
A Model for Reactive Systems Supporting
Varying Degrees of Synchrony

Wilfried Elmenreich Roman Obermaisser Philipp Peti
Vienna University of Technology Vienna University of Technology Vienna University of Technology

Vienna, Austria Vienna, Austria Vienna, Austria
wil@vmars.tuwien.ac.at ro@vmars.tuwien.ac.at php@vmars.tuwien.ac.at

Abstract –This paper presents a model for the integration of
subsystems with a varying degree of synchrony into a heteroge-
nous system. While the synchronous part supports hard real-
time requirements, the quasi-synchronous part is layered on a
synchronous part and inherits properties like bounded drifts,
bounded clock value deviation and improved failure detection.
The synchronous part will be realized with a time-triggered
communication system that supports also an event-triggered
channel for the quasi-synchronous part.
The integration of event-triggered functions with relaxed tim-
ing properties makes sense if legacy systems or complex algo-
rithms that cannot be temporally verified have to be used. De-
pendability is preserved by the failure detector subsystem that
monitors the event-triggered part and extends the fault hypoth-
esis to cover also performance failures.
The main benefit of the proposed architecture is the support
of resource-efficient and economically feasible hard real-time
dependable systems.

I. INTRODUCTION

Due to the many different and, partially, contradicting re-
quirements, there exists no single model for building sys-
tems that interact with a physical environment. Well-known
tradeoffs are predictability versus flexibility and resource
adequate versus best-effort strategies. Thus, the chosen sys-
tem model depends heavily on the requirements of the ap-
plication.
For example, in safety-critical real-time control applications
like X-by-wire systems in the automotive or avionic domain
a system’s inability to provide its specified services can re-
sult in a catastrophe involving endangerment of lives and/or
financial loss an order of magnitude higher than the overall
cost of the system. These hard real-time systems must be
designed according to the resource adequacy policy by pro-
viding sufficient computing resources to handle the specified
worst-case load and fault scenarios. In general such system
are near to a synchronous approach, thus even during these
worst-case scenarios, there are known bounds for computa-
tional and communication activities of correct processors.
In non-critical applications, however, dynamic resource al-
location strategies and resource sharing may be preferred for
economic reasons. Hence, such systems allow timing fail-
ures to occur during worst-case scenarios in order to estab-
lish cost-effective solutions. These systems can be repre-
sented by a model with a reduced level of synchrony.
Many real-time systems require an integration of both ap-

proaches due to economic constraints. Typically a system
provides on of the following generic services, such as com-
municating data in a closed control loop, monitoring real-
time values, system diagnosis, and system reconfiguration.
All these services have different requirements regarding la-
tency, jitter, bandwidth, dependability, consistency, etc. It
will not be economically feasible to implement all these ser-
vices the same way.
For example, consider an autonomous mobile robot that
has strong real-time and fault-tolerance constraints such
as actuator controls, sensor monitoring and reflex actions.
Therefore a hard real-time communication for short mes-
sages with a short and constant dead time is necessary. On
the other hand the robot system also runs complex path-
planning and decision making algorithms, which are diffi-
cult to be brought into a synchronous scheme due to their
complexity. Moreover, monitoring and maintenance tasks
will require relaxed real-time properties but increased mes-
sage sizes.
Another example for heterogeneous timing requirements is
given by systems that contain legacy subsystems. A legacy
subsystem has been developed according to their own rules
and conventions and may therefore not conform to the over-
all system’s synchrony properties.
It is the objective of this paper to present a model that sup-
ports the integration of subsystems with various degrees of
synchrony. The expected benefits from such a model are
the possibility of constructing efficient dependable hard-real
time systems by supporting heterogeneous systems and the
integration of legacy applications with respect to real-time
behavior and fault containment of the overall application.
Such a hybrid approach enhances the behavior of (legacy)
subsystems with reduced synchrony assumptions by the sup-
port of improved failure detectors.
The remaining sections of this paper are organized as fol-
lows: Section II. reviews the basic concepts on distributed
systems that are essential for the presented approach. Sec-
tion III. presents a heterogenous model consisting of a quasi-
synchronous event-triggered subsystem that is put on top
of a synchronous time-triggered system layer. Section IV.
shows the application of the presented ideas in a time-
triggered sensor fusion model that can be used for an au-
tonomous mobile robot. The paper is concluded in sec-
tion V.

���������	�
�

��

����	��������
��������
�

����	����������
�����

���������	�
�

��

����	��������
��������
�

��������
�����
��

���������	�
�

��

����	��������
��������
�

���

���
�������

�����������
�
������
�������

����

��
�������������
�

��������������
�
��������������

Fig. 1: Distributed Computing System

II. CONCEPTS

A. Distributed Systems

A distributed system (as depicted in Figure 1) consists of a
set of nodes interconnected via a common network (com-
munication system). A node can at least be partitioned into
two subsystems, the communication controller (CC) and the
host computer. The interface between these two is called
Communication Network Interface (CNI) [1].
In the context of distributed embedded real-time systems a
complete node seems to be the best choice for a compo-
nent [2], since the component-behavior can then be speci-
fied in the domains of value and time. Thus, a component
is considered to be a self-contained computational element
with its own hardware (processor, memory, communication
interface, and interface to the controlled object) and soft-
ware (application programs, operating system), which inter-
acts with its environment by exchanging messages across
linking interfaces (LIFs) [3].

B. Asynchronous vs. Synchronous Systems

In synchronous systems there are known upper bounds of
the durations of communication and processing activities.
In the absence of such bounds, we speak of an asynchronous
system [4]. According to [5] the degree of synchrony of a
system is defined by the system’s compliance to five condi-
tions:

• S1 bounded and known processing speed

• S2 bounded and known message delivery delay

• S3 bounded and known local clock drift rate

• S4 bounded and known load pattern

• S5 bounded and known difference of local clocks

A synchronous system must satisfy all five conditions. An
asynchronous system does not satisfy any of these condi-
tions. Asynchronous and synchronous system are thus two

extreme levels of synchrony. Many existing systems are
based on a model with an intermediate level of synchrony.
An example for such an intermediate level of synchrony is
thequasi-synchronousmodel of computation [6]. In a quasi-
synchronous system a subset of the five synchrony condi-
tions is satisfied probabilistically, i.e. there is a known prob-
ability that an assumed bound does not hold.

C. The Concept of State

In system theory, the notion of state is fundamental for in-
vestigation of complex systems. In abstract system theory,
the notion of state is introduced in order to separate (de-
couple) the past from the future. Assuming a deterministic
world model,the idea is that if one knows what state the sys-
tem is in, he could with assurance ascertain what the output
will be [7, p. 45]. Hence,the state embodies all past history
of the given system. Apparently, this definition of state by
Mesarovic and Takahara is only meaningful, if the notion of
past and future (time) is relevant for the considered system.

D. Failure Detectors

Inspired by the impossibility result of Fischer et al. [4] re-
search has been focused on the question how much syn-
chrony is needed to achieve consensus in a distributed sys-
tem [8].
Chandra and Toueg [9] proposed an alternative approach
to circumvent the impossibility result. In order to de-
cide whether a process has actually crashed or is only very
“slow”, they augmented the asynchronous model of compu-
tation withunreliable failure detectors, i.e. an external fail-
ure detection mechanism that can erroneously indicate that
a component has failed, only to correct the error at a later
time. A distributed failure detector comprises a set of local
failure detector modules. Each module maintains a list of
processes which are currently suspected to have crashed and
can add or remove processes from this list. Furthermore, the
lists of suspects of two local failure detector modules can be
different at any given time.
Failure detectors can be characterized according to thecom-
pletenessandaccuracyproperties. Roughly speaking, com-
pleteness requires that every crashed process is eventually
suspected and accuracy restricts the mistakes a failure de-
tector can make.
In [10] it has been shown that in order to solveconsensus,
any failure detector has to provide at least as much infor-
mation as theeventually weak failure detector3W . The
definition of a class of failure detectors must be seen as a
specification of the failure detection mechanism [11]. An
optimal algorithm that implements the weakest failure de-
tector is described in [12].
Chen et al. introduce a Quality of Service (QoS) model for
failure detectors [13]. These QoS metrics should describe
the properties of the failure detector in a quantitative way.
Arora [14] describes a failure detector as a system compo-
nent that determines whether some state predicate is satis-
fied by the system state. According to [15], is in general a

difficult task to decide whether a predicate over the global
system’s state does or does not hold without a common time
frame. The sparse time-base as introduced by Kopetz [16]
offers the possibility to draw a irrefutable borderline be-
tween the past and the future, and thus the definition of a
system-wide distributed state.

E. Event-Triggered and Time-Triggered Communication
Systems

Two paradigms can be used for building the communica-
tion system. In an event-triggered (ET) system communica-
tion activities are initiated whenever a significant change of
state occurs. Such a system exploits external control, i.e. the
decision when a message is to be transmitted is within the
sphere of control of the application software in the host. ET
systems allow a flexible allocation of resources, which is
attractive for variable resource demands. However, multi-
ple nodes may contend for bus access as a reaction to event
occurrences. In safety-critical applications it is necessary
to guarantee a predictable communication with low latency
and low jitter to all participants [17].
In a time-triggered (TT) system, activities are initiated at
predetermined points in time. Such a system employs au-
tonomous control. The communication controller decides
autonomously when a message is transmitted. The CNI
forms atemporal firewall, which isolates the temporal be-
havior of the host and the rest of the system. Local changes
of a host cannot invalidate the correct temporal behavior of
the communication system. Therefore a TT communication
system provides composability with respect to the temporal
control [18]. A TT system also helps achieving replica deter-
minism [19], which is essential for establishing fault toler-
ance through active redundancy. The predetermined points
in time of the periodic message transmissions allow error de-
tection and establishing of membership information. Since
the system load is independent of the number of events oc-
curring in the controlled object, the latency jitter is minimal.
The message transmission latency during peak load scenar-
ios is identical to the latency during normal load.

III. INTEGRATING SYNCHRONOUS AND
QUASI-SYNCHRONOUS SYSTEMS

The ET on top of TT service model depicted in Figure 2 aims
at heterogeneous systems that are comprised of a strictly
synchronous part and a part with relaxed synchrony assump-
tions. For the ET subsystem, we choose the layering of the
ET communication channel on top of the synchronous time-
triggered communication channel. In addition to the advan-
tages of this approach described in [20], we enable failure
detection at the ET communication channel through the un-
derlying synchronous time-triggered communication chan-
nel. This model aims at critical systems that include non-
critical subsystems. In case the overall system has evolved
into a system with a higher level of criticality, these subsys-
tems can be legacy systems providing non-critical functions.
Consider for example electronics in the automotive industry,

where computer systems have originally been used primar-
ily for non-safety critical functions (e.g., body electronics).
In the near future car models include controlling computer
systems for safety-related functions such as brake-by-wire
and steer-by-wire functionality [21]. For economic reasons
new communication architectures (e.g., for X-by-wire appli-
cations) will not replace well established ones instantly.
In addition to the ability for reusing existing legacy appli-
cations, the heterogenous system model offers support for
newly developed applications with relaxed synchrony guar-
antees. This is motivated by economic constraints, which
can prevent the resource adequacy policy, which establishes
the foundation for guaranteeing hard bounds for communi-
cation and computational activities as required for justifying
the synchronous system model.
An example for a non-critical service in the automotive do-
main is the collection of statistical field data serving as en-
gineering feedback, which goes beyond conventional main-
tenance logs [22].

A. Synchronous TT Part

The strict synchronous part is formed by a time-triggered
subsystem, which in addition to satisfying the five defining
conditions of synchrony also offers a synchronized global
time base and derives all control signals from the progres-
sion of this global time [23]. A time-triggered communi-
cation protocol establishes a synchronous communication
channel and links the components of the TT subsystem. The
high level of temporal predictability simplifies the provision
of fault-tolerance mechanisms, since components can ex-
ploit the global notion of time to reason about each other’s
progress and state. This fact renders the synchronous sub-
system well-suited for critical system services.

B. Quasi-Synchronous ET Part

The event-triggered subsystem is a delimited, well-defined
part of the overall system, which complies to the quasi-
synchronous model of computation [6]. In other words,
defining synchrony conditions are satisfied in only a prob-
abilistic manner. The ET subsystem offers support for dy-
namic resource sharing and multiplexing of resources. It
is aimed at non-critical applications, for which probabilis-
tic guarantees for the durations of computational and com-
munication activities are accepted for economic reasons.
An event-triggered communication service establishes a
quasi-synchronous communication channel, which provides
a non-zero probability of a violation of timing bounds for
communication latencies. Nevertheless, the event-triggered
communication channel can offer a flexible and resource
efficient communication service that allows applications to
initiate communication activities in order to react to signifi-
cant events.

C. Fault Hypothesis for the System Model

For the ET service model, we extend the fault hypothesis
described in [24], which assumes a single crash/omission

ET

App

ET

App

ET

App

quasi-synchronous channel

TT

App

TT

App

TT

App

synchronous channel

TT subsystem:

bounded computations

bounded communication

bounded drifts

bounded load

bounded clock value difference

failure detector subsystem

for ET subsystem

ET subsystem

TT subsystem

ET subsystem:

- synchrony conditions

satisfied probabilistically

- communication system

provided by unterlying

TT system

Legacy ET

Application

Newly

Created ET

Application

Fig. 2: Model for Integration of Synchronous and Quasi-Synchronous Systems

(CO) failure in any single of the constituent parts, namely:

• node-computers, which comprise a host computer and
an associated communication controller

• and the communication channel.

A single failure implies that a minimum interval of timeδ
lies between successive CO failures. This interval of time
allows the system to regain a consistent state after a CO fail-
ure, prior to the occurrence of the next failure. We extend
the CO model by also considering singleperformance fail-
ures, thereby reaching a crash/omission/performance (COP)
failure model.
A performance failure occurs, if a component fails to re-
spond to input due to an imbalance of message production
and consumption rates. A performance failure results from
the loss of a message through the overflow of an event mes-
sage queue. The queue at the sender’s side overflows, in case
the sender is requesting message transmissions at a rate ex-
ceeding the communication system’s bandwidth, thereby ac-
cumulating more messages than fit into the outgoing queue.
The event message queue at the receiver stores messages of
time intervals in which the sender has produced messages at
a higher rate than the receiver’s rate of message consump-
tions. If more messages have accumulated than fit into the
receiver’s message queue, a performance failure occurs.

D. Error Containment Mechanisms

In order for the synchrony assumptions of the time-triggered
subsystem to hold, rigorous error containment through the

enclosing system for errors of the ET subsystem is essen-
tial. A violation of probabilistic bounds for computational
or communication activities within the quasi-synchronous
subsystem must not affect the correct temporal behavior of
the synchronous part.

E. Failure Detection

Crash failures and omission failures are detected by the un-
derlying synchronous system. Failure detectors for perfor-
mance failures are employed for locally detecting imbal-
ances of message production and consumption rates. By
exchanging the local views with respect to errors via the syn-
chronous channel, it is possible to achieve consensus regard-
ing the set of correct components. This yields membership
service as described in [25].

IV. APPLICATION OF THE MODEL

This section depicts an applications of the presented ideas
in an architecture for an autonomous mobile robot. The ba-
sic model used a synchronous architecture and has been de-
scribed as “time-triggered sensor fusion model” in [26].
The model incorporates properties like cyclic processing,
composable design, and introduces well-defined interfaces
between its subsystems. Figure 3 depicts a control loop
modelled by the time-triggered sensor fusion model. In-
terfaces are illustrated by a disc with arrows indicating the
possible data flow directions across the interface. Physi-
cal sensors and actuators are located on the borderline to
the process environment and are represented by circles. All
other components of the system are outlined as boxes. The

ActuatorsSensors

Environment
Controlled Object

Transducer Level

Fusion/Dissemination
Level

Control Level
Decision Making

Sensor Abstraction Layer

Fault Tolerance Layer Fault Tolerance Layer

Operator

Fault-Tolerant
Image of the
Environment

Man-Machine
Interface

Smart
Transducers

Interface

Smart
Transducers

Interface

Fault-Tolerant
Actuator
Interface

Quasi-Synchronous Subsystem

Enhanced Failure Detection
of the Quasi-Synchronous

Subsystem

Synchronous Subsystem

Fig. 3: Data flow in the time-triggered sensor fusion model

model distinguishes three levels of data processing with
well-defined interfaces between them. Thetransducer level
contains the sensors and actuators that interact directly with
the controlled object. Asmart transducer interfaceprovides
a consistent borderline to the abovefusion/dissemination
level. This level contains fault tolerance and sensor fusion
tasks. Thecontrol levelis the highest level of data process-
ing within the control loop. The control level is fed by a
dedicated view of the environment (established by trans-
ducer and fusion/dissemination level) and outputs control
decisions to afault-tolerant actuator interface. User com-
mands from an operator interact with the control application
via theman-machine interface.
The components of the transducer level consist of smart
transducers with typically small predictable programs.
These components are directly integrated into a synchronous
time-triggered communication system providing hard real-
time capabilities.
In contrast, the decision making systems at control level will
typically consist of complex high-level algorithms (for ex-
ample path planning for a mobile robot). When these part
would be brought into a fully synchronous scheme, the nec-
essary resources on computation time, which depend on
the estimated worst-case execution time of the processes
would lead to a unrealistic requirements in necessary com-
putational time in order to make the system resource ade-
quate. A more resource-efficient system can be build, when
a quasi-synchronous model is applied. This model allows
unbounded load and unbounded computations.
The disadvantage of an asynchronous model of computation
lies in its inability to detect performance failures of proces-

sors. Our model overcomes this deficiency by providing en-
hanced failure detectors by taking advantage of the proper-
ties inherited from the synchronous layer. The failure detec-
tors reside in the fusion/dissemination level together with a
fault-tolerance and a sensor fusion layer.

V. CONCLUSION

We have motivated and discussed the integration of subsys-
tems with a varying degree of synchrony into a heteroge-
nous system. While the synchronous part supports hard real-
time requirements, the quasi-synchronous part is layered
on a synchronous part and inherits properties like bounded
drifts, bounded clock value deviation and improved failure
detection. The synchronous part will be realized by a time-
triggered communication system that supports also an event-
triggered channel as quasi-synchronous part.
The integration of event-triggered functions with relaxed
timing properties makes sense if legacy systems or com-
plex algorithms that cannot be temporally verified have to
be used. Dependability is preserved by the failure detector
subsystem that monitors the event-triggered part and extends
the fault hypothesis to cover also performance failures.
By the example of a synchronous architecture for au-
tonomous mobile robots we have proposed a separation of
functions in the model. Control functions with strong real-
time and fault-tolerance constraints are mapped to the time-
triggered part while complex navigation and decision algo-
rithms reside in the event-triggered part.
The main benefit of the proposed architecture is the support
of resource-efficient and economically feasible hard real-
time dependable systems.

VI. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for valuable comments on the ideas of this paper. This
work was supported in part by the European IST project
NEXT TTA under contract No IST-2001-32111 and by
the Hochschuljubil̈aumsstiftung der Stadt Wien via project
CoMa (H-965/2002).

VII. REFERENCES

[1] H. Kopetz. Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, Boston, Dordrecht, London, 1997.

[2] H. Kopetz. Component-based design of large distributed real-
time systems.Control Engineering Practice - A Journal of
IFAC, 6:53–60, 1998.

[3] H. Kopetz and N. Suri. Compositional design of RT systems:
A conceptual basis for specification of linking interfaces. Re-
search report, Technische Universität Wien, Institut f̈ur Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2002.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process.Journal of
the ACM (JACM), 32(2):374–382, 1985.

[5] P. Veŕıssimo. On the role of time in distributed systems. In
Proceedings of the Sixth IEEE Computer Society Workshop
on Future Trends of Distributed Computing Systems, pages
316–321. IEEE, October 1997.

[6] C. Almeida, J. Rufino, and P. Verı́ssimo. DDRAFT: Sup-
porting dynamic distributed real-time applications with fault-
tolerance. Technical Report CSTC RT-98-02, Centro de Sis-
temas Teleḿaticos e Computacionais do Instituto Superior
Técnico, Lisboa, Portugal, February 1998.

[7] M. D. Mesarovic and Y. Takahara.Abstract Systems Theory,
chapter 3. Springer-Verlag, 1989.

[8] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus.Journal of
the ACM (JACM), 34(1):77–97, 1987.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM (JACM),
43(2):225–267, 1996.

[10] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus.Journal of the ACM
(JACM), 43(4):685–722, 1996.

[11] R. Guerraoui and A. Schiper. Consensus: the big misun-
derstanding [distributed fault tolerant systems]. InProceed-
ings of the Sixth IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, pages 183–188.
IEEE, October 1997.

[12] M. Larrea, A. Fernandez, and S. Arevalo. Optimal imple-
mentation of the weakest failure detector for solving consen-
sus (brief announcement). InProceedings of the nineteenth
annual ACM symposium on Principles of distributed comput-
ing, page 334. ACM Press, 2000.

[13] W. Chen, S. Toueg, and M.K. Aguilera. On the quality of ser-
vice of failure detectors.IEEE Transactions on Computers,
51(1):13–32, January 2002.

[14] A. Arora and S. S. Kulkarni. Detectors and correctors: A the-
ory of fault-tolerance components. In18th International Con-
ference on Distributed Computing Systems (18th ICDCS’98),
Amsterdam, The Netherlands, May 1998. IEEE.

[15] F. C. G̈artner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments.ACM Computing Sur-
veys (CSUR), 31(1):1–26, 1999.

[16] H. Kopetz. Sparse time versus dense time in distributed real-
time systems. InProceedings of the 12th International Con-
ference on Distributed Computing Systems, Japan, Jun. 1991.

[17] J. Rushby. Bus architectures for safety-critical embedded sys-
tems. In Tom Henzinger and Christoph Kirsch, editors,EM-
SOFT 2001: Proceedings of the First Workshop on Embed-
ded Software, volume 2211 ofLecture Notes in Computer
Science, pages 306–323, Lake Tahoe, CA, October 2001.
Springer-Verlag.

[18] H. Kopetz and R. Obermaisser. Temporal composability.
IEE’s Computing & Control Engineering Journal, January
2002.

[19] S. Poledna. Fault-Tolerant Real-Time Systems: The Prob-
lem of Replica Determinism. Kluwer Academic Publishers,
Boston, Dordrecht, London, 1996.

[20] R. Obermaisser. CAN emulation in a time-triggered environ-
ment. InProceedings of the 2002 IEEE International Sympo-
sium on Industrial Electronics (ISIE), volume 1. IEEE, Jan-
uary 2002.

[21] E. Bretz. By-wire cars turn the corner.IEEE Spectrum,
38(4):68–73, April 2001.

[22] A. Deicke. The electrical/electronic diagnostic concept of
the new 7 series. InConvergence International Congress &
Exposition On Transportation Electronics, Detroit, MI, USA,
October 2002. SAE.

[23] J. Rushby. Bus architectures for safety-critical embedded sys-
tems. In T. Henzinger and C. Kirsch, editors,EMSOFT 2001:
Proceedings of the First Workshop on Embedded Systems,
volume 2211 ofLecture Notes in Computer Science, pages
306–323, Lake Tahoe, CA, October 2001. Springer-Verlag.

[24] G. Bauer. Transparent Fault Tolerance in a Time-Triggered
Architecture. PhD thesis, Technische Universität Wien, Insti-
tut für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vi-
enna, Austria, 2001.

[25] R. Obermaisser. Membership service for the ET on top of TT
service model. Research Report 21/2003, Technische Uni-
versiẗat Wien, Institut f̈ur Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2003.

[26] W. Elmenreich and S. Pitzek. The time-triggered sensor
fusion model. InProceedings of the 5th IEEE Interna-
tional Conference on Intelligent Engineering Systems, pages
297–300, Helsinki–Stockholm–Helsinki, Finland, September
2001.

	Introduction
	Concepts
	Distributed Systems
	Asynchronous vs. Synchronous Systems
	The Concept of State
	Failure Detectors
	Event-Triggered and Time-Triggered Communication Systems

	Integrating Synchronous and Quasi-Synchronous Systems
	Synchronous TT Part
	Quasi-Synchronous ET Part
	Fault Hypothesis for the System Model
	Error Containment Mechanisms
	Failure Detection

	Application of the Model
	Conclusion
	Acknowledgments
	References

