
Applying a Real-Time Interface to an Optical Tracking System

S. Bruckner1, R. Seemann1 and W. Elmenreich2
Institut für Technische Informatik

Technische Universität Wien, Austria
1jawz@cg.tuwien.ac.at,2wil@vmars.tuwien.ac.at

Abstract

Computer-aided surgery is a young and exciting field of re-
search. It is concerned with visualizing drills and other
tools in relation to radiologic data allowing the surgeon
to angulate these tools. Motion tracking hardware used in
these applications provides high accuracy and update rates.
However, current software implementations lack the impor-
tant real-time constraints required for robotics or profound
motion analysis. Hitherto efforts are limited to making the
process fast. In this paper we present an architecture en-
abling applications to access common motion tracking hard-
ware in a hard real-time environment. Our goal is to design
and implement an open-source driver for motion tracking
applications and to make it freely available for research and
further development.

1. Introduction

In the past century radiologic data has become fundamen-
tal for planning surgical intervention. Conventional two-
dimensional X-ray has been replaced by sliced techniques
like CT (computer tomography) or NMR (nuclear magnetic
resonance). One big drawback of these methods is their
static nature. To overcome this limit static pictures and
movement data can be combined. State-of-the-art infrared
cameras detect movements of special markers which can
be attached to patients or tools. Computer navigation al-
lows the surgeon accurate views of the patient’s body dur-
ing surgery. Systems have been developed that can assist the
clinician in diagnosis, treatment planning, and the treatment
itself.

One example is examination of jaw movement. In the
past years this has been achieved by attaching mechanical
devices to the lower jaws teeth and to the skull, letting a
pencil draw on a plane. Nowadays this can be done using
an infrared camera in combination with light weight mark-
ers placed on the patient’s jaw. Curves of movement can
be recorded and analyzed using various visualization tech-
niques.

In these applications accurate tracking is critical to the
success of the procedure. Tracking is the process of pin-
pointing the location of instruments, anatomical structures,

and/or landmarks in three-dimensional space and in rela-
tionship to each other. The basic concept behind tracking is
the following: markers are placed on a body which’s posi-
tion is to be determined, these markers are adapted to emit
energy in response to an activation signal or reflect energy
from an activable source, a sensor detects the energy emitted
or reflected, and this detection is translated into positional
information using various algorithms [1].

���������
	���

�����������

������� �"!$#&%
')(+*-,/.+021

354�687
9
:+;=<?>A@2B+C

D�EGFIHKJML8NGOQPSRUTWV8XGY8Z [Q\^]8_a`Ub
c�dae/fhgji k
lnm
ojprq
sutavxwzy/{G| }K~���� ���
�G�

���K�$�
�Q�u�a�K�$�
� �/�

���z�z� �K�$�
���A�U ^¡
¢¤£$¥A¦Q§M¨z©¤ª¬«�­�®8¯z°²±´³¬µ
¶K·M¸A¹ ºx»u¼
½K¾u¿zÀÂÁuÃ�ÄjÅGÆÈÇaÉzÊxË
ÌUÍ�ÎÐÏÒÑUÓMÔ
Õ

Ö5×GØ
ÙMÚ´Û Ü�ÝUÞ
ßÐàaá´âÒãMä8åQæ/çUèQézê�ë

Figure 1: The motion tracking process

Numerous software packages exist to accomplish this
task, but most of them lack one essential property: Real-
time. Many medical applications require real-time capabil-
ities. They enable experts to interpret motion data, ensure
accurate visualization for computer-aided surgery and are
basis for the integration of robotics.

���������
	���
������������������! #"�$&%

')(+*&,.-0/2143&5�6�7+8�9�:�;=<�>@?BA&CED4F0G�H

IKJML�N�OQP�R+S�TVUXWZY�[@\4]&^E_B`0acb

dfe+g�h�ikj�lnm�o+p�qMr�s&t�u�vXw@xzy�{@|.}�~��4�0�c�

�K�X���&�X�
���&���0�

�K���X�
���&���0�

�����

�.�M�

 ¢¡2£

¤.¥M¦

§©¨�ª�«�¬�­k®0¯±°V²X³

´fµ�¶.·¹¸�º.»�¼c½�¾2¿�À�Á�ÂÄÃÆÅ�Ç�È�ÉËÊ

ÌÎÍ�Ï�Ð�Ñ�Ò�Ó�Ô!ÕVÖX×ÆØ�Ù!Ú#Û�Ü&Ý

Figure 2: Architecture overview

In the following paper we present a driver model that al-
lows the use of common tracking devices in a hard-real-time
environment.

Related work regarding motion tracking for various pur-
poses can can be found in [2] and [3]. An overview over
current tracking systems is given in [4].

The remainder of this paper is structured as follows: Sec-
tion 2 presents our architecture for interfacing motion track-
ing hardware. In Section 3 we discuss implementation de-
tails for the Northern Digital Inc. Polaris system. Finally,
Section 4 concludes this paper and gives an outlook on our
future work.

2. Architecture

One major feature of a good device driver is that it ”provides
mechanism, not policy”. This means that it should mimic all
interfacing capabilities of the device (the ”mechanism”), but
nothing more. It should not try to interpret exchanged data
in any possible user context (the policy), because that is job
of a user application itself [5].

A mistake commonly made by authors of device drivers

which aim to utilize a device for a single application, is that
the driver depends to much on that application and might be
difficult to use for other tasks.

Therefore, our driver architecture consists of two distinct
components: A device-level driver, which provides access
to the hardware through a real-time task and an application-
level driver which provides a device-independent applica-
tion interface.

Since we chose Linux as our host operating system we
must also keep the following Linux-specific issues in mind
[6]:

Kernel-space vs. user-space:The Linux operating system
has two levels: Only privileged processes can run in
the kernel, where they have access to all hardware and
to all kernel data structures and system calls. Normal
application programs can run their processes only in
user space, where these processes are shielded from
each other, and from direct access to hardware and to
critical data of the operating system.

Real-time environment: In real-time systems it is essen-
tial that all timing delays are both short and determinis-
tic. The Linux operating system does not natively sup-
port real-time features. Our approach therefore relies
on RTAI (real-time application interface) which pro-
vides a real-time capabilities based on the Linux ker-
nel. This extension is similar to RT-Linux, but pro-
vides a richer API. Since our driver is an open-source
project we chose this free extension to the Linux plat-
form rather than a commercial real-time operating sys-
tem.

Our basic architecture is outlined in Figure 2. De-
vice communication takes place within a real-time kernel
module (1) which collects data from the tracking hard-
ware and produces timestamped output which is stored in
a sufficiently large ring buffer. A Linux character device
driver allows to configure the hardware using the standard
ioctl() function call. The read() function empowers the
application-level part of the driver (2) to access the acquired
data. This module performs conversions and provides struc-
tured access to the data through a device-independent inter-
face. A major part of the system is a data processing module
(3) which improves information quality for the application
(4) through the means of mathematical methods such as in-
terpolation and extrapolation techniques [7].

Figure 3 gives a better understanding of data and control
flow during the tracking process. As stated in [8] communi-
cation between two subsystems is either controlled by the
sender’s request (push style) or by the receiver’s request
(pull style). The push method empowers the supplier to
send messages at any time while the consumer has to wait
for incoming data. In the pull mechanism, whenever the

���������
	���

�����������

�������

�!
"$#&%('*),+.- /�0

1�24365

7!8�9$:<;(=*>,?A@ B�C

D�EGF.HJI.K L�M NPOGQ(RJSAT U�V

WYX$Z []_^ `badc

egfihkjmlon�prqts
ukv�wyx�z
{
|!}�~������

���i�k���������������
�!�������P�

���������k
¡A¢¤£�¥

Figure 3: Data and control flow during motion tracking

consumer wants to access message information, the supplier
has to provide the requested data. The ring buffer (2) men-
tioned in the previous paragraph acts as a push consumer
for the real-time device driver (1) and as a pull supplier
for the application driver (3) which decouples communica-
tion between these two modules. Since both the role of the
push consumer and the role of the pull supplier is taken by
a memory element (the ring buffer) the negative effects of
the push and pull communication do not affect the system
performance. However, this buffer must be able to store all
data for the maximum recording duration, since no assump-
tions can be made about the pull consumer’s speed. If the
buffer is too small data could be overwritten before it was
read.

3. Implementation

We will first implement this architecture with the Northern
Digital Inc. Polaris system, a widely used optical tracker.
This infrared device offers 6DOF (6 degrees of freedom,
determination of position and orientation). Optical tracking
for the Polaris system is accomplished first by setting up
multiple CCD (charge couple device) sensors to detect the
energy emitted or reflected by the marker. In the case of re-
flected energy, the process is referred to as passive sensing
and in the case of emitted energy it is referred to as active
sensing. A single marker is energized per sensor cycle to
emit infrared energy. During each sensor cycle, the emit-
ted energy focused on to the sensor is collected and shifted
to the sensor processing circuitry. To determine the three-
dimensional position of a marker it must be detected on at
least three sensor axes, to cover a minimum of three orthog-
onal planes. Mathematical processing using the technique
of triangulation determines six degrees of freedom, defined
as being the 3D coordinates and angular orientation.

The Polaris system has three modes of operation: setup,
tracking and diagnostic [10].

Setup: Setup mode allows you to configure the system and
the attached tools.

Tracking: In tracking mode, the system measures the posi-
tion and orientation of the tools in real-time and returns
the information to the host computer.

Diagnostic: This mode of operation is used for determin-

Table 1: Polaris technical specifications [9]
General

Accuracy 0.35 mm 3D RMS (1)
Workstation Interface

Interface RS-232/422
Max. Data Rate 115 kBaud

Position Sensor
Weight 2 kg
Mounting 1/4” thread tripod mount
Dimensions 590 mm x 80 mm x 120 mm

Tool Interface Unit
Weight 5 kg
Dimensions 320 mm x 130 mm x 300 mm

Power Requirements
hybrid 100/120/220/240 V, 50/60 Hz, 2.5 A
passive 100-250 V, 50/60 Hz, 0.8 A

hybrid POLARIS
Update Rate Up to 60 Hz (max rigid body rate) (2)
Max. Markers/Tool 20 (active), 6 (passive), 6 (active wireless)
Max. Tools 9 simultaneously (3 active, 6 pas-

sive/active wireless)
Tool Change Automatic active, Software controlled

passive
Tool Options 3 switches, 4 visible LEDs per active tool

passive POLARIS
Update Rate Up to 60 Hz
Max. Markers/Tool 6
Max. Tools 6 simultaneously (up to 3 active wireless)
Tool Change Software controlled

(1) based on a single marker stepped through more than 1000
positions throughout the measurement volume, using the mean of

30 samples at each point at 20°C - (2) varies according to tool
combinations with a maximum rigid body rate of 60 Hz

ing possible causes failures. This includes functions
like checking the environment for infrared sources that
might interfere with the camera.

Some commands will only work during specific modes of
operation. The real-time driver will handle mode-switches
transparently and provide methods to access all capabilities
of the device.

Messages between the host computer and the Polaris sys-
tem are always initiated by the host computer. The host
computer issues a command to the system and the sys-
tem responds with a reply. The Polaris system provides
an RS232/422 interface. Therefore, we utilize the rtcom
serial port driver which, in combination with RTAI, allows
deterministic access to the hardware. However, the timing
characteristics of Polaris itself are not specified exactly and
have to be evaluated during the implementation. We will
perform a number of statistical tests with different setups in
order to determine timing boundaries. We plan to acquire
more distinguished timing specifications since the vendor’s

update rate declaration of ”up to 60Hz” is not sufficient for
certain applications, e.g. computer-aided surgery. As stated
in [11] environmental disturbances may affect precision. In
addition to that it has be determined whether such distur-
bances influence the processing time of the camera. This
information will be used to develop an application which
gives the user detailed feedback about the achievable up-
date rates for different tool configurations. The data pro-
cessing module introduced in the previous section will be
used to compensate possible inaccuracies in both measur-
ing and timing. Our goal is to almost completely remove
jitter and to provide a continuous stream of data.

4. Conclusion and Future Perspective

We have showed a general architecture for interfacing mo-
tion tracking hardware in real-time. It hides hardware char-
acteristics from the application and decouples non-real-time
and real-time components of the system. In a first step we
will implement a device driver for the Polaris system, but
we are planning to support several other devices. The source
code will be freely available for research and development.

Our driver can be used for various motion tracking tasks,
but its focus lies on systems for medical motion-analysis
and surgical navigation. We plan to develop a reference ap-
plication for evaluation and research purposes.

Further extensions may include the combination of mul-
tiple devices using sensor-fusion techniques including the
integration of time-triggered protocols such as TTP/A [12].

5. References

[1] D. Simon. Intra-operative position sensing and tracking de-
vices. InProceedings of the First Joint CVRMed / MRCAS
Conference, pages 62–64, June 1997.

[2] M. Ribo, A. Pinz, and A. Fuhrmann. A new optical track-
ing system for virtual and augmented reality applications. In
Proceedings of the IEEE Instrumentation and Measurement
Technology Conference, Budapest, volume 3, pages 1932–
1936, May 2001.

[3] K. Dorfmueller and H. Wirth. Real-time hand and head track-
ing for virtual environments using infrared beacons. InInter-
national Workshop on Modelling and Motion Capture Tech-
niques for Virtual Environments, CAPTECH’98, Geneva,
Switzerland, Nov. 1999.

[4] M. Ribo. State of the art report on optical tracking. Technical
Report 2001-25, VRVis, 2001.

[5] A. Rubini. Linux Device Drivers. O’Reilly, 1998.

[6] M.J. Bach.The Design of the UNIX Operating System. Pren-
tice Hall, 1986.

[7] R.T. Azuma. Predictive Tracking for Augmented Reality.
PhD thesis, Dept. Computer Sciences, Univ. of North Car-
olina, Chapel Hill, 1995.

[8] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface de-
sign for smart transducers. InIEEE Instrumentation and

Measurement Technology Conference, Budapest, Hungary,
May 2001.

[9] Northern Digital Inc. Polaris Technical Specs.
http://www.ndigital.com/polaristechnical.html (current
Apr. 2002).

[10] Northern Digital Inc. Application Programmer’s Interface
Guide (Manual Version 1.0), Dec. 2000.

[11] A. Wagner et al. Quantitative analysis of factors affecting in-
traoperative precision and stability of optoeletronic and elec-
tromagnectic tracking systems.Medical Physics. accepted
for publication.

[12] W. Elmenreich and S. Pitzek. Using sensor fusion in a time-
triggered network. InProceedings of the 27th Annual Con-
ference of the IEEE Industrial Electronics Society, Denver,
Colorado, volume 1, pages 369–374, Nov.-Dec. 2001.

