
Configurationand Management of a Real-Time Smart Transducer
Network

Stefan Pitzek Wilfried Elmenreich
Institut für Technische Informatik Institut für Technische Informatik

Technische Universität Wien Technische Universität Wien
Karlsplatz 13, Vienna, Austria Karlsplatz 13, Vienna, Austria

pitzek@vmars.tuwien.ac.at wil@vmars.tuwien.ac.at

October 20, 2003

Abstract

Smart transducer technology supports the composabil-
ity, configurability, and maintainability of sensor/actu-
ator networks. The configuration and management of
such networks, when carried out manually, is an ex-
pensive and error-prone task. Therefore, many existing
fieldbus systems provide means of “plug-and-play” that
assist the user in these tasks.

In this paper we describe configuration and manage-
ment aspects in the area of dependable real-time field-
bus systems. We propose a configuration and manage-
ment framework for a low-cost real-time fieldbus net-
work. The framework uses formal XML descriptions
to describe node and network properties in order to en-
able a data representation that comes with low overhead
on nodes and enables the easy integration with software
tools. The framework builds on the infrastructure and
interfaces defined in the OMG smart transducers inter-
face standard. As a case study, we have implemented
a TTP/A configuration tool operating on a basic frame-
work using the described concepts and mechanisms.

1 Introduction

A fieldbus is a distributed system of nodes connected
via a shared digital communication line. Fieldbus ap-
plications cover different domains (e. g., home automa-
tion, factory automation, car body electronics) and are
used to fulfill different tasks (e. g., monitoring of sen-
sors, controlling actuators, control feedback loops).

Regardless of the application, the configuration and
management of modern digital fieldbus systems are very
complex tasks. In order to support users and implemen-
tors of fieldbus systems in dealing with this complexity
a variety of support mechanisms is necessary. This sup-

port infrastructure generally consists of hard- and soft-
ware tools together with formal abstractions for relevant
system properties. An important target of such an in-
frastructure is the support of the many different tasks
and processes during implementation, setup, and run-
time of a system, such as system configuration, appli-
cation creation, diagnosis, or maintenance. The quality
of the support infrastructure is a major factor for the ac-
ceptance and success of a system.

In this paper we want to present a configuration
and management framework for the OMG smart trans-
ducers interface standard. This standard was ratified
by the Object Management Group (OMG) in January
2003 [1]. The smart transducers interface specification
defines a distributed smart transducer system with an in-
system configuration service, a hard real-time service,
and a diagnosis and management service that can be ac-
cessed concurrently to the real-time service. Our pro-
posed framework models the configuration information
in formally specified XML structures calleddescrip-
tions. This formal description of fieldbus properties is
the basis for the implementation of generic and interop-
erable software tools.

The paper is structured as follows: Section 2 will
present some related work on configuration and man-
agement of fieldbus systems. Section 3 states require-
ments at the fieldbus level and requirements on con-
figuration and management. Section 4 presents the
system architecture of the proposed framework for the
smart transducers interface standard. In section 5 a case
study implementation of the proposed architecture is
presented. Section 6 compares our approach to the IEEE
1451 smart transducer standard, whereas section 7 sum-
marizes the main ideas of this paper and gives an out-
look on future work.

1

2 Related work

Many current fieldbus systems come with some kind of
support infrastructure. For example, the support frame-
work of the Foundation Fieldbus [2] provides prede-
fined function blocks for creating applications and a
uniform access model for nodes with virtual field de-
vices. Field devices are described by using a variant
of the device description language (DDL). The DDL
has first been used for the HART bus and later has also
been adopted for the Profibus. This development finally
culminated in the standardization of the Electronic De-
vice Description Language (EDDL) in the IEC 61804-2
standard [3]. LonWorks [4] and the European Instal-
lation Bus (EIB) [5] both come with detailed specifi-
cations called functional profiles (LonWorks), respec-
tively functions (EIB) for typical services from their
application domain (home and building automation).
Other protocols supporting a similar approach are the
Profibus [6] and CANopen [7]. Profiles are usually not
interchangeable between different fieldbuses, but there
are some efforts for defining common profiles for easing
the transition to a future common IEC fieldbus standard,
which is currently in development [8].

The IEEE 1451 standards define a general smart
transducer interface that is independent of any partic-
ular physical protocol. The sub-standard IEEE 1451.2
defines a digital interface for the connection of trans-
ducers to a microcontroller and proposes a universal
description of devices by specifying so-called trans-
ducer electronic data sheets (TEDS) [9]. IEEE 1451
also includes definitions for a general application model
(IEEE 1451.1) [10], definitions of digital communica-
tion and TEDS formats for distributed multi-drop sys-
tems (IEEE P1451.3), and mixed-mode communica-
tion protocols and TEDS formats (IEEE P1451.4) [11].
IEEE 1451 covers many important aspects of smart
transducer networks, but for the sake of interoperability
it also places rather rigid requirements on the designers
of fieldbus devices.

TheLocal Interconnect Network (LIN)[12] is an ex-
ample for a fieldbus following a completely different de-
sign approach.LIN bus [12] has a very tight integration
with (and depends on) an external support infrastructure
(i. e., software tools), which leads to a very low man-
agement overhead on the nodes, which is important for
low-cost applications.

3 Architectural Requirements

In this section we define the requirements for the pro-
posed configuration and management framework. First

we list some requirements of the communication service
that are given by the final fieldbus application. There-
after, we discuss the requirements on a configuration
and management framework, which must be established
without affecting the application requirements.

3.1 Application Requirements

This section subsumes requirements on embedded real-
time applications.

• Real-Time Communication:Many embedded sys-
tems feature control algorithms that need period-
ical updates of control values where the update
times must have low jitter. In a distributed archi-
tecture the update of measurement values should
be performed deterministically within a bounded
time.

• Composability:In order to reduce complexity it is
often necessary to split a system into interacting
subsystems, that can be implemented and tested
separately. Such apartitioning of a system can be
applied to hard- and software [13]. To put these
subsystems to work, they must be able to commu-
nicate with each other. The design of the communi-
cation interfaces is a critical task since the border-
lines between subsystems have to be well-defined
interfaces to enablecomposability, i. e., if each
subsystem implements well-defined interfaces in
the temporal and value domain, it can bea priori
guaranteed that the subsystem provides its speci-
fied service also in the composite system.

• Reusability:Software reuse and the integration of
legacy systems, i. e., autonomous systems that have
been developed according to their own rules and
conventions [14], can often become an important
factor. If a legacy system does not provide an ap-
propriate interface it may violate the composability
principle. In this case, the introduction of an extra
component, aninterface system, may resolve this
mismatch. The interface system will then negotiate
between the legacy subsystem and the other system
parts. Since the introduction of this interface sys-
tem incurs an additional overhead on the system,
care must be taken not to violate the real-time re-
quirements of the system.

• Limited resources:Embedded systems usually pro-
vide only a very limited amount of memory and
computational power. For example, the usage of
software architectures like Java and Jini in the
fieldbus devices, as proposed in [15], will not be

2

possible for most applications. Therefore, we have
to find ways to minimize the resource requirements
at the fieldbus devices.

3.2 Requirements on Configuration and
Management

The requirements on a configuration and management
framework are driven by different factors than the above
stated application requirements. We have identified the
following points:

• (Semi-)Automatic configuration:The requirement
for a plug-and-play-like configuration can be jus-
tified by three arguments: First, an automatic or
semi-automatic configuration saves time and there-
fore leads to better maintainability and lower costs.
Second, the necessary qualification of the person
who sets up the system may be low if the overall
system is easier to configure. Third, the number of
configuration faults will decrease, since monotone
and error-prone tasks like looking up configuration
parameters in heavy manuals are done by the com-
puter.

A fully automatic configuration will in most cases
only be possible if the functionality of the system
is reduced to a manageable subset. For more com-
plex applications consulting a human mind is un-
avoidable. Thus, we distinguish two use cases,
(i) the automatic set-up of simple subsystems and
the (ii) computer-supported configuration of large
distributed systems. The first use case mostly deals
with systems that require anautomaticand au-
tonomous(i. e., without human intervention) re-
configuration of network and communication par-
ticipants in order to adapt to different operating
environments. Usually, such systems either use
very sophisticated (and often costly) negotiation
protocols or work only on closely-bounded and
well-known application domains. Creating low-
cost fieldbus systems that provide such function-
ality is an interesting research topic on its own; but
in this paper we will primarily focus on the more
general second use case that focuses on the coop-
eration of user and support tools.

• Comprehensible interfaces:In order to minimize
errors, all interfaces will be made as comprehensi-
ble as possible. This includes a uniform representa-
tion of data at the various interfaces and a reduction
of an interface to the type of data that is necessary
for the user of an interface. The comprehensibil-
ity of an interface can be expressed by themental

load that is put onto the user that uses the interface.
Different user types will need different specialized
interfaces, each with a minimum of mental load.
For example, an application developer will mostly
have a service-centered view of the system. Phys-
ical network details and other properties not rele-
vant for the application should be hidden from the
developer [16].

• Uniform data structures:The configuration and
management of fieldbus systems requires represen-
tations of system properties that are useable by
software tools. In order to avoid a situation where
each application deals with the required informa-
tion in its own way, we require a generic, highly
structured, and exactly specified representation of
system properties. This representation is then used
by generic and/or specific tools.

• Low overhead on embedded system:In contrast
to the embedded software of network nodes, most
configuration and management tools will execute
on a standard desktop or laptop computer running
standard operating systems such as Windows or
Linux. Such systems provide far more resources
of memory and processing power than the average
embedded system. The design of a configuration
and management tool must take care that there is
as little overhead on the embedded system nodes
as possible.

• Use of standard software/hardware:Computers
running standard Windows or Linux operating sys-
tems do not provide guaranteed response times for
programs and most hardware interfaces are con-
trolled by the operating system. Since this might
violate the special timing requirements of a field-
bus protocol it is often not possible to directly con-
nect a configuration host computer to the fieldbus
network using the fieldbus protocol itself. Instead
a configuration tool must use some other means of
communication, such as standard communication
protocols or interfaces like TCP/IP, RS232, USB
or standard middleware like CORBA. Since field-
bus nodes might not be powerful enough to imple-
ment these mechanisms, communication will often
occur over dedicated gateway nodes. In order to re-
duce the complexity of the involved conversion and
transformation steps, the interface to and from the
fieldbus node must be comprehensible, structurally
simple and easy to access.

In order to minimize the effort for using a tool, it
should work without further extensions to the sys-
tem, e. g., as an applet in a web browser.

3

4 System Architecture

In this section we will present a support infrastructure
for the TTP/A fieldbus system. The TTP/A fieldbus is
standardizedsmart transducers interface standard[1]
by the OMG.

In the following sections we will present the various
parts of the architecture in greater detail.

4.1 Fieldbus Communication Protocol

The information transfer between a smart transducer
and its communication partners is achieved by sharing
information that is contained in an internal interface file
system (IFS), which is situated in each smart transducer.
The IFS provides a unique address scheme for trans-
ducer data, configuration data, self-describing informa-
tion, and internal state reports of a smart transducer [17].
Each transducer can contain up to 64 files in its IFS.
An IFS file is an index sequential array of up to 256
records. A record has a fixed length of four bytes (32
bits). An IFS record is the smallest addressable unit
within a smart transducer system. Every record of an
IFS file has a unique hierarchical address (which also
serves as the global name of the record) consisting of
the concatenation of the cluster name, the logical name,
the file name, and the record name.

A time-triggered sensor bus will perform a periodi-
cal time-triggered communication by sending data from
IFS addresses to the fieldbus and writing received data
to IFS addresses at predefined points in time. Thus, the
IFS is the source and sink for all communication activ-
ities. Furthermore, the IFS acts as a temporal firewall
that decouples the local transducer application from the
communication activities.

Communication is organized into rounds consisting
of several TDMA (Time Division Multiple Access)
slots. A slot is the unit for transmission of one byte of
data. Data bytes are transmitted in a standard UART for-
mat. Each communication round is started by the master
with a so-called fireworks byte. The fireworks byte de-
fines the type of the round and is a reference signal for
clock synchronization. The protocol supports eight dif-
ferent firework bytes encoded in a message of one byte
using a redundant bit code [18] supporting error detec-
tion.

Generally, there are two types of rounds:

1. Multipartner round: This round consists of a
configuration-dependent number of slots and an as-
signed sender node for each slot. The configura-
tion of a round is defined in a datastructure called
“RODL” (ROund Descriptor List). The RODL de-

fines which node transmits in a certain slot, the
operation in each individual slot, and the receiv-
ing nodes of a slot. RODLs must be configured in
the slave nodes prior to the execution of the cor-
responding multipartner round. An example for a
multipartner round is depicted in Figure 1.

FB Slot 1 Slot 2 Slot 3 Slot 1FBSlotn...

After last slot in
round slaves
wait for next

fireworks

Each slot is
assigned a sender

and some
receivers a priori

...
t

Slot 0
from Master

(Fireworks Byte)

TTP/A round Inter round gap

Figure1: TTP/A Multipartner Round

2. Master/slaveround: A master/slave round is a
special round with a fixed layout that establishes
a connection between the master and a particular
slave for accessing data of the node’s IFS, e. g., the
RODL information. In a master/slave round the
master addresses a data record using a hierarchi-
cal IFS address and specifies an action like reading
of, writing on, or executing that record.

The multipartner (MP) round establishes a real-time
communication service with predefined access patterns.
Master/slave (MS) rounds are scheduled periodically
between multipartner rounds, whereas the most com-
monly used scheduling scheme consists of MP rounds
alternating with MS rounds. The MS rounds allow
maintenance and monitoring activities during system
operation without a probe effect. The master/slave
rounds enable random access to the IFS of all nodes,
which is required for establishing two conceptual inter-
faces to each node, aconfiguration and planning(CP)
interface and adiagnosis and managementDM inter-
face. These interfaces are used by remote tools to con-
figure node and cluster properties and to obtain internal
information from nodes for diagnosis.

4.2 Descriptions for system properties

Formal descriptions of system properties are an impor-
tant part of the support infrastructure. We subsume the
formal representations of system properties under the
term descriptions. For a uniform representation of all
system aspects, we have chosenXML [19] as the pri-
mary representation mechanism. Together with related
standards, such as XML Schema or XSLT, it provides
advanced structuring, description, representation, and
transformation capabilities. XML enjoys extensive sup-
port throughout the industry, concerning its use as a de-
scription language as well as the support for processing.

4

XML already has been used for several applications in
the fieldbus domain [20, 21, 22].

4.3 Description Meta-Information

Due to the uniform representation of the descriptions, it
is possible to integratemeta-elementsinto the descrip-
tions. Meta-elements are valid sub-elements for all non-
simple description elements (i. e., elements that may
contain subelements). The content of the meta-elements
may be any valid element-subtree. We distinguish three
different kinds of description meta-elements:

1. Documentation:Documentation elements contain
additional information for a particular element. In
many cases this will be a simple text string that acts
as a comment for the content of an element.

2. Meta information:Meta information elements con-
tain meta-data from software tools. These elements
provide a well-defined space so that different tools
can store their data without conflicting with the pri-
mary description content or with each other. By
reducing the places where information concerning
the system is stored, it becomes easier to keep the
external representation synchronized. The struc-
ture of the data within the meta-elements and how
it is processed is in the responsibility of the respec-
tive tool.

3. Views:Views allow the definition of multiple inter-
faces to an object [23]. We apply this notion to the
elements in the descriptions in a very general way.
A typical use for views is the definition of multi-
ple different style sheets (e. g., defined with XSL)
for the transformation of an element’s content for
different accessing devices.

Figure 2 shows an exemplary use of the meta informa-
tion element. EachMetaInformation element re-
quires an accessor identifier, which uniquely identifies
the software tool that is responsible for the content of
the element. In the given example, aConfiguration and
Planning Tool(see section 5) stores the color and the
short name for representing a node in the graphical user
interface.

4.4 Smart Transducer Description

As the name implies, thesmart transducer descriptions
(STD) describe the properties of nodes in the smart
transducer network. We distinguish two types of STDs:

1. Static STDsdescribe the node properties of a par-
ticular field device family. Static STDs contain

<ClusterSTDRef ref="1" nodeid="0000000000010000">

<MetaInformation

AccessorID="VENUS:VMARS:TUWIEN:AC:AT:CPTOOL">

<nodecolor>140140220</nodecolor>

<shortname>MASTE</shortname>

</MetaInformation>

.

.

</ClusterSTDRef>

Figure2: Example for description meta information

nodeproperties that are fixed at node creation time
and act as a documentation of the nodes’ features.
In addition, they are also used as a template for the
definition of dynamic STDs.

2. Dynamic STDsdescribe individual nodes, as they
are used in a particular fieldbus application. Be-
sides the information from the corresponding static
STD, these descriptions include dynamic proper-
ties, such as configuration values or the logical (lo-
cal) name of a node. [24]

The properties described in STDs can be divided into
the following categories:

• Microcontroller information:This block holds in-
formation on the microcontroller and clock of the
smart transducer (e. g., controller vendor, clock fre-
quency, clock drift).

• Node information:This block describes properties
that are specific for a particular node and mostly
consist of identification information, such as ven-
dor name, device name/version, and node identi-
fiers (serial number, local name).

• Protocol information: This block holds protocol
specific information, such as version of the com-
munication protocol, supported baud rates, UART
types, and IFS layout.

• Node service information:The information in this
block specifies the behavior and the capabilities of
a node. In the current approach, a service is a ba-
sic representation of a functional unit (similar to
functional profiles [25]). Such functional units are
especially important for supporting the creation of
applications, since they can be considered as the
building blocks of an application model. Services
consist of a service identifier (e. g., name), in- and
output parameters, configuration parameters, and
monitoring parameters. Parameters are specified

5

by data-type and multiple constraints (range, preci-
sion, minimum interval time, maximum run time).

Figure 3 shows the description of a file in the IFS, con-
sisting of the name of the file, its length (in records),
and the location of the data (e. g.,data specifies that
a file is mapped into the internal RAM of the micro-
controller). The prefixrodl: is a shorthand for an
XML namespace. Namespaces allow the reuse of ele-
ment definitions in multiple places. For example, the
elements from therodl (round descriptor list) names-
pace are once defined separately and used in smart trans-
ducer descriptions as well as in cluster configuration de-
scriptions.

<SmartTransducerDescription xmlns="...>

...

<ProtocolBlock>

...

<IFSFile>

<rodl:fileName>16</rodl:fileName>

<FileLength>12</FileLength>

<FileStorage>data</FileStorage>

</IFSFile>

...

</ProtocolBlock>

</SmartTransducerDescription>

Figure3: Example STD element

4.5 Cluster Configuration Description

The cluster configuration description (CCD) contains
descriptions of all relevant properties of a fieldbus clus-
ter. It acts as the central structure for holding the meta-
information of a cluster. With help of a software tool
capable of accessing the devices in a smart transducer
network it is possible to configure a cluster with the in-
formation stored in the CCD. A CCD consists of the
following parts:

• Cluster description meta information:This block
holds information on the cluster description itself,
such as the maintainer, name of the description file,
or the version of the CCD format itself.

• Communication configuration information:This
information includes round sequence lists as well
as round descriptor lists, which represent the de-
tailed specification of the communication behavior
of the cluster. Other properties important for com-
munication include the UART specification and
minimum/maximum signal run times.

• Clusternode information:This block contains in-
formation on the nodes in a cluster. These nodes
are represented either by a list of dynamic STDs or
by references to static STDs.

Figure 4 outlines a fragment of the communication
configuration block in the CCD. Most of the elements
should be self-explanatory. Therecord entry in the
RODLFormatVersion element specifies the type of
the RODL entry format, which in the standard case uses
one record per entry. For nodes with very low resources
of RAM memory there is a more compact but less flex-
ible short format that uses one byte per entry. The
InterframeGapLength designates the length of si-
lence (in bit cells) on the bus between successive frames.

<ClusterConfigurationDescription xmlns="...>

...

<ConfigurationBlock>

<ClusterRODLBlock>

<RODLFormatVersion>

record

</RODLFormatVersion>

<rodl:rodl name="0">

...

</rodl:rodl>

...

</ClusterRODLBlock>

<BaudRate>9600</BaudRate>

<BusInterface>ISO-K</BusInterface>

<UARTFormat>

<ParityBits>1</ParityBits>

<StopBits>1</StopBits>

</UARTFormat>

<InterframeGapLength>2</InterframeGapLength>

</ConfigurationBlock>

</ClusterConfigurationDescription>

Figure4: Example fragment from CCD

5 Case Study

As a first example for the proposed concepts we imple-
mented a case study consisting of various description
mechanisms and a set of software tools for TTP/A net-
works (see figure 5 for an overview on the overall sys-
tem). Communication between the components is per-
formed with CORBA (Common Object Request Broker
Architecture) [26], whereas the smart transducer net-
work is accessed via the interfaces specified in the OMG

6

Center 2000E

STD-Server

CORBA
ORB

GIOP

000000000001.xml
000000000002.xml
 .
 .
 .

<SmartTransducerDescription>
 <ProcessorBlock>
 ...
 </ProcessorBlock>
 <NodeBlock>
 ...
 </NodeBlock>
 ...
</SmartTransducerDescription>

CP-Tool

other ToolsCORBA Network

Gateway

Master

Slave Node Interface File System

File 61:0000000000010000

IFS Content

File n: Sensor Data

File 0:RODL Round 0
...

...

... Smart Transducer Network

<ClusterConfigurationDescription>
 ...
 <ClusterRODLBlock>
 <rodl name="0">
 <node alias="1">

RODL description
 </node>
 </rodl>
 </ClusterRODLBlock>
 ...
</ClusterConfigurationDescription>

Figure5: Overview on the structure of the case study

standardfor smart transducer interfaces. The central
parts of the support framework are:

• Configuration and planning tool (CP-tool):This
tool uses the CP interface to access the cluster.
The tool allows the visual creation and manipu-
lation of communication schedules for the under-
lying smart transducer network. Figure 6 gives a
screen-shot of the tool. The large window con-
tains a representation of the schedule, whereas each
column consists of the nodes that send, receive,
or execute in one slot. The other windows con-
tain the round list, a node list, the detail view
of a single operation, and a window that holds
cluster-specific information. The visual represen-
tation is created from the RODL-descriptions, ei-
ther extracted from the CCD or by collecting the lo-
cal schedules on the nodes in the cluster, enhanced
with meta-information gained from the static STDs
stored on the STD-server [24] and additional prop-
erties from the CCD.

• Smart transducer description server:CORBA
server that stores the actual XML-representations
of the static STDs [24]. During retrieval the data
sheets are identified via the series part of the serial
number, which is stored in a mandatory IFS file on
each node.

• Corba ORB gateway:Gateway node that connects
the fieldbus network to the CORBA network [27].

• Smart transducer network:The smart transducer
network used for the case study is an autonomous

mobile robot, the smart car[28], that is instru-
mented by a TTP/A network. The robot uses
the perception from several infrared and ultrasonic
sensors in order to perform navigation around ob-
jects.

Figure6: Screenshot of the configuration and planning
tool

Primary focus of the case study has been the support
of network configuration by providing semi-automatic
creation of time-triggered communication schedules.
The manual creation of time-triggered communication
schedules has shown to be rather tedious and error-prone
and the tool helps in the creation, analysis, and modi-
fication of schedules with consistent results. Currently
this support consists of visualizing the schedule and per-
forming early integrity checks on the validity of changes
to the schedule. Fully automated schedule creation will
be dealt with in the future. Other areas of the support
infrastructure (e. g., tools for creating applications on a
higher level of abstraction) received less attention in this
particular case. Nonetheless the existing implementa-
tions of the descriptions have been developed with such
future use in mind.

6 Discussion

The proposed architecture aims at a tight integration of
the tool framework with the embedded network, i. e., the
tools depend on the infrastructure with the smart trans-
ducer description CORBA server and store information
about nodes and clusters outside the fieldbus cluster.

For example, imagine a dealer’s garage making main-
tenance at the TTP/A system of a car. The tools of the
maintenance personal would not work without access
to the dynamic descriptions and access to the CORBA

7

smart transducer description server. A similar tight inte-
gration of external tools with the fieldbus cluster is also
realized in LIN networks. In contrast, the IEEE 1451
standard aims at self-contained nodes that store all their
dynamic information in persistent memory locally at the
smart transducer. These oppositional philosophies lead
to different design decisions. Storing all the configura-
tion information on the embedded nodes can cause sig-
nificant overhead at the smart transducer. In order to
keep that overhead as small as possible, the description
format for such a system must be very compact. IEEE
1451 achieves this goal by providing a large set of pre-
defined transducer types and modes. Thus, while the
memory requirements for minimal implementations of
IEEE 1451.2 standard can be quite low (in the order of
few hundred bytes [29]) using extended data sheets is
out of the question for such basic devices. On the other
hand, the STD and CCD descriptions for the TTP/A pro-
tocol are very generic and need much more memory. For
example, the uncompressed CCD for the smart car case
study had a size of 124 Kbytes. However, this infor-
mation is stored at a desktop computer, while the smart
transducer nodes contain only some configuration pa-
rameters that are necessary for operation and a unique
identification number. The unique identification num-
ber serves as reference to the according information that
is stored as STDs and CCD outside the cluster. This
approach comes with two advantages:

• First, the overhead at the nodes is very low. Cur-
rent low-cost microcontrollers provide RAM or
EPROM memory of around 128 bytes. This will
not suffice to store more than the most basic parts
of data-sheets according to the IEEE 1451.2 stan-
dard without extra hardware. In our architecture,
only the ROM memory for storing the identifica-
tion number is necessary. The framework only in-
directly causes an overhead on the nodes since it
depends on some advanced features of the TTP/A
protocol (e. g., node baptizing), which need not be
implemented for every TTP/A node. Trödhandl
presents some results on the implementation effort
of the protocol and these features in [30].

• Second, instead of implicitly representing the
node-information with many predefined data struc-
tures mapped to a compact format, we have an ex-
plicit representation of the information in a well-
structured and easy to understand way. Since the
system hosting the configuration tool usually pro-
vides memory for several megabytes of data, we
can use generic XML constructs for the specifica-
tion of transducers and services, which improves
the openness of the system for future extensions of

transducer or service types.

Naturally, for actual production systems the external de-
scriptions must be stored in a reliable way (like other
valuable electronic documents). Availability of the ex-
ternal descriptions might actually be a greater problem
than reliability, especially if the external descriptions are
distributed on a world-wide scale. It should be noted
that the actual fieldbus application executing in a field-
bus network (the real-time service) doesnot depend on
the presence of the external representations

7 Conclusion and Outlook

In this paper we presented a support infrastructure for
the configuration and management of the low-cost real-
time smart transducer network TTP/A. We introduced
a system model with narrow interfaces with a spe-
cial focus on structure and representation of (meta-
)information on system properties. Information in the
proposed infrastructure is uniformly represented with
XML and stored in a way that incurs minimal overhead
on nodes. The proposed support infrastructure consists
of descriptions for smart transducer nodes and cluster
configuration, as well as software tools for configuring
the network.

Special care has been taken not to influence the real-
time behavior of the underlying fieldbus protocol by de-
signing the system around the appropriate interfaces of
the OMG smart transducers interface standard. The pre-
sented tools depend on the infrastructure with the smart
transducer description CORBA server and store infor-
mation about nodes and clusters externally. This has
been a design decision in order to achieve a small over-
head on the smart transducer nodes and to keep the sys-
tem open to new transducer types and services. Since
the tools only use the Configuration and Planning (CP)
interface of the OMG STI standard, it is guaranteed that
the real-time services are not influenced by the configu-
ration process. Since configuration and planning are not
considered time-critical, no additional assumptions on
the real-time behavior of the cluster are made.

The presented case study integrates the descriptions
and corresponding software tools together with a smart
transducer network into an overall fieldbus configura-
tion infrastructure.

In the future we will focus on further parts of the
configuration and management framework, such as the
representation of a layered system model supporting the
separation of sensor fusion and fault tolerance from the
application as proposed in [31].

8

8 Acknowledgments

This work was supported in part by the Hochschulju-
biläumsstiftung der Stadt Wien via project CoMa (H-
965/2002) and by the European IST project DSoS under
contract No IST-1999-11585.

References

[1] Smart transducers interface v1.0, January 2003.
Available: http://doc.omg.org/formal/2003-01-01
as document ptc/2002-10-02.

[2] Fieldbus technical overview - understanding
FOUNDATION fieldbus technology. available at
http://www.fieldbus.org/.

[3] CENELEC: Function blocks for process control -
part 2: Specification of fb concept and eddl. IEC/-
PAS 61804-1, ed. 1, August 2002.

[4] Control network specification. eia standard 709.1,
March 1998.

[5] European Installation Bus Association (EIBA).
EIBA Handbook Series - Release 3.0, 1999. Avail-
able: http://www.eiba.com.

[6] CENELEC: General purpose field communication
system. standard EN 50170, vol. 2/3 (Profibus),
December 1996.

[7] CAN in Automation e.V. Canopen - communi-
cation profile for industrial systems. available at
http://www.can-cia.de/downloads/.

[8] M. Felser. The fieldbus standards: History and
structures.Technology Leadership Day 2002, Or-
ganised by MICROSWISS Network, October 2002.

[9] L. H. Eccles. A brief description of IEEE P1451.2.
Sensors Expo, May 1998.

[10] J. Warrior. IEEE P1451 network capable applica-
tion processor information model. InProc. Sen-
sors Expo Anaheim, pages 15–21, April 1996.

[11] S.Chen and K.Lee. A mixed-mode smart trans-
ducer interface for sensors and actuators.Sound &
Vibration, April 1998.

[12] Audi AG, BMW AG, DaimlerChrysler AG, Mo-
torola Inc. Volcano Communication Technologies
AB, Volkswagen AG, and Volvo Car Corporation.
LIN specification and LIN press announcement.
SAE World Congress Detroit, http://www.lin-
subbus.org, 1999.

[13] W. H. Wolf. Hardware-software co-design of
embedded systems.Proceedings of the IEEE,
82(7):967–989, July 1994.

[14] C. Jones, M.-O. Killijian, H. Kopetz, E. Mars-
den, N. Moffat, D. Powell, B. Randell, A. Ro-
manovsky, R. Stroud, and V. Issarny. Final ver-
sion of the DSoS conceptual model.DSoS Project
(IST-1999-11585) Deliverable CSDA1, October
2002. Available as Research Report 54/2002 at
http://www.vmars.tuwien.ac.at.

[15] W. Kastner and C. Krugel. A new approach for
Java in embedded networks. InProc. 3rd Interna-
tional Workshop on Factory Communication Sys-
tems, pages 19–26, 2000.

[16] S. Pitzek and W. Elmenreich. Managing fieldbus
systems. InProceedings of the Work-in-Progress
Session of the 14th Euromicro International Con-
ference, June 2002.

[17] H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A.In-
ternational Journal of Computer System Science&
Engineering, 16(2):71–77, March 2001.

[18] W. Haidinger and R. Huber. Generation and
analysis of the codes for TTP/A fireworks bytes.
Research Report 5/2000, Technische Universität
Wien, Institut f̈ur Technische Informatik, Vienna,
Austria, 2000.

[19] Extensible markup language (XML) 1.0
(second edition), October 2000. Available:
http://www.w3.org.

[20] M. Wollschlaeger. A framework for fieldbus man-
agement using XML descriptions. InProc. IEEE
International Workshop on Factory Communica-
tion Systems 2000 (WFCS 2000), pages 3–10,
September 2000.

[21] S. Eberle. XML-basierte Internetanbindung tech-
nischer Prozesse. InInformatik 2000 Neue Hor-
izonte im neuen Jahrhundert, pages 356–371.
Springer-Verlag, Berlin Heidelberg, September
2000.

[22] Dieter Bühler. The CANopen Markup Lan-
guage – Representing fieldbus data with XML.
In Proc. 26th IEEE International Conference of
the IEEE Industrial Electronics Society (IECON
2000), Nagoya, Japan, October 2000. IEEE.

9

[23] B. Hailpern and H. Ossher. Extending objects
to support multiple interfaces and access control.
In IEEE Trans. Software Eng., volume 16, pages
1247–1257, November 1990.

[24] S. Pitzek. Description mechanisms supporting the
configuration and management of TTP/A fieldbus
systems. Master’s thesis, Technische Universität
Wien, Institut f̈ur Technische Informatik, Vienna,
Austria, 2002.

[25] D. Loy, D. Dietrich, and H.-J. Schweinzer (Eds.).
OPEN CONTROL NETWORKS. Kluwer Aca-
demic Publishing, Oct. 2001.

[26] The common object request broker: Architecture
and specification - revision 2.6.1, May 2002.

[27] W. Elmenreich, C. Tr̈odhandl, and T. Losert. An
embedded system hosting a CORBA and TTP/A
service. Research Report 17/2001, Technische
Universiẗat Wien, Institut f̈ur Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2001.

[28] W. Elmenreich, W. Haidinger, H. Kopetz,
T. Losert, R. Obermaisser, M. Paulitsch, and
C. Trödhandl. Initial demonstration of smart sen-
sor case study.DSoS Project (IST-1999-11585)
Deliverable PCE3, April 2002.

[29] P. Conway, D. Heffernan, B. O’Mara, D. P. Bur-
ton, and T. Miao. IEEE 1451.2: An interpretation
and example implementation. InProc. IEEE In-
strumentation and Measurement Technology Con-
ference, Baltimore, USA, May 2000.

[30] C. Trödhandl. Architectural requirements for
TTP/A nodes. Master’s thesis, Technische Uni-
versiẗat Wien, Institut f̈ur Technische Informatik,
Vienna, Austria, 2002.

[31] W. Elmenreich.Sensor Fusion in Time-Triggered
Systems. PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Aus-
tria, 2002.

10

