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The time-triggered paradigm encompasses a set
of concepts and principles that support the design
of highly dependable hard real-time systems.

The concept of a sparse time base enables a
consistent view of events and supports the iden-
tification of a global system state. As a prereq-
uisite, clock synchronization is necessary across
the distributed system. A concise description of
interfaces in both, the value and the temporal do-
main supports a two-level component-based design
approach. For dependability, fault-tolerance can
be implemented by redundancy and fault contain-
ment concepts. The time-triggered communica-
tion provides a predictable timing behavior with
guaranteed timing assumptions under full load
and faulty conditions.

1 Introduction

Hard real-time computer systems are defined by
the fact that they must provide a particular re-
sult at intended points in real time. The correct-
ness of a result depends on its proper behavior
in both, the time and the value domain. It fol-
lows that any real-time computer architecture or
design methodology must be concerned with the
issue of value correctness and the issue of tempo-
ral correctness.

There are two major design paradigms for im-
plementing real-time systems, the event-triggered
and the time-triggered approach. Simplified, an
event triggered system follows the principle of re-
action on demand. In such systems the environ-

ment enforces temporal control onto the system
in an unpredictable manner (interrupts), with all
the undesirable problems of jitter, missing pre-
cise temporal specification of interfaces and mem-
bership, scheduling etc. On the other hand, the
event-triggered approach is well-suited for spo-
radic action/data, low-power sleep modes, and
best-effort soft real-time systems with high uti-
lization of resources. Event-triggered systems do
not ideally cope with the demands for predictabil-
ity, determinism, and guaranteed latencies – re-
quirements that must be met in a hard real-time
system. Time-triggered systems derive control
by the global progression of time, thus use the
concept of time in the problem statement as well
as in the provided solution. This approach sup-
ports a precise temporal specification of inter-
faces and the implementation of “temporal fire-
walls” to protect error propagation via control
signals. Time-triggered systems support member-
ship identification, interoperability, and replica
determinism.

The objective of this paper is to provide an in-
troduction to the time-triggered approach. The
remainder of this paper is structured as follows:
Section 2 introduces the concept of a sparse time
base, the notion of state, real-time entities and
real-time images, and discusses the difference be-
tween state and event information. Section 3 ex-
plains some principles of time-triggered systems
such as a temporal firewall, composability, and
dependability. Section 4 discusses properties of a
time-triggered communication such as synchrony,
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common communication schedule, and clock syn-
chronization. The paper is concluded in section 5.

2 Related Concepts

2.1 Sparse Time

For most real time applications it is sufficient to
model time according to Newtonian physics [1].
Hence, time progresses along a dense timeline,
consisting of an infinite set of instants from past
to future. Logical clocks, as introduced by Lam-
port in [2], usually are imprecise whenever physi-
cal time is essential. However, when global physi-
cal time is used to deduce causality of distributed
events, it is necessary to synchronize the local
clocks precisely.

Clock synchronization is concerned with bring-
ing the time of clocks in a distributed network
into close relation with respect to each other. A
measure for the quality of clock synchronization
are precision and accuracy. Precision is defined
as the maximum offset between any two clocks in
the network during an interval of interest. Ac-
curacy is defined as the maximum offset between
any clock and an absolute reference time.

Analysis of the border conditions allows to pre-
dict a bounded and known precision of an ensem-
ble of synchronized clocks. However, the finite
precision of the global time and the digitalization
error make it impossible to guarantee that two ob-
servations of the same event will yield the same
timestamp. In [3], a solution to this problem is
provided by introducing the concept of a sparse
time base. In this model the timeline is parti-
tioned into an infinite sequence of alternating in-
tervals of activity and silence. Figure 1 depicts
the intervals of silence (s) and activity (a). The
duration of the silence intervals depends on the
precision of the clock synchronization.

The architecture must ensure that significant
events, such as the sending of a message or the
observation of an event, occur only during an in-
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Figure 1: Sparse Time Base

terval of activity. Events occurring during the
same segment of activity are considered to have
happened at the same time. Events that are sep-
arated by at least one segment of silence can be
consistently assigned to different timestamps for
all clocks in the system.

While it is possible to restrict all event occur-
rences within the sphere of control of the real-
time computer system to these activity intervals,
the same is not possible for events happening in
the environment, as for example, perceived by a
sensor. Such events always happen on a dense
timebase and must be assigned to an interval of
activity by an agreement protocol in order to get
a system-wide consistent perception of when an
event happened in the environment [1].

2.2 Time and State

The concept of state is introduced in order to de-
couple the past from the future [4]. Since the
state is defined for a given instant, the notion of
time and state are inseparably coupled.

In real-time computer systems we distinguish
between the initialization state (i-state) and the
history state (h-state). The i-state encompasses
the static data structure of the computer system,
i. e., data that is usually located in the static
(read-only) memory of the system. The i-state
does not change during the execution of a given
application. The h-state is the dynamic data
structure [...] that undergoes change as the com-
putation progresses [5]. The size of the h-state
depends on the level of abstraction; for example
determining the h-state at VLSI level will lead
to a huge amount of information to be regarded,
while the state of the same application might be
also described at high-level language level yield-
ing more compact state information.

The size of the h-state at a given level of ab-
straction may vary during the execution. A good
system design will aim at having a ground state,
i. e., when the size of the h-state becomes zero. In
a distributed system, this usually requires that no
task is active and no messages are in transit.

Replicated components usually need to syn-
chronize their state, whereas a ground state en-
ables an easy integration. The sparse time base
supports a consistent perception of the h-state
among replicated components.
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Basically, the behavior of a (deterministic) sys-
tem can be modeled as a function of its input and
its current h-state (Figure 2). Every system can
also be made stateless by making the state in-
formation explicit as depicted in Figure 3. Thus
the system generates its state as part of its out-
put message and receives the state as part of the
input data. Such a configuration implies higher
communication cost, but eases the integration of
replicated components.

2.3 Real-time Entities and Images

The dynamics of a real-time application are mod-
elled by a set of relevant state variables, so-called
real-time entities that change their state as time
progresses. Examples of real-time entities are the
flow of a liquid in a pipe, the setpoint of a control
loop or the intended position of a control valve. A
real-time entity has static attributes that do not
change during the lifetime of the real-time entity,
and dynamic attributes that change with time.
Examples of static attributes are the name, the
type, the value domain, and the maximum rate
of change. The value set at a particular instant
is the most important dynamic attribute. An ex-
ample of a dynamic attribute would be the rate
of change at a chosen instant.

A continuous real-time entity can be observed
at any instant while a discrete real-time entity can
only be observed in a duration where the state
of this real-time is not changing. A real-time im-
age is a temporally accurate picture of a real-time
entity. The validity of a real-time image is time-
dependent and is invalidated by the progression
of real-time.

2.4 State/Event Information

Information that is exchanged across an interface
is either state or event information. Any property
of a RT entity (i. e., a relevant state variable) that
is observed by the real-time computer system is

input
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(input, h-state)


Figure 2: Implicit h-state

called a state attribute and the corresponding data
state information. A state observation records the
state of a state variable at a particular point of
observation. A state observation can be expressed
by the atomic triple

< Name, tobs,Value >

consisting of the name of the observed state vari-
able, the instant when the observation was made
(tobs), and the observed value of the real-time en-
tity.

For example, the following statement contains
a state observation: “The position of control valve
A was at 75◦at 10:42 a.m.”.

At the sender, state information is not con-
sumed on sending and at the receiver, state in-
formation requires an update-in-place and a non-
consumable read. State information is transmit-
ted in state messages.

A sudden change of state of an RT entity that
occurs at an instant is an event. Information
that describes an event is called event informa-
tion. Event information contains the difference
between the state before the event and the state
after the event. An event observation can be ex-
pressed by the atomic triple

< Name, tevent,Value difference >

consisting of the name of the observed state vari-
able, the instant of the event (tevent), and the
value difference.

For example, the following statement contains
an event observation: “The position of control
valve A changed by +5◦at 10:42 a.m.”.

Event observations require exactly-once seman-
tics when transmitted to a consumer. Events
must be queued on sending and consumed on
reading. Event information is transmitted in
event messages.

input =

input+h-state


output =

f
(input)


Figure 3: Stateless component with explicit h-
state
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2.5 Flow Control

Communication between subsystems exchanges
information in two distinct domains, the time do-
main and the value domain. In the value domain
the message data is transmitted, while in the
time domain control information is exchanged [6].
Control information allows the generating subsys-
tem to influence the temporal control flow [5] of
the other subsystem.

Commonly a communication between two sub-
systems is either controlled by the sender’s re-
quest (push style) or by the receiver’s request
(pull style) [7].
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Figure 4: Push Communication Model (implicit
flow control)
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Figure 5: Pull Communication Model (explicit
flow control)

For explanation let us assume two components
that need to exchange data over a network. Fur-
ther, without restrictions to generality, we assume
the message data to be transmitted from a pro-
ducer component to a consumer component.

In order to transfer data between two compo-
nents, they must agree on the flow control mech-
anism to use and the direction of the transfer.

Figure 4 shows the push method. The producer
is allowed to generate and send its message at any
time, thus flow control is managed by the pro-
ducer. This method is very comfortable for the
push producer, but the push consumer has to be
watchful for incoming data messages at any time,
which may result in high resource costs and diffi-
cult scheduling [8]. Popular “push” mechanisms
are: messages, interrupts, or writing to a file [9].
The push style communication is the basic mech-
anism of event-triggered systems.

In Figure 5 the flow control is on the con-
sumer. Whenever the consumer asks to access
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Figure 6: Temporal firewall

the message information, the producer has to re-
spond on the request. This facilitates the task
for the pull consumer, but the pull producer
has now to be watchful for incoming data re-
quests [8]. Popular “pull” mechanisms are: read-
ing a file, polling, state messages, or shared vari-
ables [9]. The pull style communication is the
basic mechanism of client-server systems. The
Time-Triggered Paradigm implements a hybrid
approach which is explained in Section 3.1.

3 Design Principles

3.1 Temporal Firewall

A temporal firewall [10] is a fully specified inter-
face for the unidirectional exchange of state in-
formation between a sender/receiver over a time-
triggered communication system. The basic data
and control transfer using a temporal firewall in-
terface is depicted in Figure 6. The interface
enables different control flow directions between
sender and receiver.

This model uses a combination of Push and
Pull communication model. Each component
possesses a memory object that acts as a data
source and sink for communication activities.
Components that want to submit data are able to
write the data into this memory using a producer’s
push interface. The transmission of data between
message data is handled by a time-triggered com-
munication model. After transmission the con-
sumer component accesses the data using a con-
sumer’s pull interface.

The values in the memory are state messages
that keep their content until they are updated
and overwritten. The critical ends of the push
and the pull communication rely on the memory
elements. However, because these elements are
usually passive components, the negative effects
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of the push and the pull communication do not
affect the system performance.

To avoid interference between concurrent read
and write operations on the memory element, the
task of the communication system is done by a
time-triggered protocol as described in Section 4.
Since in the time-triggered architecture all nodes
have knowledge about transmission schedules and
access to a global time base, the instant when the
protocol updates a value in the memory element
is known to all components.

3.2 Global Time

The global synchronized time is a requirement
and a feature in time-triggered systems. The
global time must be established by a periodic
clock synchronization in order to enable a time-
triggered communication and computation.

At the start-up of a cluster, an initial clock syn-
chronization is necessary in order to move the sys-
tem from an asynchronous state with unknown
phase shifts between the node’s clocks and an
unknown number of nodes willing to perform an
initial synchronization. The initial clock synchro-
nization depends on asynchronous event-triggered
message exchange, but it is possible to give a
conditional timeliness guarantee. If there is al-
ready an ensemble of nodes that are synchronized
to each other an unsynchronized node may join
this set. Such an integration procedure can be
achieved with guaranteed timeliness. A continu-
ous synchronization of clocks is necessary due to
inevitable drifts between the local clock sources
of distinct nodes.

The synchronized clocks establish the global
time of the cluster. The global time is defined
by a granularity of g, whereas the precision of the
clock synchronization must less than g in order to
have a reasonable global time. The global time is
used to define the instant of an event or to initi-
ate coordinated actions such as access to a shared
resource.

3.3 Composability

In a distributed real-time system the nodes inter-
act via the communication system to distributely
execute a global application. This application de-
pends on the timely provision of the real-time in-

formation at the real-time interface of the nodes.
For an architecture to be composable in the tem-
poral domain, it must adhere to the following four
principles with respect to the real-time service in-
terface [11]:

Independent Development of Nodes: Nodes
can only be designed independently of each
other, if the architecture supports the pre-
cise specification of all node services at the
level of architecture design. In a real-time
system, the real-time service interface must
be concisely specified in the value domain
and in the temporal domain. Furthermore,
the node service, as viewed by the host of
the node, has to by described by a proper
abstract model. This knowledge about this
model is a prerequisite for the independent
development of the node software.

Stability of Prior Services: The stability-of-
prior-service principle ensures that the vali-
dated service of a node – both in the value do-
main and in the time domain – is not refuted
by the integration of the node into a sys-
tem. For example, the integration of a self-
contained node, e.g., an engine controller,
into the integrated vehicle control system
may require additional computational re-
sources (both in processing time and in mem-
ory space) of the node to service this new
communication interface. In such a situa-
tion, failures in the node’s prior services may
occur sporadically during and after the inte-
gration.

Constructive Integration: The constructive inte-
gration principle requires that if n nodes
are already integrated, the integration of
the n + 1. node must not disturb the cor-
rect operation of the n already integrated
nodes. The constructive-integration princi-
ple ensures that the integration activity is
linear and not circular.

This constructive integration principle has
severe implications for the management of
the network resources. If network resources
are managed dynamically, it must be ascer-
tained that even at the critical instant, i.e.,
when all nodes request the network resources
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at the same instant, the timeliness of all com-
munication requests can be satisfied. Other-
wise sporadic failures will occur with a fail-
ure rate that is increasing with the number
of integrated nodes.

Replica Determinism: If fault tolerance is im-
plemented by the replication of nodes, then
the architecture and the nodes must sup-
port replica determinism. A set of replicated
nodes is replica determinate [12] if all the
members of this set have the same externally
visible state, and produce the same output
messages at points in time that are at most
an interval of d time units apart (as seen by
an omniscient outside observer). In a fault-
tolerant system, the time interval d deter-
mines the time it takes to replace a miss-
ing message or an erroneous message from a
node by a correct message from redundant
replicas. The implementation of replica de-
terminism is simplified if all nodes have ac-
cess to a globally synchronized sparse time
base.

3.4 Dependability

Dependability of a computer system is defined as
the trustworthiness and continuity of computer
system service such that reliance can justifiably be
placed on this service [13, page 41]. Dependability
is an overall term that includes availability, relia-
bility, safety, maintainability, and security [14].

Requirements for highly dependable systems
can only be met, if faults are taken into account.
In order to tolerate faults in a distributed system,
two design approaches can be identified [15]:

Redundancy: The system contains redundant
components that enable the system to pro-
vide its service despite the presence of faults.
For example, the system could provide sev-
eral hardware units that offer the same ser-
vice, thus allowing the provision of a service
despite faults.

Recovery: The system’s software is designed to
be able to detect and recover from faults.
Compared to the hardware redundancy ap-
proach this approach does not need extra

hardware, but the time for recovery has to
be taken into account.

In the time-triggered paradigm, both ap-
proaches are supported. Hardware redundancy
provides a transparent fault-tolerant service,
while software recovery is supported for recovery
from transient failures. Field studies show that
the probability of transient failures to occur is
much higher then the probability for permanent
failures [16].

The fault-tolerant service can be maintained
only if the environment complies with the fault
hypothesis, which consists of the assumptions
taken on the failure modes and likelihood of
faults.

If the environment violates the fault hypoth-
esis – in a properly designed application this
must be a rare event – then the system may
fall back to a never-give-up strategy. The never-
give-up strategy is initiated in combination with
the application as soon as it becomes evident
that there are not enough resources available any
more to provide the minimum required service.
The never-give-up strategy is highly application-
specific. For example, if the cause of the outage
is a massive transient fault, then in some appli-
cations the never-give-up strategy may consist of
freezing the actuators in their current state until
a successful restart of the whole system has been
completed.

4 Time-Triggered Communication

The very basic principle of time-triggered com-
munication is that the events of message trans-
mission depend only on the progression of time
and not on the availability of new information.

In a time-triggered distributed system, commu-
nication takes place according to a common peri-
odic communication schedule. Each node has as-
signed durations for sending and receiving within
the period.

All nodes must agree to the communication
schedule and its temporal interpretation and to
the beginning of the cluster cycle. Therefore, a
time-triggered communication needs a sufficient
synchronization among all nodes’ clocks.

The instants at which information is delivered
or received are a priori defined and known to
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Figure 7: Time-Triggered Communication

all nodes of a cluster. These instants define the
deadlines for the application tasks within a host.
Knowing these deadlines, it is in the responsibil-
ity of the host to produce the required results
before the deadline has passed. Any node-local
scheduling strategy that will satisfy these known
deadlines is “fit for purpose”. It is the responsibil-
ity of the time-triggered communication service to
transport the information from the temporal fire-
wall of the sending node to the temporal firewall
of the receiving node within the interval delim-
ited by these a priori known fetch and delivery
instants.

4.1 Communication Interface

From the point of view of complexity manage-
ment and composability, it is useful to distin-
guish between three different types of interfaces
of a node: the real-time service (RS) interface,
the diagnostic and management (DM) interface,
and the configuration and planning (CP) inter-
face [17]. These interface types serve different
functions and have different characteristics. For
the temporal composability, the most important
interface is the RS interface.

The RS interface provides the timely real-time
services to the node environment during the op-
eration of the system. In real-time systems it is a
time-critical interface that must meet the tempo-
ral specification of the application in all specified
load and fault scenarios. The composability of
an architecture depends on the proper support of
the specified RS interface properties (in the value
and in the temporal domain) during operation.
From the user’s point of view, the internals of the
node are not visible at the communication net-

work interface, since they are hidden behind the
RS interface.

The DM interface opens a communication
channel to the internals of a node. It is used
for setting node parameters and for retrieving in-
formation about the internals of the node, e.g.,
for the purpose of internal fault diagnosis. The
maintenance engineer that accesses the internals
of a node via the DM interface must have detailed
knowledge about the internal objects and behav-
ior of the node. The DM interface does not affect
temporal composability. Usually, the DM inter-
face is not time-critical.

The CP interface is used to connect a node to
other nodes of a system. It is used during the
integration phase to generate the “glue” between
the nearly autonomous nodes. The use of the
CP interface does not require detailed knowledge
about the internal operation of a node. The CP
interface is not time-critical.

4.2 Time-Triggered Protocols

Two communication protocols that follow the
time-triggered paradigm are the fault-tolerant
TTP/C [18] protocol and the low-cost fieldbus
protocol TTP/A [19].

The TTP/C protocol provides a highly de-
pendable real-time communication service with
a fault-tolerant clock synchronization and mem-
bership service. TTP/C is suitable for X-by-wire
systems in the automotive and avionics domain.

The time-triggered fieldbus TTP/A is intended
for the integration of smart transducers in all
types of distributed real-time control systems.
Although the first target are automotive appli-
cations, TTP/A has been designed to meet the
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requirements of process control systems as well.
TTP/A supports low cost implementations on
wide set of available component-off-the-shelf mi-
crocontrollers.

5 Conclusion

The time-triggered paradigm is a conglomeration
of concepts and methods that have been elabo-
rated in more than twenty years of research in the
field of dependable distributed real-time systems.
During this period, many ideas have been de-
veloped, implemented, evaluated, and often dis-
carded. What survived is a small set of orthog-
onal concepts that center around the availability
of a dependable global time-base. The guiding
principle has always been to take maximum ad-
vantage of the availability of a global time, which
always is part of the world, even if we do not use
it.

Today, more and more dependable real-time ar-
chitectures follow a time-triggered paradigm in
order to take advantage of the predictable pre-
dictable timing behavior.
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