame 11 − bit

IBG

St
ar

t

L
SB

M
SB

Pa
rt

ity

St
op

TTP/A Slot − 13 bit

Figure 7: Synchronization Pattern

7

Workshop on Time-Triggered and Real-Time Communication Systems

Slot 0 SlotnSlot 1 Slot 2
FB(Master)

FB..................Fireworks Byte, sent by master
DataByte......sent either by master or slave

t
...DataByte DataByte DataByte FB(Master) ...

Slot 0

Multipartner Round

Last slot of round

Figure 8: Example for a TTP/A multipartner
round

individual slot, and the receiving nodes of
a slot. RODLs must be configured in the
slave nodes prior to the execution of the cor-
responding multipartner round. An example
for a multipartner round is depicted in Fig-
ure 8.

Master/slave round: A master/slave round is a
special round with a fixed layout that estab-
lishes a connection between the master and
a particular slave for accessing data of the
node’s IFS, e. g. the RODL information. In
a master/slave round the master addresses a
data record using a hierarchical IFS address
and specifies an action like reading of, writ-
ing on, or executing that record.

The master/slave rounds establish the DM and
the CP interface to the transducer nodes. The
RS interface is provided by periodical multipart-
ner rounds. Master/slave rounds are scheduled
periodically between multipartner rounds as de-
picted in Figure 9 in order to enable maintenance
and monitoring activities during system opera-
tion without a probe effect.

5 Integration of TTP/C and
TTP/A

By integrating both protocols into the time-
triggered architecture, TTP/A and TTP/C well
complement each other. Since both protocols are

t
MP Round MP RoundMS RoundMS Round

Cluster Cycle Time

Real-Time
Service Data

Diagnostics and
Management Data

Figure 9: Recommended TTP/A Schedule

obeying a time-triggered schedule, the TTP/A
and TTP/C system can be synchronized in order
to support synchronous interaction of all nodes in
the network.

Figure 10 depicts a fault-tolerant architecture
with two TTP/C nodes and two TTP/A networks
containing a set of transducers. Each TTP/C
node controls vice versa one master node of one
TTP/A network and a shadow node to the other
TTP/A network. The dotted ovals around the
transducers indicate that these transducers are
redundantly measuring the same real-time entity.
The given example tolerates an arbitrary node
failure of any node in the network. Since mea-
surements from different sensors of the same real-
time entity are not replica deterministic, it is nec-
essary to run an agreement protocol between the
TTP/C application in order to get a consistent
system state.

Besides stand-alone implementations of
TTP/A [9, 10, 11], there exist also some pro-
totype implementations of the TTP/A master
protocol for TTP/C nodes. The most modu-
lar solution comes in the form of a PCMCIA
card [12] which can be used as I/O card in a
TTP/C node (or any other computer system
with a PCMCIA interface). Figure 11 depicts
the size of the PCMCIA gateway card (without
cover). The card hosts a microcontroller and
provides interfaces to a TTP/A and CAN bus.
The microcontroller can be configured via the
PCMCIA interface and runs the TTP/A master
protocol.

Secondary TTP/A Bus

TTP/C Host
Application

TTP/C
Communication

Controller

CNI

TTP/A
Master

TTP/A
Master

 Shadow
Master

 Shadow
Master

TTP/C Host
Application

TTP/C
Communication

Controller

CNI

Primary TTP/A Bus

TTP/C Communication Service

Figure 10: Integrated architecture with two
TTP/C nodes and TTP/A networks

8

Introduction to TTP/C and TTP/A

Figure 11: PCMCIA Gateway Card in compari-
son to size of 2 Euro coin

6 Conclusion

Although TTP/C and TTP/A are both time-
triggered real-time communication protocols,
they are not in a competing situation.

TTP/C focuses on the interconnection of com-
ponents in order to form a highly dependable real-
time system that is sufficient for critical applica-
tions such as X-by-wire in the automotive and
avionics domains.

On the other hand TTP/A supports an easy
integration of sensors and actuators into a net-
work. The cost of a TTP/A transducer node are
typically below the cost of the transducer, which
suggests each transducer having a TTP/A inter-
face. The interface file system concept provides
a common name space for the data items that
are exchanged among the transducer nodes and
a master node. It establishes a stable intermedi-
ate structure that is a solid base for many new
services.

The common principles of TTP/C and TTP/A
support an integration of both systems in order
to create dependable economically feasible control
systems with distributed sensing.

Acknowledgements

This paper was supported by the European IST
project NEXT TTA under contract No. IST-2001-
32111.

References

[1] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs,
H. Kopetz, and C. Temple. Time-Triggered Ar-
chitecture (TTA). Advances in Information Tech-
nologies: The Business Challenge, IOS Press,
1997.

[2] TTTech Computertechnik, Schönbrunnerstraße
7, Vienna, Austria. The Time-Triggered Archi-
tecture – A Platform for Safety-Critical Applica-
tions in the Automotive Industry, 2002. Available
at http://www.tttech.com.

[3] Object Management Group (OMG).
Smart Transducers Interface V1.0, Jan-
uary 2003. Specification available at
http://doc.omg.org/formal/2003-01-01 as docu-
ment ptc/2002-10-02.

[4] H. Kopetz. Software engineering for real-time:
A roadmap. In Proceedings of the IEEE Soft-
ware Engineering Conference, Limmerick, Ire-
land, 2000.

[5] P. Dierauer and B. Woolever. Understanding
smart devices. Industrial Computing, pages 47–
50, 1998.

[6] L. H. Eccles. A brief description of IEEE P1451.2.
Sensors Expo, May 1998.

[7] H. Kopetz, M. Holzmann, and W. Elmenreich.
A universal smart transducer interface: TTP/A.
International Journal of Computer System Sci-
ence & Engineering, 16(2):71–77, March 2001.

[8] H. Kopetz and R. Nossal. Temporal firewalls
in large distributed real-time systems. Proceed-
ings of the 6th IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS ’97),
pages 310–315, 1997.

[9] P. Peti and L. Schneider. Implementation of the
TTP/A slave protocol on the Atmel ATmega103
MCU. Technical Report 28/2000, Technische
Universität Wien, Institut für Technische Infor-
matik, Vienna, Austria, August 2000.

[10] R. Obermaisser and A. Kanitsar. Application of
TTP/A for the Otto Bock Axon bus. Technical
Report 27/2000, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Aus-
tria, July 2000.

[11] R. Kapeller. Design and implementation of a
TTP/A master and gateway controller on a 32-
bit microcontroller. Master’s thesis, Technische
Universität Wien, Institut für Technische Infor-
matik, Vienna, Austria, 2001.

[12] M. Borovicka. Design of a gateway for the in-
terconnection of real-time communication hier-
archies. Master’s thesis, Technische Universität
Wien, Institut für Technische Informatik, Treitl-
str. 3/3/182-1, 1040 Vienna, Austria, 2003.

9

