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Abstract

In December 2000 the Object Management Group
(OMG) called for a proposal of a smart transducer
interface. In response a new standard has been pro-
posed that comprises a time-triggered transport ser-
vice within the distributed smart transducer subsys-
tem and a well-defined interface to a CORBA envi-
ronment.

This smart transducer standard has been adopted
by the OMG in January 2002. The smart transducer
interface and the time-triggered transport service
have been implemented in the time-triggered field-
bus protocol TTP/A.

This paper examines the strengths and weak-
nesses of the smart transducer interface and
presents two case studies. The first case study de-
scribes a demonstrator with a robot arm that is in-
strumented by smart transducers and a TTP/A field-
bus. The second case study is an autonomous mo-
bile robot instrumented by a TTP/A cluster that ori-
entates itself via a set of heterogenous sensors and
decides, based on this sensor data, which way to
go.

1 Introduction

The design of the network interface for a smart
transducer is of great importance. Transducers can
come in a great variety with different capabilities
from different vendors. A smart transducer interface
must thus be very generic to support all present and
future types of transducers. However, it must pro-

vide some standard functionalities to transmit data
in a temporal deterministic manner in a standard
data format, provide means for fault tolerance, and
enable a smooth integration into a transducer net-
work and its application.

A smart transducer interface should conform to
a world-wide standard. Such a standard for a real-
time communication network has been long sought,
but efforts to find one agreed standard have been
hampered by vendors, which were reluctant to sup-
port such a single common standard in fear of losing
some of their competitive advantages [1]. Hence,
several different fieldbus solutions have been de-
veloped and promoted. Some of these existing
solutions have been combined and standardized.
In 1994, the two large fieldbus groups ISP (In-
teroperable Systems Project supported by Fisher-
Rosemount, Siemens, Yokogawa, and others) and
the WorldFIP (supported by Honeywell, Bailey, and
others) joined to form the Fieldbus Foundation (FF).
It is the stated objective of the FF to develop a sin-
gle interoperable fieldbus standard in cooperation
with the International Electrotechnical Commission
(IEC) and the Instrumentation Society of America
(ISA).

The IEC worked out the IEC 61158 standard. It is
based on eight existing fieldbus solutions. However,
the IEC fieldbus draft standard was not ratified at
the final approval vote, following a set of controver-
sies [2]. The IEC 61158 has the great disadvantage
that it still keeps a diversity of eight different solu-
tions.

The ISA, which developed the SP50 standard and
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IEC committees met jointly to make the develop-
ment of an international standard possible. ISA
SP50 was the same committee that introduced the
4-20 mA standard back in the 1970s.

Meanwhile, other standards for smart transduc-
ers were developed. The IEEE 1451.2 [3] standard
deals with the specification of interfaces for smart
transducers. An idea proposed by this standard is
the specification of electronic data sheets to describe
the hardware interface and communication proto-
cols of the smart transducer interface model [4].

In December 2000 the Object Management
Group (OMG) called for a proposal of a smart trans-
ducer interface (STI). In response a new standard
has been proposed that comprises a time-triggered
transport service within the distributed smart trans-
ducer subsystem and a well-defined interface to a
CORBA (Common Object Request Broker Archi-
tecture) environment. The key feature of the STI is
the concept of an Interface File System (IFS) that
contains all relevant transducer data. This IFS al-
lows different views of a system, namely a real-time
service view, a diagnostic and management view,
and a configuration and planning view. The inter-
face concept encompasses a communication model
for transparent time-triggered communication. This
STI standard has been adopted by the OMG in Jan-
uary 2002.

It is the objective of this paper to examine the
strengths and weaknesses of the STI standard and
to present two case studies showing the capabilities
of the smart transducer interface.

The rest of the paper is organized as follows:

The following section explains the conceptual
model and architecture of the STI. Section 3 intro-
duces the properties of the IFS. Section 4 depicts the
proposed time-triggered fieldbus protocol. In sec-
tion 5 we will describe two case studies, that imple-
mented smart transducer networks based on the STI.
Section 6 investigates on the strengths and weak-
nesses of the STI standard. The paper is concluded
in section 7.

2 Conceptual Model

This section will introduce the conceptual model of
the OMG smart transducers interface [5].

On a abstract level, the purpose of a real-time
smart transducer interface is the timely exchange of
“observations” of real-time entities between the en-
gaged subsystems across the provided interfaces. A
real-time entity is a state variable of interest that has
a name and a value at a particular instant. An obser-
vation [6] is thus an atomic triple:

<name, observation instant, value>,

where name is an element of the common name
space of real-time entities, the observation instant
is a point in the “time space” and value is an ele-
ment of the chosen value domain. An observation
expresses that the referenced real-time entity pos-
sessed the stated value at the indicated instant.

A smart transducer (ST) system consists of sev-
eral clusters with transducer nodes connected to a
bus. Each cluster is connected to a CORBA gateway
via a master node. One CORBA gateway can inter-
face up to 250 clusters. The master of each clus-
ter is connected to the CORBA gateway through a
real-time communication network, which provides
a synchronized time to each master. Each cluster
can contain up to 250 STs that communicate via
a cluster-wide broadcast communication channel.
There may be redundant shadow masters to support
fault tolerance. One active master controls the com-
munication within a cluster (in the following sec-
tions the term master refers to the active master un-
less stated otherwise). Since smart transducers are
controlled by the master, they are called slave nodes.
Figure 1 depicts an example for such a smart trans-
ducer system.

Access to the smart transducer data is achieved by
assigning three different interfaces to each ST node:

DM interface: This is a diagnostic and manage-
ment interface. It establishes a connection to
a particular ST node and allows reading or
modifying of specific IFS records. Most sen-
sors need parameterization and calibration at
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Fig. 1: Multi-Cluster Architecture with CORBA Gateway

startup and continuously collect diagnostic in-
formation to support the maintenance activi-
ties. For example a remote maintenance con-
sole can request diagnostic information from a
certain sensor.

CP interface: The configuration and planningal-
lows the integration and setup of newly con-
nected nodes. It is used to generate the “glue”
in the network that enables the components of
the network to interact in the indented function.
Usually, the CP interface is not time-critical.

RS interface: The real-time serviceinterface per-
forms a periodic communication with pre-
dictable timing behavior among the ST nodes.
Communicated data is usually data from sen-
sors and for actuators. This view employs
sensors for producing periodic observations of
real-time entities in the environment. This
view supports the normal operation of the sen-
sor. For example, a temperature sensor period-
ically sends the observed and locally prepro-
cessed sensor value to the temporal firewall of
the master. Since in TTP/A the time interval
between sensing the environment and present-
ing the sensor value at the temporal firewall [7]
of the master is known a priori it is possible to

perform a feed forward state estimation of the
sensor value at the sensor node in such a way,
that the delivered sensor value is a good esti-
mate of the real-time entity’s actual state at the
point in time of delivery.

Although all transducer nodes are built as smart
transducers and contain a physical sensor or actua-
tor, a microcontroller, and a network interface, the
hardware requirements for the ST interface are very
flexible. The STI supports low-cost implementa-
tions of smart transducers, by allowing optional im-
plementation of standard features. Thus, it is possi-
ble to fit a minimum STI implementation on an em-
bedded microcontroller with 2k flash memory and
64 bytes of RAM memory [8].

3 Interface File System

The information transfer between a smart transducer
and its client is achieved by sharing information
that is contained in an internal interface file system
(IFS), which is encapsulated in each smart trans-
ducer.

A time-triggered sensor bus will perform a peri-
odical time-triggered communication to copy data
from the IFS to the fieldbus and write received data
into the IFS. Thus, the IFS is the source and sink for
all communication activities. Furthermore, the IFS
acts as a temporal firewall that decouples the local
transducer application from the communication ac-
tivities.

It is the task of the communication protocol to
keep consistency among the local copies of the IFS
data elements. A predefined communication sched-
ule defines time, origin, and destination of each pro-
tocol communication. The instants of updates are
specified a priori and known by the communicants.
Thus, the IFS acts as atemporally specified inter-
facethat decouples the local transducer application
from the communication task.

Each transducer can contain up to 64 files in its
IFS. An IFS file is an index sequential array of up
to 256 records. A record has a fixed length of four
bytes (32 bits). An IFS record is the smallest ad-
dressable unit within a smart transducer system. Ev-
ery record of an IFS file has a unique hierarchical
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address (which also serves as the global name of the
record) consisting of the concatenation of the cluster
name, the logical name, the file name and the record
name.

The IFS provides a unique address scheme for
transducer data, configuration data, self-describing
information and internal state reports of a smart
transducer [9].

Besides access via the master node, the local ap-
plications in the smart transducer nodes are also able
to execute a clusterwide application by communi-
cating directly with each other. Figure 2 depicts the
network view for such a clusterwide application.

As depicted in Figure 3, the IFS of each smart
transducer node can be accessed via the RS inter-
face, the DM interface and the CP interface for dif-
ferent purposes. All three interfaces are mapped
onto the fieldbus communication protocol, but with
different semantics regarding timing and data pro-
tection.
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Fig. 3: Three Interfaces to a Smart Transducer Node

4 Fieldbus Communication Proto-
col

A time-triggered transport service following the
specification of the STI has been implemented in the
time-triggered fieldbus protocol TTP/A.

The bus allocation is done by a Time Division
Multiple Access (TDMA) scheme. Communica-
tion is organized into rounds consisting of several
TDMA slots. A slot is the unit for transmission of
one byte of data. Data bytes are transmitted in a
standard UART format. Each communication round
is started by the master with a so-called fireworks
byte. The fireworks byte defines the type of the
round.

The protocol supports eight different firework
bytes encoded in a message of one byte using a re-
dundant bit code [10] supporting error detection.

Generally, there are two types of rounds:

Multipartner round: This round consists of a con-
figuration dependent number of slots and an
assigned sender node for each slot. The con-
figuration of a round is defined in a datastruc-
ture called “RODL” (ROund Descriptor List).
The RODL defines which node transmits in a
certain slot, the operation in each individual
slot, and the receiving nodes of a slot. RODLs
must be configured in the slave nodes prior
to the execution of the corresponding multi-
partner round. An example for a multipartner
round is depicted in Figure 4.
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Fig. 4: A TTP/A Multipartner Round

Master/slave round: A master/slave round is a
special round with a fixed layout that estab-
lishes a connection between the master and a
particular slave for accessing data of the node’s
IFS, e. g. the RODL information. In a mas-
ter/slave round the master addresses a data
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recordin the hierarchical IFS address and spec-
ifies an action like reading, writing or execut-
ing on that record.
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Fig. 5: Recommended TTP/A Schedule

The master/slave rounds establish the DM and the
CP interface to the transducer nodes. The RS inter-
face is provided by periodical multipartner rounds.
Master/slave rounds are scheduled periodically be-
tween multipartner rounds as depicted in Figure 5 in
order to enable maintenance and monitoring activi-
ties during system operation without a probe effect.

5 Case Study Implementations

5.1 Robot Arm

Fig. 6: Robot Arm

As a demonstrator for the STI we built a system
with a robot arm [11]. At the application level a hu-
man operator can control a prosthetic arm mounted
on top of a linear thrust unit (See Figure 6). Sim-
plicity of control for the user is established by the
presence of intelligence in the demonstrator. Smart
sensors yield information about the environmental
conditions allowing avoidance of operating errors
and obtaining precise control. Pressure sensors are
present for determining the required grip force to
grasp an object. No intervention of the human oper-
ator is needed to avoid slipping of an object. Motor
actuator nodes implement trapezoid excitation for

handling of inertia. The demonstrator is equipped
with an angle sensor to allow limiting the opening
of the elbow.

The demonstrator was also intended to investigate
partitioning of nodes into distinct clusters. The re-
sulting intercluster communication was required to
preserve temporal predictability and capabilities for
monitoring, maintenance and configuration.
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Fig. 7: Architecture of Robot Arm Transducer Network

The demonstrator consists of two clusters (See
Figure 7). The first cluster contains the nodes for
controlling the motors of the linear thrust units, the
elbow and the wrist. The nodes for retrieving the
current angle of the elbow and the joystick com-
mands are also placed in this cluster. A shadow mas-
ter can take over control in case the primary master
fails. Both masters are connected to the intercluster
bus and act as intermediate systems. In addition to
their TTP/A master role, they are slaves of a time-
triggered backbone bus. The second cluster contains
a node behaving as an interface system for integrat-
ing the prosthetic hand into the demonstrator. Two
nodes equipped with pressure sensors obtain mea-
surements for grasping objects intelligently.

5.2 Autonomous Mobile Robot

Another implementation of the STI is shown by a
model car, that acts as an autonomous robot with
sensory inputs [12]. Seventeen nodes were used for
building this mobile robot (“smart car”). Some of
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thesenodes are implemented on very small MCUs
to demonstrate the possibility of cheap slaves. Other
nodes should demonstrate the possibility of com-
plex features like plug & play or reconfiguration.

The model comprises a smart car equipped with
a suit of pivoted distance sensors, an electric drive
and a steering unit. Distance sensors, servo mo-
tors for sensor pivoting, driving and steering units
are all separate smart transducer nodes. Each node
is implemented on a low-cost microcontroller and
equipped with an STI.

Fig. 8: Smart Car

The STI supports the integration of smart trans-
ducer nodes with a predictable timing behavior [13].
It is possible to add extra “light” nodes to the car
during operation.

Figure 8 depicts the functionality of the smart car.
In order to achieve short efficient operation two dif-
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Fig. 9: Architecture of Smart Car Transducer Network

ferent operation modes are defined. The STI stan-

dard supports up to 6 user-definable independent
communication modes, which support applications
running different modes.

As long as no obstacles are detected within the
sensors’ range the car operates in “rabbit mode”.
In this mode the car drives straight forward at full
speed and two infrared sensors are aimed slightly
outward the driving direction. The main detection
of obstacles relies on two ultrasonic sensors. These
are capable to report obstacles straight ahead of the
car within a range of about 5m.

In case an obstacle is detected the car switches to
“turtle mode”. In this mode the car uses a communi-
cation schedule where all infrared sensors and pivot
servos are serviced. The distance sensors are swiv-
elled around by servo motors so that they are able
to scan the area in front of the robot. The sensors
generate a value that corresponds to the distance of
the object they are aimed at. The data stream pro-
vided by the distance sensors is taken over by a data
processing node that fuses the perceptions from the
distance sensors and the directions they are aimed
at with a model of the robot environment. In this
model the shapes of obstacles are stored and as-
signed with a probability value, that decreases with
the progression of time and increases when the ob-
ject is re-scanned. From this data a navigation node
calculates the speed and the direction to provide this
information to the speed and steering nodes.

6 Discussion

One requirement stated in the call for proposal by
the OMG was real-time capability of the smart
transducer interface.

The STI supports hard real-time communica-
tion by introducing a time-triggered communication
scheme, that is a priori specified before the RS in-
terface of the system is used.

Generally, time-triggered systems require an in-
creased effort in the design phase of the system,
but provide an easier verification of the temporal
correctness [14]. Since time-triggered systems are
designed according to the principle of resource ad-
equacy [15], it is guaranteed that sufficient com-
puting resources are available to handle the speci-

6



fied peak load scenario. On the other hand, time-
triggered systems are often blamed for their bad
flexibility. The STI overcomes this limitation by in-
troducing means to configure the interaction of the
components via the CP interface.

The RS interface provides composability, guar-
anteed timeliness, and hides components’ inter-
nals. The DM and CP interfaces involve inherently
event-triggered activities, which require an event-
triggered communication service. These interfaces
cannot invalidate the temporal behavior of the RS
interface and support full access to component in-
ternals – as required by a maintenance engineer.

The specification of interfaces should be com-
plete and of minimal cognitive complexity. Cog-
nitive complexity can be minimized by restricting
interactions via interfaces and by providing access
restrictions. The kind of information that must be
available via an interface depends on the purpose of
the particular interface. For example, a properly de-
signed operational interface hides component inter-
nals, thereby allowing a component to form a mean-
ingful abstraction. The corresponding operational
interface specification stipulated during architecture
design should incorporate a precise specification of
a component’s inputs and outputs in both the tem-
poral and value domain. A maintenance engineer
on the other hand, might require access to interme-
diate computational results for locating the origin of
an incorrect system behavior.

The smart transducer interface (STI) standard
meets the requirement for complete interfaces of
minimal cognitive complexity by introducing three
different types of interfaces of a component. The
separation into RS, DM and CP interface is done ac-
cording to the interface purpose, the necessary level
of visibility of component internal information, and
the type of the temporal interaction patterns. Such
a separation minimizes complexity in contrast to a
universal interface incorporating support for all pos-
sible interactions.

The STI standard also specifies the provision of
the three interfaces through a CORBA server. How-
ever, currently there is no CORBA architecture for
effectively supporting the temporal requirements to
establish the RS interface. Current priority-based

approaches like Real-time CORBA [16] require
complete knowledge about all other service requests
and their corresponding priority values in the whole
CORBA network. However, the availability of a
global notion of time allows to record the instant of
the acquisition of a real-time entity’s state in each
observation.

7 Conclusion

We implemented two case studies of the STI. The
first case study comprises a demonstrator with a
robot arm that is instrumented by a smart trans-
ducer network partitioned into two clusters. The
second case study is an autonomous mobile robot,
that shows the integration of new nodes and effi-
cient communication despite of static communica-
tion schedules.

The results show, that the STI standard is an in-
teresting option for various sensor network applica-
tions. The STI provides many features that are re-
quired by a fieldbus applications for automotive or
automation industries.

Supported features are the real-time capability,
the encapsulation of the node’s internals, and a
universal address space with the interface file sys-
tem. The STI can be implemented on low-cost
Commercial-off-the-Shelf (COTS) hardware and
supports various bus media types.
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