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Abstract — This paper discusses auspicious methods for the implementation of
intelligent solutions for embedded systems. An embedded system is a computer sys-
tem designed to perform a dedicated or narrow range of functions with a minimal
user intervention. An intelligent system is a system that is able to react appropriately
to changing situations without user input. Main challenges for intelligent solutions
in embedded systems come from dependability and real-time requirements and from
constraints on cost, size, and power consumption.
Possible intelligent methods for embedded systems are biologically inspired, such as
neural networks and genetic algorithms. Multi-agent systems are also prospective
for an application for non-time critical services of embedded systems. Another field
is soft computing which allows a sophisticated modeling of imprecise (sensory) data.
Finally, since embedded systems often provide critical services, there is need for
intelligent validation techniques that assist the developer in evaluating if the system
is fit for its purpose.

1 Introduction

Designing embedded systems is quite different from desktop programming. Desktop pro-
grammers are able to use standard environments with almost unlimited (virtual) memory
as well as a good monitoring and debugging interface. In contrast, an embedded pro-
grammer has to renounce such comfort. He or she has to cope with many different micro-
controllers, some of them providing only several kBytes of program memory and a few
bytes of working memory. Instead of a comfortable environment with graphical screen
display and printers, developers have to use LEDs, the display of an oscilloscope, or a
serial data stream for debugging. Embedded systems should run on sparse resources, thus
should require low power, little program and working memory, be small in size, and often
should guarantee real-time behavior or be resistant against failures. Many embedded ap-
plications have been implemented as “dumb” programs, consisting only of a few lines of
code. However, the embedded market calls for more extensive and smarter applications,
for example, an electronic braking system of a car should be able to provide its service in
various extreme situations, e. g., the breakdown of a braking element of one wheel.

Therefore, a new generation ofintelligentembedded systems is necessary. Most algo-
rithms forintelligentembedded systems already exist in the computer science community,
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however, due to the fundamental difference between desktop and embedded computing,
many approaches need to be reviewed in order to determine if they are applicable for
embedded systems.

It is the objective of this paper to provide an overview on intelligent methods that are
prospective for miscellaneous tasks of embedded applications. The remaining parts of the
paper are structured as follows: Section 2 provides the necessary definitions for intelligent
systems and discusses some misconceptions around that term. Section 3 lists a number
of possible benefits for intelligent solutions in embedded systems. Section 4 explains,
why biologically inspired systems are a good template for intelligent embedded systems.
Section 5 explains the concept of multi agent systems and refers to some applications of
multi agent systems in the embedded domain. Section 6 motivates and proposes the con-
cept of soft computing for embedded systems. Section 7 discusses the methods of model
checking and fault injection for system validation. The paper is concluded in Section 8.

2 Definition of Intelligent Systems

“Intelligence” refers to the overall effectiveness of an individual’s mental processes, par-
ticularly his or her comprehension, learning/recall, and reasoning capacities. When in-
telligence is seen as the capability to solve (new) problems, it is possible to identify “in-
telligent” solutions in engineering. It should be made clear, that “intelligent behavior” in
this context does not refer to the ability to solve puzzles or to be conscious of ourselves
being. These goals of a strong artificial intelligence are far above the capabilities of our
current machines and computers. Intelligence in engineering means systems that are able
to react appropriately to changing situations without input from a human operator. In
other words, an intelligent algorithm is one that is able to solve problems that stem from
changing situations. This definition, of course, encompasses a wide range of engineer-
ing applications and many different methods and algorithms. The research on intelligent
systems is motivated by the high versatility of such systems, which makes it possible to
reuse many algorithms successfully in different applications.

There are some misconceptions around intelligent systems. For example, a system that
does not have intelligent behavior on its own is probably nevertheless the product of an
intelligent mind, a fact that might be used by the advertising department to call the product
itself intelligent.

Moreover, an intelligent system might not be the best solution for a given application
case. For example, a racing bicycle is specifically designed for good roads, while the
human legs adapt well to various terrains like grassland, water, mountains, etc. Therefore,
the human locomotor system represents an intelligent system while a racing bicycle is
none. Nevertheless, it is probably advantageous to choose the bike in some cases.1

At last, an intelligent system must not be necessarily complex. Leslie Smith [1] de-
scribes the example of a robot that navigates towards a light source. Primitive biological
systems tend to solve these types of tasks in a simple, but effective, way.

1Note that the combination “human with bicycle” represents an intelligent system, when one is free to
choose to use the bicycle or not.
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3 Motivation for Intelligent Embedded Systems

Naturally, the word “intelligent” (as well as smart, wise, clever) transports a very positive
meaning, however, it is obvious that it should be analyzed why using intelligent solutions
for embedded systems is advantageous.

The following potential reasons for employing an intelligent solution can be identified:

Dependability: Applications for harsh environments such as process control applications
call for a solution that adapts to changing situations like performance loss or break-
down of a component. For such applications, intelligent solutions enable graceful
degradation or self-stability properties.

Efficiency: An intelligent solution might be able to increase efficiency of the given re-
sources.

Autonomy: An intelligent solution might be able to perform the same task as a traditional
system without or with reduced requirement for human supervision or interaction.

Easy Modeling: An intelligent generic self-organizing solution liberates the system de-
signer from modeling and implementation issues. This reduces the chance of human
error and reduces cost and time in the design phase.

Maintenance costs:An intelligent system might require less frequent service iterations
since it is able to run for long durations without human interaction.

Insufficient alternatives: Sometimes there is no traditional approach to solve a given
problem satisfyingly, which forces the application of an intelligent solution. For
example in data analysis, the application of neural networks solves the problem of
nonlinear correlations, which is not supported by traditional approaches [2].

Note, however, that the modelling issue gives also reason for a counter argument against
intelligent solutions. While a traditionally designed system usuallymustbe understood by
the designer, this can be different for particular intelligent solutions. For example, while
neurons are well understandable, their application in a neural network leads to an emer-
gent system which cannot be fully described by a simple model. If such a system should
be used in a critical application, problems for the dependability analysis and certifications
arise.

As a positive, almost all above described potential advantages support also cost reduc-
tion. Such cost savings can appear at the design time of a system or during maintaining
the system.

4 Biologically Inspired Embedded Systems

Nature has shown to be a great inventor of intelligent solutions in embedded systems.
The reasons for that fact are given by two major requirements that are put on biological
systems:

First of all, most biological systems have to work autonomously. Usually, there is no
one to help a creature in recovering from a breakdown. Therefore, animals, as well as
plants, had to develop strong methods of self-healing and automatic recovery. Of course,
there is positive interaction between individuals: Mammals protect their new-generation,



ELMENREICH

many animals live or hunt in groups, and there is the concept of symbiosis that involves
even multiple different species. However, when regarding any of these groups of inter-
depending individuals, a system of strong inner connection that is able to help itself can
be made out.

The second requirement that biological systems have in common with embedded engi-
neering systems is that most components are employed to perform a dedicated or narrow
range of functions. Such biologically embedded systems are always optimized to the same
goals as embedded computer systems: creation effort, maintenance effort, size, weight,
power consumption.

4.1 Neural Networks

The most frequent example for biologically inspired computing is that of neural networks
(NNs). A NN consists of interconnected neurons, each with a set of input and output
connections. In principle, a neuron contains a simple add-and-compare mechanism that
sums up the input signals and generates an output signal (i. e., the neuron “fires”) if a
particular threshold has been exceeded. While the concept of such a neuron cell is very
simple, a whole NN shows emergent properties such as learning and reasoning (for ex-
ample, think of the abilities of the human brain, a NN with about1010 neurons). NNs are
extreme versatile. According to the theorem of Hecht-Nilsson [3],anygiven function can
be expressed by a three-layer NN with an appropriate number of neurons.

An impressive feature of a NN is the ability tolearn, which enables such systems to
adapt to changing conditions [4]. NNs support supervised and unsupervised learning.
In supervised learning, back-propagation NNs are used. During a training phase, the
parameters of the NN are adapted until the system performs the desired function. The
trained system is then able to perform the programmed function with a high robustness
against errors. An example for such an application in the embedded domain is given
in [5], where an artificial NN is used to filter out errors from infrared distance sensors.

Unsupervised learning algorithms try to extract common sets of features from the in-
put data [4]. An example for an unsupervised learning artificial NN is Kohonen’s self-
organizing map [6]. Unsupervised learning algorithms are used for automatic classifica-
tion, modeling, and data compression systems.

Drawbacks of NNs are its black-box data processing structure and, in some cases, a slow
convergence speed. Thus, the data processing mechanism of a NN cannot be programmed,
understood, or verified in terms of rules.

4.2 Genetic Algorithms

A genetic algorithm (GA) is a derivative-free and stochastic optimization method that
builds on ideas from the natural selection and the evolutionary process [7]. It is some
kind of search algorithm that is advantageous if the given search space is too large to be
searched by exhaustive search algorithms and too unstructured to be able to use straight
forward search algorithms. Moreover, a GA needs only a minimum on information about
the problem to be solved and is thus easily applied.

Basically, a GA needs an initial population of “genes”, an algorithm that allows to cross-
mix these genes, and a fitness function that produces a comparable value on the quality
of an actual solution. After recombination and mutation of genes the GA uses the fitness
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function to select the best genes for the new population. By making multiple iterations,
the GA approaches an solution that is equal or better than the start value.

An example for the application of a GA, which is relevant for embedded systems, is
given by Atanassov in [8]. The work focuses on the search for an input set with the
maximum (worst case) execution time (WCET) of a given program on a given execution
environment. Knowledge of the maximum execution time of a program is essential for
several hard real-time architectures, such as the Time-Triggered Architecture [9]. The
search for the WCET input set is non-trivial due to the usually large input space and the
inhomogeneity of the search space due to code dependencies and side effects. Atanassov’s
approach estimates the WCET of a program by measuring the execution time with sev-
eral input sets and then modifying the input sets towards the maximum execution time.
He uses a GA for finding input sets with large WCETs, whereas the fitness function is
given by the execution time with the respective input set. The evaluation of this approach
shows that the genetic algorithm is able to find a rather good solution in relative short
time (Atanassov’s experiments ran for several days on an embedded C167 processor),
however, it reveals also an inherent drawback of GA – since the search is not exhaustive,
the algorithm can get stuck in local extrema, thus fails to find a global optimum of the
fitness function. In other words, GAs are usually very fast in finding a good solution, but
in general they will not find the best solution.

4.3 Neuro-Fuzzy Systems

Fuzzy Logic forms a bridge between digital rules (for example “if measured flow is greater
than 50l

s
, then open valve”) and imprecise information (for example “flow is between 48

and 52l
s
”). The inference method of Fuzzy logic is similar to the human brain. Fuzzy

Logic supports the implementation of control algorithms for imprecise sensors that per-
form better than traditional control methods. An exhaustive introduction into Fuzzy Logic
with a focus on control methods can be found in [10].

However, Fuzzy Logic has the drawback of lacking an effective learning mechanism –
auto-tuning a classical Fuzzy system is difficult [7]. The combination of Fuzzy systems
with neural networks overcomes some problems of NNs and Fuzzy Logic, by providing
an adapting system with a rule-based model. Such neuro-fuzzy Systems employ learning
algorithms of a NN to determine the parameters of a Fuzzy inference system.

Unlike NNs, a neuro-fuzzy system is always interpretable in terms of fuzzyif-thenrules,
thus giving insight into the model.

5 Multi-agent Systems

Wooldridge and Jennings define a multi-agent system (MAS) as a hardware or (more
usually) software-based computer system that provides the following properties [11]:

Autonomy: Agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state.

Social ability: Agents interact with other agents (and possibly humans) via some kind of
agent-communication language.

Reactivity: Agents perceive their environment, (which may be the physical world, a user
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via a graphical user interface, a collection of other agents, the internet, or perhaps
all of these combined), and respond in a timely fashion to changes that occur in it.

Pro-activeness:Agents do not simply act in response to their environment, they are able
to exhibit goal-directed behavior by taking the initiative.

The idea of a multi-agent system (MAS) is to interconnect several widely independent
agents, thus enabling this ensemble to function beyond the capabilities of a single agent
of the set-up [12]. In general, MASs may enhance speed (due to parallelism), reliability
(due to redundancy), efficiency, and flexibility. A frequent paradigm for an MAS is an
automated travel agency that uses the internet to engage other agents, to perform flight
reservations, etc. Recent research has also shown the applicability of MAS to the em-
bedded systems domain. An example is the PABADIS project [13], which employs an
MAS in a fieldbus system for factory automation [14]. There are, however, some critical
problems for MAS:

Communication: Agents must agree on a common transport protocol and a common
communication language in order to interact properly with each other [12]. For
example, an MAS that spans different embedded systems probably will have to deal
with differing data representations and semantics.

Integration of existing applications: Especially in the embedded systems domain many
applications come in the form of legacy applications, i. e., systems that have been
designed according to their own rules and conventions [15]. Since the participation
of such systems was not in their designers’ mind, there can be remarkable effort in
implementing an appropriate interface for MAS.

Real-Time Capabilities: Due to the loosely coupling of the single agents, agents of an
MAS are typically asynchronous and, therefore, prone to race conditions, temporal
unpredictability, and, in the worst case, to deadlock situations.

Supervision: It is often difficult to monitor the behavior of every single agent with re-
spect to real time. Monitoring tasks can change the behavior of an MAS due to the
so-called probe-effect [16].

Despite these problems, MAS are apt to implement intelligent functions for embedded
systems. Due to the problems in temporal predictability, applications for MAS lie mainly
in non time-critical applications, such as, for example, configuration tasks.

6 Soft computing

The world of computers are digital, and at a very low level, only 0 or 1 exist (ortrue and
false). The properties in the real world, on the other hand, are often different from that
black-and-white thinking, which often is the reason for problems in embedded systems,
where a system views its components either as correct (according to its specified service)
or incorrect (outside the service specification). So, a component that provides its service
only a little bit offside its specification might be perceived as correct or incorrect by a
correct system, which causes a divergence in the correct system states.

To overcome such real life complexities such as imprecision the computer paradigm of
soft computingis used. Soft computing is an overall term for a coalition of methodologies
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such as Fuzzy Logic, neuro-computing, evolutionary computing, probabilistic computing,
chaotic computing and machine learning [17]. Neural Networks, Genetic Algorithms, and
Neuro-Fuzzy systems, which have been already discussed in this paper in the context of
biologically-inspired computing can be also seen as a kind of soft computing. Since many
soft-computing approaches are also biologically inspired, there is a great intersection of
these two disciplines.

Apart from the digitalization problem, sensor measurements get an additional dimen-
sion by regarding their accuracy in the value and time domain, and, since sensors can fail,
the reliability of a particular measurement.

Embedded systems often contain sensors that form the borderline between the digital
computer world and its analog environment. Instead of reducing a sensor measurement
to its value, it is often advantageous to add some additional information about the prob-
ability of the given value. Buede and Waltz discuss the benefits of such soft sensors and
probabilistic sensor fusion in [18]. An architecture for sensor fusion with probabilistic
measurements can be found in [19], where each sensor measurement is attributed with a
confidence value that indicates the accuracy of the measurement.

7 Model Checking

Usually, intelligent solutions lead to complex systems, where it is often difficult to prove
the correctness of the presented solution. For example, a neural network consists of sev-
eral neural nodes called neurons, where each neuron acts deterministically according to
its input. However, when the neural network is regarded as a whole, it is difficult to prove
a particular behavior. Thus, there is a need for intelligent methods that assess if a given
system is fit for its purpose.

A possible verifying method ismodel checking, a technique for verifying finite state
concurrent systems. The system-under-test is modelled by a set of state variables and the
possible transitions that can take place between the particular states. A set of properties
distinguishes the intended (allowed) states from the unintended states. A model checking
tool will then automatically search the reachable state space in order to verify that only
intended states can be reached.

The main disadvantage of this approach is the state explosion problem that occurs when
verifying systems with high parallelism or large data domains. Therefore, the state explo-
sion problem has been target of research which led to some remedies for the problem, to
name a few: symbolic model checking [20], abstraction [21], symmetry [22], and induc-
tion [23].

In contrast to traditional approaches, such as simulation, testing, and inductive reason-
ing, model checking is quite fast in detecting subtle bugs for several applications [24]. As
an advantage, the model checking process always presents a counterexample if a specified
property does not hold for a given design. After setting up the model, the checking algo-
rithm is fully automatic and thus requires no user supervision for its application, which
makes it an intelligent tool. Due to recent research, model checking is more and more
used for embedded systems [25].
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Method Characteristics Sample embedded applications
Artificial Neural Net-
works

unsupervised or supervised
(trained) learning, black-box
data processing structure

signal calibration [5], pattern
recognition [], classification [7]

Genetic Algorithms optimization method especially
for large and unstructured
search space

real-time scheduling [26], pro-
gram timing analysis [8]

Model Checking automated method for verify-
ing finite state concurrent sys-
tems

verifying properties of dis-
tributed systems [25]

Multi-Agent Systems distributed system of self-
acting programs acting in a
network

flexible automated manufactur-
ing [14]

Neural Fuzzy Systems integration of Fuzzy inference
rules with neural networks

intelligent control [27], embed-
ded expert systems []

Table 1: Overview on presented methods

8 Summary and Conclusion

All presented methods, summarized in Table 1, can be potentially used for the conception,
design and utilization of intelligent systems for particular embedded applications. There
is no all-round solution for an intelligent solution – it will be necessary to evaluate from
case to case if an approach is propitious or not. Furthermore, we should keep in mind
that it is possible to use most methods in a synergistic way, which may lead to the most
favorable solution in some cases.

Some existing disadvantages, such as the resource requirements on memory and com-
putation for implementing a neural network can be overcome by applying an appropriate
hardware-software co-design which is a common approach for many embedded designs.

However, a major problem for many intelligent solutions is that they come in the form
of a complex system, which cannot be easily evaluated analytically – it is often difficult
to check whether a system is fit for its purpose or not. This problem calls for intelligent
validation methods like model checking.
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