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Abstract— In this paper we describe an algorithm for fault tolerant sensor mapping for
robotic vision. Basically we use a certainty grid algorithm to map distance measurements
into a two-dimensional grid. The well-know certainty grid algorithm can tolerate occasional
transient sensor errors and crash failures, but will fail when a sensor provides permanently
faulty measurements.

Therefore we extended the certainty grid algorithm by a sensor validation method that
detects abnormal sensor measurements and adjusts a confidence value for each sensor. This
robust certainty grid approach works with at least three sensors with an overlapping sensing
range and needs fewer sensor inputs and less memory than other approaches. Our method
supports also reintegration of recovered sensors and sensor maintenance by providing a mea-
surement for the operability of a sensor.

We present also a case study with an autonomous mobile robot that features the robust
certainty grid algorithm in a time-triggered architecture.

1 Introduction

A mobile robot must be able to notice surrounding objects in order to be able to interact with its
environment. Sensors come in a great variety of types and each sensor is able to contribute to the
task of environmental perception.

However, given multiple sensory inputs, the task of modelling these data into a simple, com-
prehensible image of the environment can be arduous when problems of temporal accuracy [1],
imprecise and faulty measurements, and sensor deprivation are considered.

This paper describes an algorithm for mapping sensor information based on the certainty grid
approach. The first certainty grid method has been developed at Carnegie-Mellon University in
the 1980ies [2]. However, the certainty grid suffers from faulty sensor measurements when they
are not detected at the sensor level.

It is the objective of this paper to propose an extension of the certainty grid algorithm by a sensor
validation method at the sensor integration level.

Comparing sensor measurements directly is difficult when their measurements are made at dif-
ferent instants. As a result we used an approval method for calculating confidence values for each
sensor. Our algorithm is able to implicitly detect sensors with malfunctions followed by a re-
duction of the sensor’s input contribution to the certainty grid. Our approach supports inherently
automatic integration of recovered sensors. Furthermore our approach facilitates sensor mainte-
nance by assigning each sensor dynamically a confidence value which can be a measurement for
the reliability of the sensor.
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Therobust certainty grid algorithm has been tested with simulated sensor faults. We have also
implemented a demonstrator with an autonomous mobile robot that features the robust certainty
grid algorithm.

The remainder of the paper is organized as follows: Section 2 gives an overview on the original
certainty grid algorithm. The following section discusses the influence of sensor faults on the
certainty grid. Section 4 describes the robust certainty grid algorithm. Section 5 describes the
functionality of our demonstrator. The paper is concluded in Section 6.

2 Certainty Grid Algorithm

This section provides a brief overview of existing certainty grid algorithms.
A certaintyor occupancy gridis a multidimensional (typically 2D or 3D) representation of the

robot’s environment. The observed space is subdivided into cells, where each cell stores informa-
tion about the corresponding environment and an estimated probability for the correctness of this
information. Typically, a cell state can be “free”, if the place appears to be void, or “occupied” if
an object has been detected for that cell. Cells not reached by sensors reflect an “uncertain” state.
The cell state and the probabilistic estimate of its correctness can be mapped in a single number
reflecting the confidence of a cell to be free.

Basically, it is assumed, that the certainty grid application has no a priori knowledge of the
geometry of its environment and the objects in this environment are mostly static. The effect of
occasional sensor errors will be neglected, because these will have little effect on the grid [3].

The calculation of new grid values is usually done by Bayesian inference. The English clergy-
man Thomas Bayes stated in a paper (published after his death in the Philosophical Transactions
of the Royal Society of London [4]) the rule known today as Bayes’ theorem:

P(H|E) =
P(E|H)P(H)

P(E)
(1)

Bayes’ theorem quantifies the probability of hypothesis H, given that eventE has occurred.
P(H) is thea priori probability of hypothesisH, P(H|E) states thea posterioriprobability of
hypothesisH. P(E|H) is the probability that event E is observed given thatH is true. If multiple
events have to be considered using Bayes’ rule, the order of processing does not influence the
result.

Hoover and Olsen present an application of a certainty grid where a set of video cameras is
used to detect free space in the vicinity of a robot [5]. They use the multiple views to overcome
the problem of occlusion and to increase performance, however they do not discuss the subject of
sensors delivering faulty measurements.

Sensor information usually is imperfect with respect to restricted temporal and spatial coverage,
limited precision, and possible sensor malfunctions or ambiguous measurements. To maximize the
capabilities and performance it is often necessary to use a variety of sensor devices that comple-
ment each other. Modelling such sensor measurements into the grid is an estimation problem [6].

Matthies and Elfes [7] propose a uniform method for integration of various sensor types. Each
sensor is assigned a spatial interpretation model, developed for each kind of sensor, that maps the
sensor measurement into corresponding cells. When sensor uncertainties are taken into account,
we arrive at a probabilistic sensor model.

Figure 1 depicts the data flow of a certainty grid implementation with three sensors. The sensor
in the right position delivers faulty measurements which results in a deviation of the certainty grid
from the real object positions.
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Figure1: Certainty Grid Data Flow

3 Dealing With Sensor Faults

Martin and Moravec [3] concluded that the effects of occasional sensor faults on the grid can be
neglected.

Furthermore, if a sensor input has crash failure semantics, i. e. is either a correct value or no
value at all, the existing methods are sufficient to handle this situation if each important grid cell
is served by more than one sensor.

However one problem of the certainty grid algorithm as found in the literature [2, 3, 6, 7] ar-
rives when a sensor permanently provides faulty measurements. For example a distance sensor
could refuse to detect any object and always report “no object nearby”. Such a fault would re-
sult in a significant deviation of the representation of the environment in the grid from the actual
environment.

There are two possible solutions to this problem:

Replicated sensors:Making the sensors fault-tolerant by replication results in costs for extra
sensors and voting nodes. For example each sensor could be extended to triple-modular
redundant sensors, the basic idea of such fault-tolerant units has already been presented
in [8]. However these extra sensors would not contribute to the grid resolution or improve
the update frequency.



Replicatedcertainty grids: The generation of multiple grids and the application of standard
fault-tolerant algorithms among these grids does not need extra sensors. Each single cer-
tainty grid would represent a fault isolation area, e. g. supported by a single sensor. The
final view will then be generated by majority voting among the separate grids. However this
approach, although technically possible, has the great disadvantage of increased memory
requirements. A system withn sensors would need the(n+ 1)-fold amount of memory to
represent the grids.

While the replicated sensors approach deals with the problems at sensor level, the second ap-
proach takes effect at the grid level. Because of hardware and wiring costs we decided for a
grid level solution as described in the second approach. However RAM memory is one of the
most critical resources in embedded systems like a mobile robot - therefore we developed a more
sophisticated algorithm described in the following section.

4 Robust Certainty Grid Algorithm

We assume, that a sensor node may have a failure mode where it permanently submits measure-
ments with incorrect values. It is our goal to extend the existing certainty grid to tolerate such
sensor faults.

This goal will by achieved by analyzing the redundant parts of the certainty grid. Furthermore,
we assume that we have no a priori knowledge about the redundant and none-redundant parts, thus
we head for an automatic sensor validation.

It is difficult to validate sensors directly by comparing their inputs, because measurements from
different sensors for the certainty grid are often made from different angles and at different instants
- a deviation in sensor measurements may be caused by a sensor fault as well as by a change in the
environment.

Therefore we use an approval method for maintaining a confidence measurement for each sen-
sor. The confidence value will be a measurement for the correctness of a sensor. This confidence
measurementconfmay be a real value ranging from 0 to 1:

con f =





0 sensor appears to be wrong
...
1 sensor appears to be correct

If we have a priori knowledge about the sensor reliabilities, an initial confidence value that
reflects the respective reliability can be chosen at startup. If we have no knowledge about the
reliability of sensors the respective confidence values are initialized with 1.

As in the known certainty grid algorithms, each grid cell contains a probabilistic valueocc
ranging from 0 to 1 corresponding to the believe, that this cell is occupied by an object:

cell.occ=





0 free
...
0.5 uncertain
...
1 occupied

Additionally we store the main contributor (e. g., the sensor that updated this cell most recently)
of theoccvalue with the cell. This property of each cell will be named thecurrent ownerof the



procedureAddToGrid( sensor, cell )
begin

if (cell.owner = unknown)or (cell.owner = sensor)then
cell.occ := sensor.measurement;
cell.owner := sensor;

else
comparison := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
weight1 :=abs(cell.occ-0.5)∗cell.owner.conf;
weight2 :=abs(sensor.measurement-0.5)∗sensor.conf;
cell.occ := (cell.occ∗weight1+sensor.measurement∗weight2)

/ (weight1 + weight2);
if comparison> THRESHOLDthen

inc(cell.owner.conf);
inc(sensor.conf);

if comparison< –THRESHOLDthen
dec(cell.owner.conf);
dec(sensor.conf);

contribution := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
if contribution> THRESHOLDthen

cell.owner := sensor;
else

cell.owner := unknown;
end

Figure2: Pseudocode of the AddToGrid algorithm

cell:

cell.owner=





0 unknown
1 sensor 1
...
nSensors sensor n

All grid cells are initialized withcell.occ= 0.5 andcell.owner= unknown.
When a new measurement has to be added to the grid, the followingAddToGridalgorithm is

executed: (Fig. 2 lists the algorithm in pseudocode)
If the particular grid cell has no contributor listed in its owner field, the measurement of the

sensor is taken as is and the cell stores the index of the sensor as new owner.
If there was a contributor, the measurement is first compared to the cell valuecell.occ. A value

namedcomparisonis calculated that means aconfirmationof old cell value and new measurement,
if the value is above a certain threshold, and means acontradictionof old cell value and new
measurement, if the value is below a certain different threshold. In case of a confirmation, the
confidence values of the new sensor and the owner are both increased up to a maximal bound of
confidence. In case of a contradiction, the confidence values of the new sensor and the owner are
both decreased down to a lower bound of confidence. Ifcomparisonis not significant, it does
neither yield a confirmation nor a contradiction.

The new occupancy value of the cell is calculated as a weighted average between old value and
measurement. The weights are derived from the respective confidence values and the significance
of the measurement. A measurement is more significant if it has a greater absolute distance to the
uncertainstate (0.5).

Thereafter, a new owner has to be selected. Therefore, a valuecontributionis derived.contribution
is calculated the same way as the comparison value, but it uses the newcell.occvalue.



cell.occ cell.owner.conf sensor.measurement sensor.conf comparison newcell.occ confidences contribution newcell.owner

0.8 1 1 1 0.6 0.925 increased 0.85 sensori
0.925 1 0 1 -0.85 0.425 decreased 0.15 unknown
0.425 1 1 0.8 -0.15 0.909 unchanged 0.818 sensori
0.909 0.8 1 0.8 0.818 0.959 increased 0.918 sensori

Table 1: Examples for grid cell updates

Thecontributionis a measurement of the consistency of the sensor measurement with the new
cell.occvalue. If thecontribution is above a certain threshold, the contributing sensor becomes
the new owner of the cell. Otherwise thecell.ownervalue will be reset tounknown.

Table 4 gives examples for updating grid cell values by sensor measurements. The threshold
values had been chosen to 0.5. In the first case, the sensor measurement and the grid cell value
confirm each other. The result is an increased confidence for the sensor that originally contributed
to this cell (theowner) and the sensor that produced the new measurement. In this example the
sensor becomes also the newownerof the entry. In the second case, the sensor’s measurement
does contradict the grid value – the sensor reports free space while the grid cell value is sure
about an object. Thus, the confidences of the involved sensors are decreased. Case 3 shows a
less severe contradiction, because the grid cell is not quite certain about its content. Hence mainly
the new measurement influences the updated grid value. Case 4 shows again a measurement
that confirms the grid value and leads to a rise of the sensors’ confidences. Thus, the sensors’
confidence values are dynamically updated according to the comparison of their measurements to
the grid. A bad performing sensor will subsequently loose confidence and eventually drop out of
the set of contributing sensors. However if the sensor recovers, it will gain confidence again by
repeated confirming measurements.

The approach works with at least three sensors whereof one sensor might be faulty at one time.
In comparison to the node level approach discussed in the last section the proposed method gains
extra sensor space, because the sensor views must overlap only partially. There must be at least
one grid cell, which is served by all three sensors.

The extra amount of memory for the grid representation is the storage for the owner values, thus

dlog2(nsensors+1)e
8

·gridheight·gridwidth, (2)

more bytes of memory, wherensensorsis the number of sensor contributing to the grid. The mem-
ory requirements for the confidence values can usually be neglected, if the number of sensors
is remarkably lower than the total number of cells in the grid. Thus, the memory requirements
of the robust certainty grid algorithm are considerable less than the memory consumption of the
fault-tolerant approach at grid level discussed in Section 3.

In contrast to Bayes’ formula, theAddToGridprocedure is not commutative. Thus, when a grid
cell is updated by subsequent measurements, the order of updates makes a difference in the result.
This can be explained because we change the a priori probabilities for the sensors with each up-
date. We overcome the disadvantage of sensitivity to message ordering by applying time-triggered
architecture. Time-triggered communication and computation ensures a predictable order of mes-
sage tasks by avoiding race conditions.



Figure3: Smart Car: Autonomous mobile robot with pivoting sensors

(a)Obstacle in front of car

07 80 80 80 80 80 80

07 0A 80 80

00 07 02 0D 00 00

00 04 00 02 00

06 00 08 02 09

00 02 00

01 01 00

FF FF FF

FF

00

00

00

0B

00

00

01

02

00

01

00

03

05

00

04

00

00

80

02

00

01

01

00

04

00

00

0A

02

00

00

80

00

01

00

00

04

00

05

00

00

06

80

00

08

00

00

00

06

06

00

02

00

80

00

01

00

06

05

00

02

00

01

01

80

00

01

00

02

03

00

04

00

05

00

80

00

07

09

00

00

0A

02

00

01

00

80

00

00

06

00

00

00

03

02

00

00

80

00

00

02

80

00

80

01

00

00

80

01

00

01

80

00

01

00

80

00

02

00

80

00

02

02

02

00

00

03

00

00

02

01

00

05

00

00

03

00

00

01

00

01 01

(b) Representation in certainty grid

Figure 4: Fusion of measurements into the certainty grid

5 Case Study

We implemented the robust certainty grid in a mobile robot for demonstration purposes. The
mobile robot comprises a model car (“smart car”) equipped with a suit of pivoted distance sen-
sors, two ultrasonic sensors pointing straight forward, an electric drive, and a steering unit (see
Figure 3).

In [9] we showed that time-triggered communication networks are apt to implement real-time
sensor fusing applications. Therefore we used a time-triggered sensor fusion model [10] where all
communication instants and computation tasks are a priori planned in a time-triggered schedule.

We used a TTP/A network to interconnect distance sensors, servo motors for sensor pivoting,
driving, and steering units. Each unit is a separate TTP/A node implemented on a low-cost micro-
controller and equipped with a smart transducer interface [11].

The network also contains a master node and a data processing node. The distance sensors are
swivelled around by servo motors enabling them to scan the area in front of the robot. The sensors
generate a value that corresponds to the distance of the object they are aimed at.
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Figure5: Dividing the certainty grid into polar sectors.

The data stream provided by the distance sensors is taken over by the data processing node that
fuses the perceptions from the distance sensors with a model of the robot’s environment, using
the robust certainty algorithm described in the previous section. Thus, the shapes of obstacles are
stored and assigned with a probability value. We added a function that moves all values up to the
uncertainstate with the progression of time. So, an object has to be re-scanned periodically.

We used 8-bit values to express the probability values between 0 and 1. Thus 0x00 corresponds
to the f reestate, 0x80 means theuncertainstate while 0xFF is used to express theoccupiedstate
of a grid cell. Fig. 4 depicts an example of a grid allocation.

Movement decisions about direction and speed are made based on a vector field histogram de-
rived from the certainty grid [12]. The vector field histogram is a method to determine the direction
with the lowest obstacle density. The algorithm uses the grid representation of the environment
which is provided by the cluster level.

The vector field histogram approach divides the certainty grid into disjoint polar sectorsSk (see
Figure 5).

For each cellCi j in a give sector an obstacle vectormi j is calculated. The magnitude ofmi j

depends on the certainty valueocci j of the cell and also of the distancedi j between the vehicle and
the respective cell:

mi j = (occi j )2(a−b·di j ) (3)

with a−bdmax= 0, a andb are positive constants anddmax is the distance between the farthest
cell and the vehicle.

Hence, the sum over all obstacle vectorsmi j in sectorSk forms an obstacle density entityhk.

hk = ∑
Ci j∈Sk

mi j , k = 1, . . . ,n. (4)

At this point the entitiesh1,h2, . . . ,hn are used to form a histogram (see Figure 6), which can be
used for obstacle avoidance.

High magnitudes in the histogram indicates regions with high obstacle density, while areas with
low magnitudes indicate regions with low obstacle density. By applying a threshold to the his-
togram it is possible to localize regions with low obstacle density, which can be used for obstacle
avoidance. The car will then be moved towards the most promising direction. Moving or turning
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Figure6: Histogram of the obstacle density.

of the car affords a correction of the grid values. Since the grid contains only 17×11 values the
shift and rotate operations can be applied to the grid in real-time.

The smart car is able to move autonomously through its environment. Additionally, it has an
interface to a service point for monitoring and configuration access. Via this monitoring interface
it is possible to watch snapshots of the certainty grid or the sensor confidence values. The non
time-critical service communication is routed concurrently to the real-time system that receives
the sensor values and maintains the grid and confidence values. It is possible to route the service
access over different networks, e. g. the internet. We plan to implement a wireless connection
between the car and the service point. Currently the car is connected via an RS232 serial interface
for monitoring and configuration access.

6 Conclusion

The class of certainty grid algorithms are qualified for mapping sensor information of mobile
robots into a concise description of the environment.

The previously published certainty grid algorithms can tolerate occasional transient sensor errors
and crash failures but will fail for permanent sensor faults.

We developed a method for sensor validation that detects abnormal sensor measurements and
adjusts a weight value of the corresponding sensor. Recovered sensors are reintegrated automati-
cally. This robust certainty grid approach supports also sensor maintenance, because it provides a
measurement for the operability of a sensor.

The robust certainty grid will be implemented in a mobile autonomous robot with a time-
triggered communication architecture.
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