
Managing fieldbus systems

S. Pitzek W. Elmenreich
Institut für Technische Informatik Institut für Technische Informatik

Technische Universität Wien, Austria Technische Universität Wien, Austria
pitzek@vmars.tuwien.ac.at wil@vmars.tuwien.ac.at

Abstract

Digital fieldbus systems are increasingly becoming popu-
lar. The configuration and management of such a system,
mainly carried out manually, is an expensive and error-
prone task. Many existing fieldbusses provide means like
"plug-and-play" that assist the user in these tasks. How-
ever the existing solutions cover merely parts of the possible
configuration and maintenance tasks.

In this paper we will describe configuration and man-
agement aspects in the area of dependable real-time field-
bus systems. First we identify means for improving fieldbus
management. In order to reduce interface complexity we
introduce different user-dependent views.

In the following we discuss ways for organizing the man-
agement information. We will examine existing solutions
from other fieldbusses and discuss their suitability for our
purpose.

We plan to use the described concepts and mechanism in
a tool-set for the time-triggered fieldbus TTP/A.

1. Introduction

Using digital fieldbus technology is increasingly becom-
ing popular for a wide area of applications. From factory
instrumentation to car body electronics many competing
protocols promise safer and less expensive solutions that
are easier to develop and maintain compared to the former
technologies applied in the respective sectors (like point-to-
point wiring of analog sensor and actuator devices, discrete
logic, ...).

Nonetheless, the configuration and management of these
fieldbus networks remains a complex task. Sensor devices
and micro-controller of different architectures and from dif-
ferent vendors have to interact via fieldbus protocols to form
the distributed application of the network.

To ease the management of fieldbus systems all major
protocols provide mechanisms, formalisms and tools that
support this process.

Most of these approaches were developed independent of
each other and specifically tailored for the respective field-
bus system and its technical attributes. Most notable excep-
tions areCAN Kingdom[1], OSEK[2], and IEEE 1451 [3]
in their target of being in principle independent of the un-
derlying physical fieldbus.

But the central problem remains in that there is no sin-
gle model that tries to cover all aspects of the management
process of a fieldbus system.

A general management model would have to address the
same problems most vendor-specific solutions were devel-
oped for, in that it should lead to a less expensive system that
is faster deployed and contains as few errors as possible. In
addition it should be largely independent of the underlying
fieldbus protocol and preferably easy to understand.

In this paper we will examine aspects of the management
process. We will look at ways how to improve this manage-
ment process and the requirements on the infrastructure of a
fieldbus to achieve these improvements. We will also exam-
ine how a distributed configuration approach matches with
current mechanisms for configuration and management.

The paper is structured as follows. In section 2 we will
identify general methods on how to improve the manage-
ment process. Section 3 deals with the infrastructure re-
quired for these improvements. In section 4 we present a
summary of this paper while section 5 contains an outlook
on our further plans.

2. Ways to Improve Fieldbus Management

To get knowledge about what infrastructure is required for
successful management of a fieldbus we first have to iden-
tify central approaches for improvements of the manage-
ment process.

2.1. Automation of Operations

Automating re-occurring manual tasks usually leads to sig-
nificant time-saving and can eliminate many potential er-
rors. We distinguish two central application areas for au-
tomation.

Plug-and-play Plug-and-play capabilities of a system su-
persede the manual configuration process that would
be required when integrating nodes in a running sys-
tem, thereby unburdening system integrators and op-
erators. Most commercially available fieldbus systems
provide plug-and-play mechanisms to some extent.

Generation of applications and communication schedules
If a protocol uses a priori created communication
schedules, the creation of these schedules should not



be burdened on the application developer, but instead
created automatically by an appropriate software tool.

2.2. Abstraction

Usually in fieldbus systems we have a variety of different
nodes, sensors and local node applications. Differences
stem from varying hardware architectures, vendors, sensor
types and so on. In order to guarantee their inter-operability
we have to introduce abstraction mechanisms that hide these
inherent differences from the other nodes in the network.

However, in real-time systems too much abstraction is
not always appropriate because the real-time properties may
be lost. Therefore it is necessary to define interfaces to
transducer hardware, that provide information in a struc-
tured way in valueandtime domain.

Of course the protocol itself is already such a mecha-
nism, since it provides uniform rules on how nodes have
to communicate and in general controls the communication
and interaction of the participating nodes in the network.

With that in mind we will focus on abstractions that
specifically support an easier and faster system development
and management process. Some protocols likeLON [4] in-
clude sophisticated abstraction mechanisms in the protocol.
For example all application messages flowing between net-
work nodes inLON are transmitted as so-called network
variables, which are members of predefined network vari-
able types, thus forming an abstraction over the physical
data transport.

2.3. Multiple Views on a System

If different user groups access the system for different pur-
poses they should only be provided with the information
relevant for their respective purpose [5]. Following we will
discuss different views (with their respective interfaces) a
system could provide:

Application development The perception of the network
by the application developer depends on the configu-
ration mechanism provided for the protocol but usu-
ally is service-centered. When possible (physical)
network details and mechanisms that have no direct
relevance for an application (fault-tolerance/sensor-
fusion) should be hidden from the application devel-
oper, e. g. by introducing an intermediate data structure
that contains mappings from all sensor measurements
of interest. Such a data structure will be independent of
the sensor configuration but fully temporally specified
in order to maintain real-time behavior [6].

System integration The system integrator decides on the
structure of the network and, if required, integrates
sensor-fusion and fault-tolerant components in the net-
work. Since the system integrator is responsible for the

connection between the physical nodes and the appli-
cation he requires information about the physical struc-
ture of the network, outputs from the sensor/actuator
nodes and inputs to the application.

Maintenance Maintenance access usually takes place from
a maintenance device that connects to the network and
supports the maintenance engineer in diagnosing er-
rors, debugging the system and performing function
checks. In order to identify faulty components the
maintenance engineer needs exact knowledge about
the physical structure of the network.

Monitoring The perception of the network largely depends
on the information the monitoring process should
yield. Examples range from data throughput analysis
on the network, checking individual senors in a fault-
tolerant/sensor-fusion unit to examining communica-
tion patterns within an application. A system operator
might be interested in getting a view of the system that
can be adjusted to these different degrees of abstrac-
tion.

By providing each accessing user group with tailored in-
terfaces, the amount of information each user has to deal
with is reduced significantly. An example for a fieldbus pro-
tocol that provides different views on a system is theFoun-
dation Fieldbus[7].

After looking at the central ways of improving the man-
agement of fieldbus systems we will now examine the in-
frastructure a fieldbus system has to provide in order to sup-
port these mechanisms.

3. Organizing the Management Information

The implementation of the proposed methods depends on a
formal description of fieldbus properties. In this section we
will talk about these parts of a system that need formaliza-
tion and how this information is organized.

As a first step let us find the elements of a fieldbus sys-
tems that require a formal description.

Physical nodesFor every fieldbus protocol there usually is
a range of different transducer nodes and sensors, with
different properties (memory size, processing power,
measuring type, ...), that are part of the same installa-
tion. To provide application developers with a uniform
view on these nodes we require some way to formal-
ize these properties so that support tools can hide these
differences from the user. An example for such a de-
scription is thedevice description language (DDL). A
description language that was originally created for the
HART-fieldbus [8] but soon was adopted for theFoun-
dation Fieldbus.

Local node applications Every transducer node contains



local node applications that provide services to the dis-
tributed network application. Examples for such ser-
vices are transmitting sensor values or controlling actu-
ators. Since many of these local node applications are
in principle identical when looking at different fieldbus
devices, we can organize them in a structured way, to
provide a service-centered view of the system.

Application The overall application of the fieldbus system
is distributed over the nodes in the network. Data com-
municated between different nodes in the network has
to be converted to a generally accepted form, to be of
use to other nodes. Some protocols introduce data type
hierarchies for this kind of data (e.g. network variable
types inLON).

Protocol specific information Protocol-internal informa-
tion is usually of no concern for the end-users of field-
bus systems, but essential for node developers that pro-
duce devices that have to stick to the standards pro-
vided by the target fieldbus protocol. When creating
abstraction mechanisms we have to include ways to
still be able to access this information.

Fault-tolerance/sensor-fusionFor convenience reasons
fault-tolerance and sensor fusion mechanism should be
transparent for the application developer. But in case a
maintenance engineer is accessing the system we still
require a representation of the concrete implementa-
tion of these mechanisms in the system (number of
nodes in a fault tolerant unit, failure modes, ...). To
our knowledge there are no fieldbus solutions available
that include fault tolerance/sensor fusion mechanisms
on the level of services and device descriptions (inde-
pendent of the application).

Many existing systems integrate predefined fieldbus
nodes into the network. Each fieldbus node is assigned
a description, whereas this description can be simple
human-readable printed data sheets, machine-readable for
computer-aided or automated configuration or a combi-
nation of both. An example of the last case is the
IEEE 1451 standard that defines multiple classes of trans-
ducer electronic data sheets (TEDS) and divides them in op-
tional/required and machine-readable/human-readable sub-
classes.

However, it is assumed, that the information required for
the integration of a single component isstatic, i. e. does
not change over the lifetime of the system. The config-
uration data that controls the system is often stored cen-
trally in a master, control node, or gateway node. This data
is dynamic. An example for an architecture that follows
this approach is the LIN-fieldbus [9]. However, actual re-
quirements on real-time communication and fault-tolerance
may lead to a shift to distributed systems, where we are

confronted with distributed configuration information and
the configuration of a single node becomes an important
part of the overall system. An example for an architec-
ture with a need for distributed configuration is TTP/A [10],
where communication schedules have to be configured con-
sistently in all nodes in order to enable a predictable real-
time communication. When such node configurations are
changeable in-system, part of the node’s configuration in-
formation becomesdynamic, since the node needs to be syn-
chronized to the new schedules.

In general time-triggered systems require an increased
effort in the design phase in comparison to other event-
triggered systems. However this brings the advantage of
easier verification, predictability and deterministic tempo-
ral behavior [11].

With these requirements in mind, we will look at how
we can organize the management organization in a way that
supports this distributed configuration.

3.1. Distributed Configuration Management

Much of the support functionality for fieldbus management
lies in software tools located outside the fieldbus. They pro-
vide extensive additional services to support users in their
respective tasks.

Thus machine processabilty of management descriptions
is a central requirement. In case of distributed configura-
tion this requirement is pronounced, since manually inte-
grating a new node in a running network is a very difficult
task which includes the adaption of all node schedules in
the network to the new node. We presented a solution for
the automatic integration of new nodes (plug-and-play) in a
fieldbus system with distributed configuration [12].

In our opinion this distributed configuration fits well to
a more general view of the system as a distributed appli-
cation. While current solutions do provide abstractions for
services in the network, there is still a strong focus on indi-
vidual nodes, since usually a node in the application context
is defined by the services it provides. This focus on the net-
work nodes causes some problems. For example, in current
solutions we have found no way to include fault-tolerance or
sensor-fusion services on a level other than the distributed
application. Since such services require the interaction of
multiple nodes, we need an abstraction for services that is
above the node level.

We introduced this explicit distinction betweenstaticand
dynamic management informationmainly for the reason of
being able to partition the management information in those
parts mostly decided at design time and those parts that can
change during operation of the system. Up to this point
we used this distinction solely in the context of protocol
schedules, however we can also extend it to the overall man-
agement information of a fieldbus system. In this case the
dynamic information set represents the running state of a



system. This information includes the schedules on the
nodes, configuration values that can be set at runtime and
the nodes dynamic application data (measurements, actua-
tor positions).

On the other hand the set of static information contains
those properties that we must not necessarily keep in the
cluster. Some approaches like IEEE 1451 require that all
the configuration and management information has to be
kept on the nodes. We find this requirement overly restric-
tive since information that is not required for the run-time
system (thestatic information) could also be stored outside
the network (e.g. in a centralized Internet data base, or on
CD-ROM). Since access to fieldbus devices is performed
via software tools, these tools can easily retrieve this ex-
tended information, if they get a hint from the field device
where to find this information (e.g. unique identifier or URL
for the location of the device description). For example in
case of theFoundation Fieldbus(FF) the FF protocol group
regularly publishes CD-ROMs with an up-to-date database
of device descriptions of supported field devices.

The TTP/A standard already supports this hybrid stor-
age of static and dynamic configuration data. We will focus
on the TTP/A fieldbus with the implementation of a formal
device description supported by appropriate tools.

4. Summary

With the increasing capabilities of digital fieldbus systems,
management and configuration of such systems become
more complex and error-prone. Many existing fieldbusses
provide means like ”plug-and-play” that assist the user in
these tasks. However existing solutions cover merely parts
of the possible configuration and maintenance tasks.

In this paper we have described configuration and man-
agement aspects in the area of dependable real-time field-
bus systems. In order to reduce interface complexity we
introduced different user-dependent views. Furthermore we
analyzed ways for organizing the management information,
with a special focus of the impact distributed configuration
has on the configuration and management process.

5. Future Work

We plan to implement the concepts described in this paper
in a smart transducer case study [13] instrumented with the
TTP/A fieldbus. We use an autonomous mobile robot that
comprises three different types of sensor nodes and four
types of actuator nodes. Furthermore there are a master and
a control node with a user-defined application. As a proof of
concepts we plan to derive formal device descriptions of all
nodes in the network. In addition we will implement tools
that provide appropriate views for the different user groups.

6. Acknowledgments

We would like to give special thanks to our colleague Wil-
fried Steiner for constructive comments on an earlier ver-
sion of this paper. This work was supported in part by
the Austrian Ministry of Science, project TTSB and by the
European IST project DSoS under contract No IST-1999-
11585.

7. References

[1] L.-B. Fredriksson. CanKingdom and dependable CAN sys-
tems. available at http://www.cankingdom.org.

[2] BOSCH. OSEK/VXD operating system - version
2.1 revision 1. available at http://www-iiit.etec.uni-
karlsruhe.de/ osek/, Dec. 2000.

[3] L. H. Eccles. A brief description of IEEE P1451.2.Sensors
Expo, May 1998.

[4] D. Loy, D. Dietrich, and H.-J. Schweinzer (Eds.).OPEN
CONTROL NETWORKS. Kluwer Academic Publishing, Oct.
2001.

[5] A. Ran and J. Xu. Architecting software with interface ob-
jects. InProceedings of the Eighth Israeli Computer Systems
and Software Engineering, pages 30–37, 1997.

[6] W. Elmenreich and S. Pitzek. The time-triggered sensor fu-
sion model. In5th IEEE International Conference on Intelli-
gent Engineering Systems (INES), Helsinki-Stockholm, pages
297–300, Sep. 2001.

[7] Fieldbus technical overview - understanding FOUNDATION
fieldbus technology. available at http://www.fieldbus.org/.

[8] R. Bowden. HART - A Technical Overview. Fisher-
Rosemount, Aug. 1997.

[9] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc.
Volcano Communication Technologies AB, Volkswagen
AG, and Volvo Car Corporation. LIN specification and
LIN press announcement. SAE World Congress Detroit,
http://www.lin-subbus.org, 1999.

[10] R. Schlatterbeck and W. Elmenreich. TTP/A: A low cost
highly efficient time-triggered fieldbus architecture.SAE
World Congress 2001, Detroit, Michigan, USA, March 2001.

[11] H. Kopetz. Should responsive systems be event-triggered or
time-triggered? Institute of Electronics, Information, and
Communications Engineers (IEICE) Transactions on Infor-
mation and Systems, E76-D(11):1325–1332, 1993.

[12] W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider. New
node integration for master-slave fieldbus networks. InPro-
ceedings of the 20th IASTED International Conference on
Applied Informatics (AI 2002), pages 173–178, Feb. 2002.

[13] W. Elmenreich et al. A smart sensor LIF case study: Au-
tonomous mobile robot.DSoS Project (IST-1999-11585) De-
liverable PCE3, Apr. 2002.


