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Abstract — Since sensor/actuator networks are to be used in error-prone environ-
ments, it is required that media access protocols for such networks are tolerant to
failures. Field studies show that the probability of transient failures to occur is much
higher then the probability for permanent failures.
After the occurrence of a transient failure, a system is in principle able to correctly
execute its algorithms, however, the global system state may be unsynchronized. One
approach to cope with transient failures is the implementation of automatic recovery,
i. e., the system is able to reach correct operation from a faulty system state. In this
paper we discuss the automatic recovery of the TTP/A field-bus protocol if the slave
nodes are forced to an arbitrary position in the TDMA scheme. The analysis will be
verified by using model checking techniques.

1 Introduction

Sensor/actuator networks become more and more important for real-time control appli-
cations, as for example in factory automation. TTP/A1 is a standardized [1] approach for
communication between sensors/actuators in a network that is based on a time-division
multiple-access (TDMA) strategy. Prototype implementations of TTP/A networks [2, 3]
were done via a hard-wired bus configuration. Due to the independence of the physical
layer, wireless implementations are also possible, though not implemented currently. Sen-
sor/acutator networks like TTP/A are to be employed in error-prone environments, where
EMI interferences, cosmic rays, etc. might cause system failure.

A failure is usually caused by afault of some component the system depends on. Faults
can derive from a physical phenomenon, like the breakdown of a computer chip or from
design faults, i. e., a programmer’s mistake or an error in the system specification [4].
Faults can further be classified into transient and permanent faults. In our case we are
regarding transient faults, which are usually related to a physical cause. As a result of
a fault, a system might develop an unintended internal state, a so-callederror. An error
might cause a system to provide a service that deviates from its specification, which will
be called afailure.

1Time-Triggered Protocol for SAE class A applications
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In order to cope with system failures, there are two approaches:
One possibility is to mask failures by using redundant components. However, the suc-

cess of this fault tolerance approach relies on the assumption coverage and the possibility
to apply redundant hardware in spite of cost, weight, and power constraints.

A different approach is to implement automatic recovery of a system. Automatic re-
covery of a system can be seen as the appliance of theself-stabilizationprinciple to fault-
tolerant systems. The self-stabilization concept was introduced by Dijkstra [5], and is
defined in the literature by two properties [6],closureandconvergence. Self-stabilization
claims that a system either stays within a closed set of legitimate, that is good, states
(closure) or, if the system is in an illegitimate (bad) state, it will transit to a legitimate
state within an upper bound in time (convergence). According to [7], we define the state
of a system at any given time as the information needed to determine the behavior of the
system from that time on.

Obviously, if the self-stabilization concept is applied to computer-controlled applica-
tions, the set of illegitimate state has to be closed as well, since it is rather uncertain that
computer systems can be built that tolerate arbitrary damage.

Since the probability of multiple transient faults is much higher than the probability of
permanent faults [8, 9, 10, 11], we focus on transient disturbances and discuss the abilities
for automatic recovery of a TTP/A cluster after multiple transient failures.

Assume a TTP/A system in which an arbitrary number of components is affected by
some external fault. After the fault disappears, the components will in fact be able to
perform their algorithms correctly, but their internal states may become arbitrary and,
thus, synchronization between the components may be lost. To ensure correct system
operation after such transient disturbances, the disharmony has to be detected first and,
in a second step, algorithms have to be executed to correct the system. A simple but
expensive way to correct the system state is a system restart. However, in certain cases
there is no other solution.

As a time-triggered protocol, TTP/A shows a periodical behavior where the critical
elements of the system state at any given time do not influence the future states of the
system after the horizon of one period. This enables the system to recover a correct state
and thus transit to a legitimate state within an upper bound in time.

Although the TTP/A protocol does not have explicit fault-tolerant mechanisms, the ro-
bust behavior due to its inherent automatic recovery makes the low-cost TTP/A protocol
interesting for use in dependable systems.

The objective of this paper is twofold. First we argue that a TTP/A system will converge
towards a correct operation mode if the slave nodes start at an arbitrary position in the
TDMA scheme. Second we explore the applicability of the model-checking tool UPPAAL
to verify our assumptions.

Related work was done in [12] where the automatic recovery mechanisms of the TTP/C
protocol where discussed. [13] discusses the self-stabilizing property of the TTP/C group
membership algorithm and gives model-checking experiments.

This paper is structured as follows: in Section 2 we discuss, how self-stabilization can
be seen as a form of fault-tolerance in general. Then, in Section 3 we give an overview
of the TTP/A protocol. Section 4 gives the definition of a correct protocol execution as
well as the self-stabilization assumption. The formal verification process is described and
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results are listed in Section 5. Finally, we conclude in Section 6.

2 Self-Stabilization as Automatic Recovery

Figure 1, taken from [12] depicts a generic concept of automatic recovery. In the center,
the safe system states are depicted, including states in which failures are masked. The
rings depict unsafe system states, and we say the more outward the ring the less require-
ments for a safe system state hold true. Following this idea, three scenarios are shown in
Figure 1,a,b,c. Scenarioa depicts a minor fault while scenariob shows a more serious
fault. Scenarioc denotes the occurrence of a fault where no transition to a safe system
state is guaranteed, although, the system may reach a safe state by chance. Furthermore,
the figure shows the execution of recovery algorithms towards a safe system state (dotted
line).

safe

. . .

level 1...n

a

b

c

1 2 n. . .

fault
stabilize

Figure 1: Stabilization in a safety-critical system

Automatic recovery usually requires afailure detectionphase as well as afailure cor-
rectionphase. The failure detection phase detects if the system is in a bad state and the
consecutive execution of failure correction algorithms ensure a transition back to a safe
system state.

Definition 1. We call a system self-stable if it provides mechanisms for automatic recov-
ery.

3 Overview on TTP/A

TTP/A is a time-triggered protocol used for the communication of one active master with
or among smart transducer nodes within a cluster. This cluster is controlled by the master,
which establishes a common time base among the nodes. In case of a master failure, a
shadow master can take over control. Every node in this cluster has a unique alias, an 8
bit (1 byte) integer, which can be assigned to the node a priori or set at any time via the
configuration interface.

The TTP/A communication is organized into rounds. Figure 2 shows a round sequence
of four subsequent multi-partner (MP) rounds seperated by inter round gaps (IRG). IRGs
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Figure 2: TTP/A Communication Layer
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Figure 3: Layout of a TTP/A Round

are slots where the TTP/A bus is inactive for at least 13 bit cells. A TTP/A round consists
of one or more frames. A frame is a sequence of bytes transmitted by one node. A byte
is transmitted in a slot consisting of 13 bit cells (one start-bit, eight data-bits, one parity,
one stop-bit and a two bit cell wide inter byte gap (IBG)).

The rounds are independent from each other. Every round starts with a fireworks frame
(FF) sent by the master. The arrival of the fireworks frame is a synchronization event for
every node in the cluster and identifies the round. According to the specification of the
selected round, the fireworks frame is followed by data frames (DF) of specified length
from the specified nodes. Each such frame is described by an entry in the round descriptor
list (RODL) in the file-system of the sender and the receiver(s).

Because the slot position at which each communication action takes place is defined
a priori, no further communication for bus arbitration is necessary. Figure 3 shows the
layout of a TTP/A round.

3.1 Data Transmission

For the transmission of bytes on the TTP/A bus, a standard UART format has been chosen
(see figure 4): One start bit, 8 data bits, one parity bit and one stop bit. The parity for data
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Figure 4: Data Byte

bytes has to be even, whereas for the fireworks byte the parity must be odd. The passive
state on the bus is logical 1 (high). The start of a new byte is marked by the falling edge
of the start bit. The stop bit (logical 1) is followed by the inter byte gap which is, in the
current implementation of TTP/A, 2 bit cells long, for which the bus is also in passive
state (logical 1). So the 11 bit cells long UART frame is embedded in a TTP/A timeslot
of 13 bit cells times.

The length of the inter byte gap (IBG) depends on the chosen baud rate of the network
and its physical size. In faster and more expansive TTP/A networks the length of the IBG
might be up to 5 bit cells long.

A new round always is started by afireworks byte(FB). The FB is transmitted with
odd parity, in contrast to other data bytes which are sent with even parity. There are only
8 valid fireworks bytes (6 for multi partner rounds and 2 for master/slave rounds; see
table 1). The fireworks bytes (protected by a parity bit) have Hamming distance of at least
4.

Firework Meaning Description
0x78 RODL=0 Multi-Partner Round 0
0x49 MSD Master/Slave Data Round
0xBA RODL=2 Multi-Partner Round 2
0x8B RODL=3 Multi-Partner Round 3
0x64 RODL=4 Multi-Partner Round 4
0x55 MSA Master/Slave Address Round (startup sync.)
0xA6 RODL=6 Multi-Partner Round 6
0x97 RODL=7 Multi-Partner Round 7

Table 1: Firework codes

The Master/Slave Address (MSA) fireworks byte has been designed to generate a regu-
lar bit pattern, which can be used by slave nodes with an imprecise on-chip oscillator for
startup synchronization (see figure 5).

The three least significant bits (bit 0...2) of the FB denote the round name. The remain-
ing bits (5 data and one parity bit) are used for error detection.
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Figure 5: Synchronization Pattern

3.2 Properties of the Fireworks Byte

The generation of the firework codes had several requirements (see [14]): First, the byte
0x55 must be a part of the code because this regular bit pattern is also used for initial
synchronization of the slaves’ UARTs. Hamming distance should be maximized and the
resistance against burst errors should be optimal. The firework bytes are all sent with odd
parity and the lower three bits of the code have to be equal to the round number.

Code Generation: Because0x55 must be a member of the code, it was impossible to
use a cyclic redundant code (CRC) with the requested properties. So the code was
created by using an exhaustive search method.

Hamming Distance: The occurring Hamming distances are 4, 6, and 8. So the code will
detect all errors of weight less than 4.

Parity: The code includes an odd parity bit. So it will also detect all errors with an odd
weight above 4.

Burst Errors: Every possible burst error will be detected by the code.

Bulk Errors (force the bus to low or high): It is impossible to get a valid FB by setting
(or clearing) one or more adjacent bits. Therefore, it is impossible to corrupt a FB
by applying a direct voltage impulse to the bus and get another valid FB.

Error Exposure: Due to the fact that the byte is protected by a parity bit during trans-
mission, we have an error exposure≥ 29−8

29 ≥ 98, 43%.

Error Pattern: There exist only 7 error patterns that will not be exposed under cer-
tain circumstances. Four of them have weight 4 (0x02D,0x11C, 0x131, and
0x1C2), two error patterns have weight 6 (0x0DEand 0x0F3), and one has weight
8 (0x1EF).

3.3 Types of Rounds

Multi-partner Rounds: A multi-partner round is used to transmit messages across the
bus from several nodes in predefined slots. Multi-partner rounds are scheduled
periodically by the master. They are used to update real-time images, supporting
the real-time view of the cluster and also to periodically re-synchronize the slaves’
clocks. It is possible to define 6 different multi-partner rounds per cluster.
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Master-slave Rounds: The master of a TTP/A cluster can schedule master-slave (MS)
rounds to read data from an IFS file record, to write data to an IFS file record, or to
execute a selected IFS file record within the cluster.

The master-slave address (MSA) round specifies the node, the operation and the
local address of the desired data within the addressed node. The master-slave data
(MSD) round is used to transmit the data between master and slave.

Broadcast Rounds: A broadcast round is a special form of MS round were the name of
the addressed node in the MSA round is set to0x00. All nodes except those with
node alias0xFF are addressed by such a broadcast. Because more than one node
is addressed in such a round, only write and execute operations are permitted for
broadcast rounds. An example for such a broadcast is thesleepcommand, which
puts all nodes in a TTP/A cluster intosleep mode.

4 Stabilization Assumption

In this paper we focus on the self-stabilization property of the TTP/A protocol if the slave
nodes start at an arbitrary position in the TDMA scheme. Since nodes may send therefor
concurrently on the communication medium, collisions can occur. However, the cyclic
nature of the TTP/A protocol guarantees that the nodes will become synchronized by the
master within an upper bound in time and collisions, therefor cannot occur anymore.

Definition 2. Correct System State: A TTP/A system is in a safe system state if the nodes
execute the TDMA scheme synchronously and therefor no collisions occur on the commu-
nication medium.

Assumption 1. A TTP/A system will converge towards a correct system state within an
upper bound in time if the nodes start at an arbitrary position in the TDMA schedule.

The proof of Assumption 1 will be demonstrated in Section 5.

5 Formal Verification

To get confidence in our assumptions we performed several model-checking experiments
using the tool UPPAAL2K [15]. Model-checking is a method for formal verification
which allows, once an appropriate model is created, a fully automatic verification process,
without user intervention.

5.1 Model Overview

The model consists of timed automaton for the TTP/A slave, the TTP/A master, and the
communication channel. If a slave reaches its sending slot, it transmits asendsignal to
the channel module. The channel module waits for the propagation delay to expire and
signals atraffic event to all slave modules. When the slave stops sending it signals a
stopevent to the channel, which triggers asilenceevent to the slaves. Also, if the master
reaches the point in time to send the fireworks byte it sends atrigger event to the channel
which forwards the trigger to the slaves if no other slave is currently sending. Time is
represented byticks. To keep track of the progress of real time we use a real-time counter,
calledreal-time.
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Figure 6: Frame transition model

5.2 Model Description

5.2.1 Frame Transmission Model

Each transmission of a frame is modelled in the time domain and value domain. The time
domain is represented by two events,startandend. The value domain is modelled by one
or more global variables. The idea is sketched in Figure 6.

5.2.2 TTP/A Slave

The timed graph of a TTP/A slave is depicted in Figure 7. The INIT state is the start-
ing state of the model. The node has to pass immediately from this state to the ongoing
state. It is free to take one of the4 paths, which can be interpreted as the initial ran-
domization of the slot position a node starts in. The slot position is stored in the variable
local slot. After INIT, the decision is done (DECISIONPOINT1) whether the current
slot position matches the nodeID (nodeID). If so, the node’s sending slot is reached and
the node prepares for sending (PRESEND). After PRESEND state expires, asend!
signal is triggered to the channel module and the actualTRANSMIT state is entered.
After transmission, that is, the transmission timeout expires, thestop! signal is trig-
gered to the channel model, indicating that the node has stopped transmission and the
POSTRECEIVE state is entered. After POSTRECEIVE expires, the decision is taken
(DECISION POINT2), whether it was the last slot in the TDMA schedule, if so, the node
transits to NEWROUND state and waits for the fireworks byte sent by the master module
that indicates the beginning of a new round. If at DECISIONPOINT1 it is ascertained
that the current slot position does not match the nodeID, the node receives data from
the channel during the TDMA slot (RECEIVE). After the slot expires, the same state is
reached (DECISIONPOINT2) and the node will either transit to NEWROUND or to
DECISION POINT1. Thelocal slot variable is incremented either duringTRANSMIT
or RECEIVE state, which establishes the cyclic execution of the TDMA scheme.

5.2.3 TTP/A Master

The timed automaton of the TTP/A master is depicted in Figure 8. The master starts
in stateINIT and transits toNEW ROUND during an interval of1 TDMA round. This
behavior simulates a transient failure, i. e., the master starts unsynchronized to the slaves.
PassingNEW ROUND triggers the signaltrigger!, which simulates the sending of the
fireworks byte. After the trigger, the node proceeds to the WAIT state where it remains
for one TDMA round. After one TDMA round the master starts over and triggers the
beginning of a new TDMA round.
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Note that the model could be sophisticated to model the fireworks byte as transmission
with asend! signal as well as asignal! similar to the slave model. However, in its current
form the model is appropriate enough to simulate the collision of the fireworks byte with
regular data sent by some node.

5.2.4 Communication Channel

Figure 9 depicts the communication channel of the TTP/A network. In contrast to the
other models (TTP/A master and TTP/A slave) state transitions are generally done with
respect to real-time, except for the simulation of the propagation delay of the medium
in state SENDINGTWO that allows collisions to happen (if this timer was neglected,
collisions could simply be avoided by listening of the nodes to the medium before sending,
but such a model would not be realistic). The channel model starts in state IDLE upon
reception of a trigger the channel forwards this trigger to all other nodes indicating a
new TDMA round. If the signalsendnodexis received, where xdenotes the node ID of
a respective node, the node transits to state SENDINGONE. If during the propagation
delay no moresendnodexsignal is received, no collision occurred, and thetrafficxsignal
is sent to the respective node (again xdenotes the node ID of a respective node). If,
however duringSENDING ONE a secondsendnodexsignal is received, the node sets
the collision variable to1 and transits to stateSENDING TWO. Again in this node, if
no more signal is received, the channel forwards thetrafficx signals to the nodes, or if
more signals are received, SENDINGTHREE is entered. The same procedure is done
for SENDING FOUR and can be extended analogously for a higher number of nodes. If
during one of the sending states the master sends a trigger signal for a new TDMA round,
this signal is simply ignored by the channel module and thecollisionvariable is set to1.

Note that with this approach it is assumed that a collision of the fireworks byte with
some data from a slave results in an invalidation of the fireworks byte. In the states on the
right hand side of Figure 9 the channel simply waits for thestopnodexsignal. Again (x
denotes the node ID of a respective node). Upon reception of the laststopnodexsignal
the channel sends thesilencexsignal to the respective node indicating silence on the bus.
The collision variable is set to0 upon entering IDLE state again, leaving the channel
stateless.

5.3 Verification Process and Results

Given a UPPAAL2k model, the verification process of given properties is done fully auto-
matically. The properties have to be specified in a logic notation. Assumption 1 is written
as:

A�((real time > ∆) → (collision == 0)) (1)

WhereA� means that the following condition holds true in all states. That is, if the
real-time counterreal time, that simply counts the progress of time, reaches a certain
value, no more collisions will occur.

Table 2 lists results of the model-checking procedure for different parameters of the
model.
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Figure 9: Model of TTP/A channel



STEINER, ELMENREICH

PS TT PR ∆ TDMA rounds
2 2 2 22 1 - PR
5 10 5 75 1 - PR
15 15 15 165 1 - PR

Table 2: Output of different configurations

Concluding from the model-checking results we see that our hypothesis holds. The
upper bound for the stabilization with respect to collisions on the communication channel
is 1 TDMA round.

Table 3 lists different assumptions that were tested against the model under various
configurations to get confidence in the model’s accuracy.

Assumption Description Evaluation
A�(¬deadlock) nodeadlocks occur true

A�collision == 0 nocollisions occur false
A � node1 .NEW ROUND node1reaches NEWROUND state true

Table 3: Evaluation results

6 Conclusion

In this paper we discussed automatic recovery of a TTP/A network after a transient fail-
ure affecting an arbitrary number of TTP/A slaves. It was explained how TTP/A system
reaches a correct system state from an arbitrary system state. This assumption was vali-
dated using a timed automata model of the protocol which was verified using the model-
checking tool UPAAL.

In the future we plan to extend the model of TTP/A to master-slave rounds and perform
detailed model-checking as well as exhaustive fault-injection experiments.
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