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Abstract

A smart transducer network hosts various nodes with different functionality.
Our approach offers the possibility to design different smart transducer nodes as a
system-on-a-chip within the same platform. Key elements are a set of code com-
patible processor cores which can be equipped with several extension modules.
Due to the fact that all processor cores are code compatible, programs developed
for one node run on all other nodes without any modification. A well-defined
interface between processor cores and extension modules ensures that all mod-
ules can be used with every processor type. The applicability of the proposed
approach is shown by presenting our experiences with the implementation of a
smart transducer featuring the processor core and a UART extension module on
an FPGA.

1 Introduction

A smart transducer is a sensor or actuator element that is integrated with a processing
unit and a communication interface [1]. The processing unit transforms the raw sensor
signal to a digital representation, checks and calibrates the signal, and transmits the
digital information to its users via a standardized communication interface. In case of
an actuator, the smart transducer accepts standardized commands and transforms these
into control signals. In many cases, the smart transducer is able to locally verify the
control action and provide a feedback at the transducer interface.

A demonstration of a smart transducer network is presented in the DSoS project
(Dependable Systems of Systems(IST-1999-11585)), where smart transducers are built
with commercial embedded 8-bit microcontrollers featuring integrated standard UART
communication interfaces.

The miniaturization process of sensors and actuators, however, offers completely
new possibilities for system designers. More and more sensor elements are microelec-
tronic mechanical systems (MEMS) that can be integrated on the same silicon die as
the associated microcontroller and the communication controller. Such anintegrated
smart transducerpromises a number of advantages over a discrete design: (i) non-
linear and electrically weak sensor signals can be generated, conditioned, transformed
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into digital form, and calibrated without any noise pickup from long external signal
transmission lines [2], (ii) power consumption of the smart transducer can be reduced
significantly to a level where long-life battery-powered sensors or systems powered
by solar cells are possible, (iii) the size of a smart transducer will decrease to a level
where the size of the package containing sensor, processing unit, and communication
interface is insignificant compared to the size of connectors and casing, (iv) production
costs for large lot sizes are considerably lower than for solutions based on a discrete
design.

At the same time, a developer faces several problems when designing a smart trans-
ducer. Selecting the right microcontroller for a smart transducer is difficult since a
smart transducer network can host various different nodes, where the spectrum ranges
from simple sensor nodes instrumenting a contact switch up to nodes with control
functions or image processing capabilities. Thus, in the majority of cases it will not
be possible to select a single processor that economically covers all expected applica-
tions [3]. Moreover, if the smart transducer should provide real-time functionalities,
commercial processor architectures are often not appropriate, since they are optimized
for average throughput. Worst-case analysis for such systems, which is essential for
real-time applications, lead to unrealistically pessimistic estimations [4]. Finally, the
smart transducers, although different in processing power and interaction capabilities,
should support interoperability via a standard communication interface.

It is the objective of this paper to present an architecture for integrated smart trans-
ducers that meets the above described requirements on scalability and interoperability.
The paper is structured as follows: Section 2 describes the architecture of a smart
transducer node in general. Section 3 describes a modular approach to build integrated
smart transducers using a microprocessor core with various extension modules. Sec-
tion 4 provides information about implementations of the processor core hardware, an
extension module, that protects processor resources against unauthorised accesses, and
a communication extension module. Section 5 gives an overview of related work in
the field, while the paper is concluded in Section 6.

2 Smart Transducer Architecture

The generic smart transducer architecture introduces a two-level design approach [5]
that reduces the overall complexity of a smart transducer by separating transducer-
specific implementation issues from interaction issues between different smart trans-
ducers.
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Figure 1: Generic Smart Transducer Architecture
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Figure 1 depicts the two functionalities as protocol part and local application. The
protocol part instruments the network interface. Each network interface of a smart
transducer must provide some standard functionalities to transmit data in a temporally
deterministic manner in a standard data format, provide means for fault tolerance, and
enable a smooth integration into a transducer network and its application.

For example, the smart transducer interface (STI) [6] standard specifies some ser-
vices for smart transducers. It comprises a time-triggered transport service within
the distributed smart transducer subsystem and a well-defined interface to a CORBA
(Common Object Request Broker Architecture) environment. The key feature of the
STI is the concept of an Interface File System (IFS) that contains all relevant trans-
ducer data. This IFS allows different views of a system, namely a real-time service
view, a diagnostic and management view, and a configuration and planning view. The
interface concept encompasses a communication model for transparent time-triggered
communication. A time-triggered sensor bus will perform a periodical time-triggered
communication to copy data from the IFS to the fieldbus and write received data into
the IFS. Thus, the IFS is the source and sink for all communication activities. Further-
more, the IFS acts as a temporal firewall [7] that decouples the local transducer ap-
plication from the communication activities. Data is transmitted in a standard UART
format.

The general architecture including the protocol part applies for every smart trans-
ducer, thus implying a generic implementation approach. The realization, however,
faces the following problems: Due to the differing requirements on code size and pro-
cessing power for the different local applications, it is not economic to select a single
processor architecture. Moreover, each smart transducer type has its own I/O hardware
configuration. An architecture should support, on the one hand, the configuration of
many types of I/O extensions, and, on the other hand, provide a consistent interface
to these modules in order to enable software reuse. Building smart transducers on
commercial hardware is possible, but due to the various microcontroller types and I/O
interfaces, programming and reuse is complex and error-prone.

3 Implementation Concept

As explained in the previous section a smart transducer network comprises various
nodes with different requirements in terms of processing speed, size, interfaces and
so on. Due to this fact different standard microcontrollers have to be used within
the same network - the programmers have to know instruction set and peculiarities of
each microcontroller type in order to be able to implement, administrate, and main-
tain such a network. Furthermore, software pieces with the same functionality, e.g.
the communication protocol, have to be implemented and tested for each microcon-
troller type separately. This proves to be especially difficult in the field of real time
applications, where not only the correct functionality, but also the temporal behav-
ior has to be considered. Usually, the employment of different hardware components
requires a redesign of the software. To overcome these problems we designed a mod-
ular construction system, consisting of a set of processor cores and a set of different
extension modules. The processor cores are all fully code compatible, but have differ-
ent features in terms of computational power, required silicon area, memory-size and
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power consumption. Additionally, every activity within these processors is temporally
predictable, which facilitates the design of real-time applications. [8]

All processor cores provide a generic interface to extension modules, which can
be used to fit the microcontroller to different requirements. Figure 3 depicts the idea
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Figure 2: Construction of an individual microcontroller

behind that approach.
It difficult to verify the correct functionality of a smart transducer due the fact,

that not only the value domain, but also the temporal domain has to be considered.
Especially the temporal aspect is critical. To evaluate the functionality of such a smart
transducer in a network long simulation periods are necessary. Such a simulation
would require an unacceptable amount of time. Thus, it is particularly important to get
prototypes of smart transducers at early development stages. The use of FPGAs is ideal
for this purpose. The smart transducer can be integrated into a real network and tested
over longer periods of time. Therefore, we test prototypes of the assembled network
nodes on FPGA test boards. Since all employed components of our architecture are
described as VHDL models it is easily possible to implement a proved system in a
silicon chip.

3.1 Processor Cores

Currently, two processor cores, named SPEAR and NEEDLE [3], have been imple-
mented by our group. While the SPEAR core is designed to support moderate arith-
metic performance, NEEDLE pays attention to a compact design. A further processor
core LANCE supporting high computational power is planned. All processor cores
are absolutely code compatible - this means that they not only use the same instruction
set, but also the same exception handling, an identical memory architecture (from a
logical point of view) and the same status and configuration registers. Due to this fact
the programming code can be interchanged between different processor cores without
any modification.

3.1.1 SPEAR processor core:

SPEAR features a 16 bit processor that executes instructions over a three-stage
pipeline. The processor core comprises a set of 32 registers. 26 registers are gen-
eral purpose registers and 6 registers have a special function: three are coupled with
dedicated instructions to efficiently implement stacks and the other three registers are
used to save the return address in case of a subroutine call or an exception. Data and
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instruction memory are both 4 kB in size. It is also possible to add up to 128 kB
external instruction memory and 127 kB external data memory. The upper 1 kB of
the data memory is reserved for the memory mapped extension modules. In this way
an extremely simple and efficient access to these modules is provided. The SPEAR
processor supports 32 exceptions, of which 16 are hardware exceptions (= interrupts)
and 16 can be activated by software (= trap). The exception vector table contains the
pointers to the exception service routines.
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Figure 3: Architecture of SPEAR and NEEDLE processor cores

3.1.2 NEEDLE processor core:

NEEDLE is absolutely code compatible with the SPEAR processor, but the implemen-
tation is more compact. NEEDLE has no pipeline and executes instructions within
several clock cycles. Due the fact that during each clock cycle at most two memory
accesses are performed, it was possible to map the entire memory architecture (in-
struction memory, data memory, register file and exception vector table) into a single
4 kB dual-ported memory block. Moreover, the possibility to bind up to 64 different
extension modules to the data memory area still exists. The block diagram of SPEAR
and NEEDLE is shown in figure 3.

3.2 Extension modules

To ensure scalability the processors are easily expandable by different extension mod-
ules, such as communication interfaces (sensors, actuators, PS/2, VGA, parallel port,
USB, network interfaces, etc.) or application-specific extension modules such as a
floating point unit or a protection unit. The extensions are mapped to the top address
space of the data memory. For the processors the extension modules are only storage
positions that can be accessed with simple load and store instructions. Therefore, from
the processor’s point of view it makes no difference, whether the extension is a simple
sensor, actuator or a complex floating-point unit. Due to the well-defined generic in-
terface [3] modules developed for one processor core can be used by all other cores. It
is also possible to instantiate an extension module more than one time. For example, a
smart transducer node can be equipped with several UART modules, having different
mapping addresses in the data memory.
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To illustrate the possibilities offered by the extension modules, two modules, the
protection control unitand a customizedUART will be described in the following.
The first one extends the functionality of the processor core, the second one shows,
how problems existing in commercial UART modules can be solved by a customized
UART implementation.

3.2.1 Protection Control Module:

The software that runs on a smart transducer node comprises a protocol code and an
application part. As explained in section 2 the local application should not have direct
access to the network bus. To guarantee that such an illegal access cannot happen, we
have to ensure that only the protocol software can access the communication module.
Such a protection mechanism is provided by theprotection controlextension module.

The protection control module allows assigning aprotection levelto individual data
memory blocks, instruction memory blocks, registers and to extension modules. The
module supports four protection levels: zero, low, high, and supervisor protection. As
depicted in figure 4 the module comprises four look-up tables, which are are mapped
into the data memory of the processor. Via these look-up tables a protection level to
each resource can be assigned. The addresses of instruction memory, data memory,
register file and extension modules are directly connected to the input of the respective
look-up table. The module controls the access by comparing the output of each look-up
table (i. e., the assigned protection level) with the current protection level defined in the
processor status register (i. e., protection level of the current task) and by evaluating the
control signals associated to each address. When a process tries to access a resource
with the current protection level being lower than the protection level of the resource,
an access-violation exception is generated.
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Figure 4: Protection control module

3.2.2 UART Extension Module:

In [9], we have examined the applicability of common UARTs for real-time commu-
nication and identified the following problems: the arithmetic error, the error due to
frequency-drift and the send jitter problem. Therefore, we have developed an alterna-
tive VHDL implementation of a UART unit that resolves the intrinsic UART problems
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and allows the implementation of more efficient protocols, respectively the employ-
ment of cheap on-chip oscillators with large drift rates.

The UART module is able to work with an RC-oscillator that provides a frequency
of 1 MHz ±50% and a frequency-drift of±10% per second. As the baud rate is
influenced by this drift it has to be continuously adjusted. To deal with the baud rate
drift rate problem the UART module offers a synchronization mode. In this mode
the UART can be forced to synchronize periodically, like it is necessary in fieldbus
protocols such as TTP/A [10] or LIN [11]. For synchronization the UART searches for
a regular bit pattern as it is outlined in Figure 5. The synchronization pattern allows
the UART to determine the used baud rate.
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Figure 5: Synchronization pattern

A substantial divergence from the desired transfer rate is caused by the arithmetic
error in baud rate setting, i. e., the accuracy of a selected baud rate depends heavily on
the selected clock source. Therefore, it is necessary to select special crystal frequencies
(e. g. 1.8432· 106) to be able to use standard communication rates [9]. Our UART
module uses an extrapolation mechanism that minimizes this rounding errors.

As a further problem, many commercial UARTs exhibit intrinsic delays of the
sending instant of a transmission because the UART baud rate generator periodically
generates potential transmission points. Thus, the start of a transmission is delayed
until the next transmission point which is perceived as a send jitter by an outside user.
The send jitter can be a problem for real-time communication.

Our UART module overcomes this disadvantage by a different design approach.
Thus, the UART module starts with the message transmission immediately after re-
ceiving the transmit signal transmission, which almost completely eliminates the send
jitter.

The bus interface contains a hardware filter that preprocesses the input signal from
the bus to achieve robustness against spike interferences. Additionally, oversampling
has been implemented.

Figure 6 illustrates the block diagram of the UART extension module.

3.3 Development Tools

For software development an assembler is implemented. In the next step we will port
the GNU C compiler to our processor architecture. Further asystem design tooland
a debuggerare available to support assembling and testing of smart transducers. The
system design tool provides software models of the processor cores and the extension
modules. These components can be connected in order to form the desired smart
transducer. The entire system could be simulated and verified. It is also possible
to define own components in a high level language based on C++. In this way it is
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Figure 6: Block diagram of the UART extension module

possible to evaluate a virtual hardware setup and to decide whether the real hardware
should be build or not.

The debugger provides a high degree of flexibility, since it is easily adaptable to
different purposes. For example it is possible to set breakpoints not only to a program
counter value but also to sensor values or bus signals. Furthermore the debugger allows
also the validation of real-time applications. Both, the system design tool and the
debugger are controlled via the same graphical user interface. A detailed description
of the system design tool and the debugger can be found in [12, 13].

4 Experiences

We have used an Altera APEX 20KE300EQC240-1X FPGA on a Digilab prototyping
board for implementing the described architecture. The modular approach has been
successfully tested by composing the two processor cores with several extension mod-
ules.

The processor core properties are compared in Table 1. While SPEAR computes
one instruction per clock cycle at a maximum clock frequency of 40 MHz yielding
40 MIPS (million instructions per second), NEEDLE performs one instruction within
either two or three clock cycles leading to an average performance of 10 MIPS at a peak
clock frequency of 25 MHz. The size of the processors is given by Logic Elements
(these are the smallest hardware units in the APEX FPGA) and the instruction and data
memory. Due to the different memory size of the two processor cores, the necessary
silicon area for the NEEDLE core will be expected to be one half of that of the SPEAR
core. The values for the power consumptions are estimates given by the Synopsys
design analyzer tool.

The size of the extension modules heavily depends on their functionality. For ex-
ample, the protection control module needs 279 LE, while the UART module acounts
for 699 LE.

As communication interface, we have implemented software for a time-triggered
UART communication that conforms to the OMG Smart Transducer Interface stan-

8



Table 1: Comparison of the SPEAR and the NEEDLE processor
SPEAR NEEDLE

Maximum Speed 40 MHz/40 MIPS 25 MHz/10 MIPS
Logic Elements
(LE)

1318 1010

Instr-/Data Mem 4/4 KB 2/1,92 KB
Reg File 26 GPR - 6 SPR 26 GPR - 6 SPR
Interrupts/Traps 16/16 16/16
Instructions 80 80
Power consump-
tion

113 mW 62 mW

dard. The implementation is supported by the UART module that, in contrast to most
commercial UART units, provides temporal predictability over the send instant of a
message and a minimization of the arithmetic error in baud rate setting. The improved
UART module greatly reduces the implementation effort for the smart transducer pro-
tocol software.

5 Related Work

The core-based system design approach is discussed by Gupta and Zorian in [14].
Their work outlines the advantages of using predesigned, preverified, silicon circuit
modules as building blocks of large and complex applications on a single silicon die.
ALTERA1 offers a set of processor cores for embedded applications called NiosR©

following a similar idea as our proposed approach. The main difference for both ap-
proaches lies in its real-time capabilities. WCET analysis for code segments running
on the Nios processor version 2.0 or higher is difficult, since the execution time of a
single instruction depends on the preceding and the following instruction, the operands
used, how recently operands were modified and other additional factors. In contrast
our processor cores provide a fully temporal predictable behavior, which make them
more suitable for to be used in real-time smart transducer networks.

Related work on sensor integration with VLSI circuitry can be found throughout
the literature. Main research focuses on wide bandgap semiconductor materials [15],
thin film sensors [16], and MEMS devices [17]. These approaches are related to the
work presented in this paper as they outline possibilities for further on-chip I/O mod-
ules. The examined literature on smart sensor technologies, however, usually neglects
the integration of a transducer with an appropriate communication network interface.

Besides the OMG STI, there are some other communication standards for smart
transducers. Many fieldbus protocols, such as Controller Area Network, Local Area
Network, Local Interconnect Network, Profibus, Foundation Fieldbus, WorldFip, and
Interbus also provide possible solutions for the communication interface. The main
differences between these approaches are in real-time features and implementation
complexity. We have chosen the OMG STI since it provides hard real-time capabilities

1http://www.altera.com/products/devices/nios/nio-index.html
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while having a low implementation complexity. In general, our architecture supports
the easy adaption to a different communication interface by exchanging or adding
communication I/O modules.

Another related standard is the IEEE 1451 smart transducer standard, which is
not another fieldbus protocol but can be treated in the same way in our case, since
IEEE 1451 specifies a 10-wire transducer-independent interface [18], which could be
implemented as a communication extension module in our architecture.

6 Conclusion

This paper presented an architecture for the implementation of integrated smart trans-
ducers, i. e., a sensor or actuator element, a microcontroller and a network interface on
a single silicon die.

The key element of our architecture is a set of fully code compatible micropro-
cessor cores, with a well-specified interface to hardware extension modules that are
synthesized on the same semiconductor chip. Due to the modular approach of the pro-
posed architecture, the system is open to various external extension modules such as
physical sensors/actuators or network communication modules.

Currently we have implemented two different microprocessor cores and several
extension modules. The microprocessor cores are compatible at register and machine
language level, so that software can be easily reused. The two extension modules are
designed to support a smart transducer implementation. The improved UART module
reduces the implementation effort for the smart transducer protocol software, while the
protection unit protects resources like communication interfaces from unauthorized
access.
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project MOSAIC (H-1147/2002). We would like to thank our colleague Stefan Pitzek
and Christian Tr̈odhandl for fruitful comments for improving the paper.

References

[1] W. Elmenreich and S. Pitzek. Smart transducers – principles, communications,
and configuration. InProceedings of the 7th IEEE International Conference on
Intelligent Engineering Systems (INES’03), volume 2, pages 510–515, Assuit –
Luxor, Egypt, March 2003.

[2] P. Dierauer and B. Woolever. Understanding smart devices.Industrial Comput-
ing, pages 47–50, 1998.

[3] M. Delvai, U. Eisenmann, and W. Huber. Modular construction system for em-
bedded real-time applications. InTagungsband of Austrochip 2002, Vienna, Aus-
tria, 2002.

10



[4] P. Puschner and A. Burns. A review of worst-case execution-time analysis.Jour-
nal of Real-Time Systems, 18(2/3):115–128, May 2000.

[5] S. Poledna, H. Angelow, M. Glück, M. Pisecky, I. Smaili, G. Stöger, C. Tanzer,
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