
Time-Triggered Communication with UARTs

Wilfried Elmenreich and Martin Delvai
Institut für Technische Informatik

TU Vienna, Austria
wil@vmars.tuwien.ac.at, delvai@vlsivie.tuwien.ac.at

Abstract

The simple UART (Universal Asynchronous Re-
ceiver and Transmitter) encoding is used in two novel
fieldbus protocols for real-time systems, the Local Inter-
connect Network (LIN) and the Time-Triggered Proto-
col for SAE class A applications (TTP/A). These pro-
tocols use a time-triggered communication schedule to
achieve a predictable timing behavior. The employment
of standard components like a standard UART reduces
costs, but the issues of clock drift, send jitter, and the
adjustability of the send frequency have to be consid-
ered.

This paper examines common timing problems with
standard UARTs and imprecise oscillators and presents
a calculation of upper bounds for the timeliness of
UART driven communications.

Furthermore we discuss methods to solve the timing
problems when imprecise on-chip oscillators are used.
The synchronization support of time-triggered fieldbus
protocols often relies on a configurable UART without
send jitter. Standard hardware UARTs usually do not
hold this requirement. It is possible to use a software
UART implementation but at the cost of node perfor-
mance. We have developed an enhanced UART archi-
tecture that behaves better for time-triggered systems
than standard UARTs. Together with proper protocol
synchronization support this approach allows the inte-
gration of nodes with imprecise clocks in time-triggered
real-time systems.

1. Introduction

A UART (Universal Asynchronous Receiver/Trans-
mitter) is a component used for serial communications,
containing a transmitter (parallel-to-serial converter)
and a receiver (serial-to-parallel converter). The par-
allel side of a UART is usually connected to the bus of

a computer. When the computer writes a byte to the
UART’s transmit data register, the UART will start to
transmit it on the serial line.

The simple UART encoding is used in two novel
fieldbus protocols for real-time systems, the Local
Interconnect Network (LIN) and the Time-Triggered
Protocol for SAE class A applications (TTP/A).
Both protocols aim at the implementation of pre-
dictable communication for sensors and actuators on
commercial-off-the-shelf (COTS) hardware. Since to-
day most microcontrollers already include a unit for
serial transmission this new class of protocols opens a
way for low-cost implementations of real-time fieldbus
networks. LIN and TTP/A both use a time-triggered
communication schedule to achieve predictable timing
behavior and provide clock synchronization for impre-
cise cheap on-chip oscillators [9]. To achieve the in-
tended goal of predictable communication, it must be
ensured, that the UART communication of a microcon-
troller with an on-chip oscillator can hold the timing
requirements imposed by the communication protocol,
although UARTs were not originally designed for this
application class.

It is the objective of this paper to investigate the
timing properties of a UART communication and dis-
cuss consequences on protocol and hardware design.

The remainder of the paper is organized as follows:
Section 2 states the boundary conditions of the prob-
lem. Section 3 examines the timing properties of a
UART communication and derives two conditions that
are sufficient for a successful communication. Section 4
analyzes the timing properties of two standard UARTs.
Section 5 presents approaches to solve the stated prob-
lems, i. e. a software UART implementation and the
VLSI design of an enhanced UART architecture. Fur-
thermore this section describes the clock synchroniza-
tion mechanisms of the LIN and the TTP/A protocol.
The paper is concluded in Section 6.



2. UART communication timing

The timing of a UART transmission is influenced by
various factors. The baud rate of a UART is usually
configured by integer values – the arithmetic rounding
error leads to baud rate deviations. The architecture of
common UARTs furthermore leads to intrinsic delays
at the sending UART. Furthermore one has to regard
the qualities of the clocks of the communication part-
ners. Clock drift and offsets influence the baud rate
and the instant of communication start. The network
itself adds timing variations by the signal runtime. In
this section we will quantify these five timing devia-
tions separately.

2.1. Arithmetic error in baud rate setting
The baud rate (BR) depends on the frequency of

the UART clocking. The baud rate is set by choosing
a value UBRS (UART Baud Rate Setting) as follows:

BR =
fclk

C1 · (UBRS + C2)
(1)

The integer constants C1 and C2 depend on the
UART implementation. Typically C1 represents the
number of samples per bit cell (e. g. 16 for Atmel AVR
RISC series) and C2 is typically 1.

Using formula 1 the variable UBRS is set to define
the baud rate. To achieve a desired baud rate, UBRS
has to be set to:

UBRSIdeal =
fclk

C1 ·BR
− C2 (2)

Equation 2 yields a rational number for UBRS.
Common UARTs only accept integer values for UBRS,
so UBRS will be rounded to an integer value in approx-
imation of the ideal value (see Equation 3). The error
resulting from this rounding will be considered as the
arithmetic error.

UBRSReal =
⌊

fclk

C1 ·BR
− C2 + 0.5

⌋
(3)

The rounding error can amount at most ± 1
2 in the

worst case. Assume that we want to set the UART to
a given (ideal) baud rate. For every clock frequency
fclk we can determine a UBRS that best approximates
the desired baud rate. Thus we can give an upper
bound for the ratio between the fastest and the slowest
approximated baud rate:

BRfast

BRslow
<

UBRS + C2 + 1
2

UBRS + C2 − 1
2

(4)

2.2. Send jitter problem
At initialization of the UART the baud rate genera-

tor is started. Running at a frequency corresponding to
the configured baud rate, the baud rate generator peri-
odically generates ticks which are possible start events
of a message bit. When the UART receives a transmit
signal, it starts the transmission at the next tick from
the baud rate generator. Thus, depending on the inter-
nal state of the baud rate generator the transmission
of a message may be delayed up to the interval time
of two subsequent baud rate generator ticks. Usually
the state of the baud rate generator cannot be read,
leading to an indeterministic send delay jitter:

0 ≤ tJitter <
1

BR
(5)

Subsequent transmissions may not be affected by
this send jitter, however if transmissions can start
at particular instants, the send jitter jeopardizes the
achievable accuracy for this send instant.

2.3. Baud rate drift
Usually components performing a UART communi-

cation are set apart from each other and are clocked
by different clock sources. Clock synchronization al-
gorithms are used to synchronize these clocks periodi-
cally. After synchronization clocks can drift apart from
each other, depending on their drift rate. The drift of
a physical clock is the ratio between the actual clock
frequency fclk and the reference frequency fref . Good
clocks have drifts that are very close to 1, so the drift
rate ρ is introduced as [8]:

ρ =
fclk

fref
− 1 (6)

A perfect clock will have a drift rate of 0. Real
clocks have varying drift rates depending on tempera-
ture, voltage variations, or aging effects. Typical drift
rates for quartz crystal oscillators are in the range of
10−2 to 10−7 s

s . Embedded microcontrollers (e. g. At-
mel AVR RISC series [1]) often contain on-chip RC
oscillators which show drift rates of up to 0.5 s

s . The
drift rate itself can vary over time.

We assume that a clock synchronization algorithm
synchronizes all clocks to have a maximum drift rate
of |ρ| < ρ0 at time t = 0. Furthermore we assume a
maximum change per time unit of the drift rate |ρ̇| <

ρ̇0. Thus the maximum clock drift accumulates over
time and calculates to:

|ρmax(t)| = ρ0 + ρ̇0 · t (7)

2



The baud rate depends on the frequency of the
UART clocking and is therefore influenced by the clock
drift. The worst cases for the baud rate with respect
to drift can be calculated as:

BR(t) =
fref · (1± ρmax)

C1 · (UBRS + C2)
(8)

2.4. Clock offset
This problem refers to the offset between the par-

ticular clocks of the communicating nodes. The offset
of the local clock affects the instant when the commu-
nication partners send or expect to receive a message.
The maximum clock offset of a free running clock with
a maximum drift rate ρ(t) = ρ0+ρ̇0 ·t can be calculated
as follows:

tOffset(t) = ±
∫ t

0

ρ0 + ρ̇0 · t dt (9)

The lower bound of the integral defines the instant
when the clock was last synchronized to zero offset and
calibrated to a drift |ρ| < ρ0.

2.5. Signal runtime
Electric signals in a cable travel at approximately

2/3 of the speed of light. This results in a delay of:

tSignal ≈ l

2 · 108 m
sec

(10)

l is the length of the cable between two transceivers.
Generally this length takes different values for every
two nodes in linear and ring bus topologies. By cal-
culating the signal delay for all possible signal ways,
the delay splits up into a minimal delay and a variable
delay between 0 and (maximal delay - minimal delay).

In a star topology the delay between two arbitrary
nodes can even be made all the same so that the vari-
able delay results to 0. When the send instant is a
priori known to the sender and collisions between sub-
sequent UART frames are obviated the signal delay can
be compensated by sending the time of minimal delay
earlier.

3. Timing limits of UART communica-
tions

Considering the timing problems presented in the
previous Section it is the purpose of this Section to
examine the timing limits for UART communications.

We assume a system of multiple communication
nodes using serial communication with broadcast char-
acteristics. There are no handshake or control lines.

Bus arbitration will be solved by a time-slotting
method, thus it is necessary to guarantee that the be-
ginning and the ending instants of a UART frame lie
within a given transmission window. While this trans-
mission window is defined with respect to a global time,
the transmitting nodes only have access to a local time
established by a local clock with a known drift rate.
The local time is frequently synchronized to the global
time. The smallest unit of transmission is one data
word which is transmitted in a UART frame. A UART
frame consists of 1 start bit, a number of data bits,
an optional parity bit and 1, 1.5, or 2 stop bits. The
number of data bits, the parity bit and the number
of stop bits must be set a priori in all communication
partners. An investigation on the features of selected
UARTs showed that the number of data bits ranges is
typically 7, 8, or 9. A frame format of 1 start bit, 8
data bits, 1 parity bit, and 1 stop bit is supported by
all examined UARTs [4].

Many UARTs perform multiple sample points to de-
tect a bit cell and decide on a majority vote. This
method affords a multiple of the sampling frequency
for single bit detection but provides immunity to short
spike disturbances on the communication line. In our
paper we will assume, that there is only one detection
point in the middle of a bit cell. UARTs with multiple
sample points per bit cell may be even more critical to
baud rate differences.

3.1. Maximal baud rate difference

This section investigates the maximum allowed de-
viation of the baud rates of sender and receiver in order
to correctly communicate.

We analyze the single bit cells of a UART frame
and calculate the maximum admissible delay until bits
are detected incorrectly. Figure 1 depicts a message in
transmission. Sender and receiver use baud rates that
deviate from the ideal baud rate. The worst case is a
slow receiver trying to listen to a sender transmitting
too fast. The other extreme with a slow transmitter
and a fast receiver is less critical. For correct transmis-
sion, the instant of the detection point of the last bit
cell of a frame has to be prior the instant of the end of
the transmitted UART frame (see Figure 1).

The condition for a successful communication is
given in Equation 11:

n− 1
2

BaudRateslow
− n

BaudRatefast
≤ 0 (11)

n is the UART frame length in bit cells includ-

3



1
2 BCSlow

∆BR ∆BR

Faster Baud Rate

Ideal Baud Rate

Slower Baud Rate
R

ec
ei

ve
r

T
ra

ns
m

itt
er

time

time

time

Message Length : n Bitcells

Sample Point Last Sample Point

Figure 1. Maximum baud rate deviation

ing start, parity and stop bits. By rewriting (11) we
find that the ratio between Baud Ratefast and Baud
Rateslow must fulfil the following condition in order to
guarantee correct communication.

BRfast

BRslow
<

n

n− 1
2

(12)

3.2. Difference between transmit and receive
window

The receiver is triggered by the first falling edge of
the transmitted UART frame. Therefore the receiver
must start to listing before the sender starts the trans-
mission.

For further analysis we assume that any message will
be transmitted within one time slot comprising UART
frame length plus 2 times a duration named tTol. The
UART frame consists of n bit cells, where the first is
named start bit and the last stop bit (see Figure 2).

t Bit t Bit t Bitt Bitt Tol t Tol

Ideal Message Length

Time Slot 

Startbit StopbitData Data

Figure 2. Maximum delay

Since the UART frame has to fit into the time slot,
the start of transmission can lie between the beginning
of the slot and 2 · tTol later.

The receiver is triggered by the first edge of the start
bit of the message. We assume clocks of identical qual-
ity for receiver and transmitter. Thus, both commu-
nication partners can drift ±tTol. The receiver must
listen for incoming messages tTol before it expects the
slot and up to 3 · tTol after it expected the beginning of

the slot in order to cover the cases when the sender’s
and receiver’s clocks have diametrical offsets of ±tTol.

t Bit t Bit t Bit t Tol t Tol t Tol t Tol

Transmission Window

Timeslot m+1Timeslot m

Receive Window

Data Data Stopbit Startbit

Planned Transmission BeginEnable Receiver

DataToleranceTolerance

Figure 3. Receiver enable and transmit win-
dow

The value of tTol must be chosen to be less than
the duration of a bit cell tBit. Otherwise the receive
window may intersect with a bit of a UART frame in
the previous slot and cause a false alarm start bit.

3.3. Synchronization interval
This section determines the maximal duration, that

two systems can communicate with each other until
a resynchronization of local clock times and a recali-
bration of baud rate settings is necessary. For correct
transmission two conditions have to be fulfilled:

(1) Inter-Slot Condition:
The UART frame must not exceed the boundaries
its assigned time slot.

(2) Intra-Slot Condition:
The baud rate difference between transmitter and
receiver must be low enough, so that transmitted
messages can be decoded correctly by the receiver.

3.4. Inter-slot condition
To guarantee that a UART frame lies within its as-

signed time slot, the deviation from the planned trans-
mission start and the maximum length of a UART
frame must be taken into account. As explained in sec-
tion 3.1 the frame length may differ by at most half a
bitcell, thus, a UART frame may be either 1

4 tBit longer
or 1

4 tBit shorter . Taking the longest UART frame into
account, we shift the start of transmission 1

8 bit cells
ahead the planned transmission begin (see Figure 4).

tmaxDeviation is the maximal allowed displacement
between real and ideal transmission start. This
displacement is composed of send jitter and timer
offset. By setting the transmission start half a bit cell
prior to the ideal transmission instant, only 1

2 tJitter

4



tmax. Deviation tmax. Deviation4
1 tBit

tTol tTol

Startbit Stopbit

New Startpoint

8
1

Time Slot

Original Message

Datat
Bit

Shifted Message

Figure 4. Shifted transmission startpoint

must be taken into consideration.

Thus the Inter-Slot condition can be expressed by
the following relation:

tOffset(t) +
1
2
tJitter + tSignal ≤ tmaxDeviation (13)

tOffset can be expressed by Equation (9) and
tmax.Deviation by (tTol − 1

8 tbit):

Z tInterSl

0

ρ0 + ρ̇0t dt +
1

2
tJitter + tSignal ≤ tTol − 1

8
tBit

(14)

Solving unequation 14 yields the duration from the
last clock synchronization where the Inter-Slot condi-
tion can be guaranteed:

tInterSl ≤
−ρ0 +

q
ρ2
0 + 2ρ̇0(tTol − 1

8
tBit − 1

2
tJitter − tSignal)

ρ̇0
(15)

In case of a time invariant drift rate condition 15
becomes:

tInterSl ≤
tTol − 1

8 tBit − 1
2 tJitter − tSignal

ρ0
(16)

3.5. Intra-slot condition

The deviation between the sender’s and the re-
ceiver’s baud rate has to be low enough to ensure that
all bits are detected correctly. Figure 5 illustrates a
detection error caused by differing baud rates on bit 6
of a UART frame.

A deviation from the ideal baud rate can be caused
by rounding errors in the baud rate setting (see Sec-
tion 2.1) and baud rate drift (see Section 2.3).

By combining Equations 4, 7, 8, and 12, the Intra-
Slot condition for a successful communication is given
by :

BRfast

BRslow
· 1 + (ρ0 + ρ̇0 · t)
1− (ρ0 + ρ̇0 · t) <

n

n− 1
2

(17)

R
ec

ei
ve

r
T

ra
ns

m
itt

er

Tr

1
BRRe

1
BR

!! Detection Error !!

Sample points

Figure 5. Detection error

The clock drift during the transmission of the mes-
sage itself will be neglected, because the impact com-
pared to arithmetic and drift error is less than 10−3.
The Intra-Slot condition is true if:

tIntraSl ≤
n(1− ρ0)BRslow − (n− 1

2
)(1 + ρ0)BRfast

nρ̇0BRslow + (n− 1
2
)ρ̇0BRfast

(18)

The synchronization interval time must comply the
Inter-Slot (15) and the Intra-Slot (18) condition to
guarantee the communication timing.

4. Evaluation

This section evaluates the timing properties for two
common UARTs. For some fclk, ρ0, and ρ̇0, we have
calculated the time intervals tInterSl and tIntraSl for
valid Inter-Slot and the Intra-Slot conditions, respec-
tively. Using these two values we derived the maximal
number of messages nMSG that can be transmitted un-
til a resynchronization of local clocks and a recalibra-
tion of baud rate settings is necessary.

For the calculation the following communication pa-
rameters have been used:

• Baud RateIdeal= 19200 Baud

• Maximum cable length = 10 m

• UART frame length =11 Bit ( 1 start, 8 data, 1
parity and 1 stop bit)

• Each UART frame is transmitted within a 13 bit
time slot (tTol = 1 bit cell)

Table 1 and 2 show an evaluation of the synchroniza-
tion conditions for Atmel and AMD1 microcontroller
families.

1As recommended in the manual, the clock mode was set to 16

5



The Intra-Slot condition is mainly influenced by the
arithmetic error. For most frequencies the arithmetic
error exceeds a limit of ±4.5% which makes it impos-
sible to establish a communication, even if the drift
parameters of the quartz are perfect. However the mar-
ket supplies quartz crystals with particular frequencies
like 1.8432 MHz or a multiple of this value. At this
frequencies the arithmetic error results to 0 and the
Intra-Slot condition is fulfilled as long as the clock fre-
quency is stable within a given window with respect to
drift parameters.

When the Intra-Slot condition can be fulfilled, usu-
ally the Inter-Slot condition determines the maximum
interval between synchronization events. For example
a system with 1.5 MHz oscillator with a drift of 10−3 s

s

and a maximum change of the drift rate by 0.1 s
s2 must

be resynchronized every 17.9 messages. This duration
depends mainly on the quality of the clock, especially
on the initial drift rate.

5. Possible solutions

Systems with imprecise RC oscillators or with
quartz clocks that do not support the standard UART
frequencies (most standard frequencies can be set with-
out error if the clocking is a multiple of 1,843200 MHz)
will not be able to use standard hardware UART com-
ponents for communication. In this section we will in-
vestigate on solutions for this cases.

5.1. Software UART implementation

For low-speed communication it is feasible to imple-
ment a software UART routine, as long as the proces-
sor performance is sufficient. We implemented a soft-
ware UART routine for an ATMEL 2313 and achieved
a performance of up to 20 kBit/sec at a clocking of 1
MHz [6]. The baud rate setting for 19200 Bit/sec had
an error of at most 0,25%.

Since the software UART routine performs only one
sampling per bit cell, the software UART approach is
not only less performant but also more vulnerable to
short spike interferences on the bus.

5.2. An enhanced UART architecture

The smart sensor technology implies the integra-
tion of an analog or digital sensor or actuator ele-
ment and a local microcontroller that contains the in-
terface circuitry, a processor, memory, and a network
controller in a single unit [10]. More and more sen-
sor elements are themselves microelectronic mechanical

systems (MEMS) that can be integrated on the same
silicon die as the associated microcontroller.

An architecture supporting modular design of in-
tegrated smart sensors is the Scalable Processor for
Embedded Application in Real-Time Environments
(SPEAR) [3]. It provides a predesigned, preverified,
silicon circuit block. Its core-based system design [5]
helps building a larger or more complex application on
a semiconductor chip.

Error Control Unit Receive UnitTransmission Unit

Enhanced 

Baud Rate Generator

UART Control Unit 

Busdriver

Status Register

Config Register

Interrupt

Memory
Interface

Timing Unit

EUBRS Register

Command Register

Version Number

Message Register

Timer Register

TS/TM Register

Figure 6. Block diagram of the UART I/O mod-
ule

We have investigated on implementing a SPEAR
module with a dedicated UART that is able to pro-
vide various baud rates independently of the clocking
source.

The SPEAR core SPEAR features a 16 bit proces-
sor that executes instructions via a 3-stage pipeline.
All processor parts are synchronized by a Wait Control
Unit which resolves control and data hazards. The pro-
cessor core features 20 general purpose registers and 12
control, pointer, and configuration registers. SPEAR
comprises a 4 KB instruction cache and a 4 KB data
cache. Usually these values suffice for many embedded
applications, but it is also possible to add up to 128 KB
external memory for instructions and 127 KB external
data memory.

SPEAR supports up to 64 I/O modules which are
mapped into the data memory. Examples for I/O mod-
ules are internal units such as additional timers, float-
ing point units, and external units such as sensors, ac-
tuators, or network interfaces.

The UART is realized as an I/O module. The in-
terface between such modules and processor in the

6



fclk ρ0 ρ̇0 Arith. Error Send Jitter tInterSl tIntraSl nMSG

[MHz] [ s
s ] [ s

s2 ] [%] [ms] [ms] [ms] [–]
0.5 10−3 0.1 18.62 0.052 12.1 0 0
1.0 10−3 0.1 -8.51 0.052 12.1 0 0
1.0 10−5 0.0 -8.51 0.052 1948.1 0 0
1.5 10−3 0.1 2.34 0.052 12.1 104.1 17.9

1.8432 10−3 0.1 0.00 0.052 12.1 222.6 17.9
1.8432 10−3 0.0 0.00 0.052 19.5 ∞ 28.8
1.8432 10−5 0.0 0.00 0.052 1948.1 ∞ 2877.2

2.0 10−3 0.1 6.99 0.052 12.1 0 0
4.0 10−3 0.1 -0.16 0.052 12.1 214.6 17.9
8.0 10−3 0.1 -0.16 0.052 12.1 214.6 17.9

Table 1. UART timing properties of the ATMEL AT90S microcontroller family

fclk ρ0 ρ̇0 Arith. Error Send Jitter tInterSl tIntraSl nMSG

[MHz] [ s
s ] [ s

s2 ] [%] [ms] [ms] [ms] [–]
1.0 10−3 0.1 37.24 0.052 12.1 0 0
1.0 10−5 0.0 37.24 0.052 1948.1 0 0
1.5 10−3 0.1 -44.14 0.052 12.1 0 0

1.8432 10−3 0.1 0.00 0.052 12.1 222.6 17.9
1.8432 10−3 0.0 0.00 0.052 19.5 ∞ 28.8
1.8432 10−5 0.0 0.00 0.052 1948.1 ∞ 2877.2

2.0 10−3 0.1 -12.76 0.052 12.1 0 0
4.0 10−3 0.1 8.16 0.052 12.1 0 0
8.0 10−3 0.1 -0.17 0.052 12.1 214.6 17.9

Table 2. Timing properties of the AMD Z85C30 UART

SPEAR architecture is defined in [7]. The interface
contains signals for reset, addressing, data I/O, and an
interrupt. Via the memory interface eight 16-bit regis-
ters are accessible. The first two registers are the status
and the config register with standard assignments for
all I/O modules, the remaining registers are module-
specific.

Figure 6 illustrates the block diagram of the UART
I/O module. This UART component overcomes the
disadvantages of send jitter and arithmetic error in
baud rate setting described in Section 2. It starts im-
mediately after receiving the transmit signal with the
message transmission. In this way the send jitter is
completely eliminated. The UART takes only one sam-
ple per bit cell. Instead of oversampling the bus signal
we use a digital filter to circumvent spike interference
problems. Figure 7 depicts the state diagram of the
digital filter. At each clock cycle a transition takes
place. Interfering signals shorter than n clock cycles
are filtered out. The filter has a dead time of n cycle
times, but needs less area on the silicon chip and allows
higher transmission speeds than oversampling.

The enhanced UART baud rate setting (EUBRS)
is the key element of the UART. The EUBRS calcu-
lates the duration of a bit for transmission by using a

fixed comma value EUBRS according to the following
formula:

tbit =
EUBRS

16
· 1
fclk

(19)

Because EUBRS is a 16 bit register the maximum bit
duration calculates to ≈ 212 timer ticks. The duration
of a bit cell can be defined with a granularity of 1

16 of
a system clock period.

Table 3 shows an evaluation of the synchronization
conditions for SPEAR.

5.3. Communication protocol clock synchroniza-
tion support

Although our custom UART is able to overcome
some of the deficiencies of a UART communication
lined up in Section 2, the support of clock synchro-
nization by the protocol is still necessary to enable the
utilization of low-cost imprecise clock oscillators.

The UART encoding as examined in this paper is
used in two novel fieldbus protocols for real-time sys-
tems, the Local Interconnect Network (LIN) [2] and the
Time-Triggered Protocol for SAE class A applications
(TTP/A) [11].

LIN has a communication scheme where each of up
to 64 different messages is requested by the master with

7



S
�

ignal is
i
�
nterpreted
as HIGH

S
�

ignal is
i
�
nterpreted
as LOW

S
�

ignal is
i
�
nterpreted
a� s before

S
�

ignal is
i
�
nterpreted
a� s before

....
L

�
OW

H
�

IGH H
�

IGH

L
�

OW

n�  intermediate filter states

H
�

IGH

L
�

OW

H
�

IGH

L
�

OW

H
�

IGH L
�

OW

Figure 7. State diagram of the digital filter

fclk ρ0 ρ̇0 Arith. Error Send Jitter tInterSl tIntraSl nMSG

[MHz] [ s
s ] [ s

s2 ] [%] [ms] [ms] [ms] [–]
0.5 10−3 0.1 −0.16 0.0 21.8 214.6 32.2
1.0 10−3 0.1 −0.16 0.0 21.8 214.6 32.2
1.0 10−5 0.0 −0.16 0.0 4552.3 ∞ 6723.4
1.5 10−3 0.1 −0.16 0.0 21.8 214.6 32.2

1.8432 10−3 0.1 0.00 0.0 21.8 222.6 32.2
1.8432 10−3 0.0 0.00 0.0 45.5 ∞ 67.2
1.8432 10−5 0.0 0.00 0.0 4552.1 ∞ 6723.4

2.0 10−3 0.1 −0.16 0.0 21.8 214.6 32.2
4.0 10−3 0.1 −0.16 0.0 21.8 214.6 32.2
8.0 10−3 0.1 0.08 0.0 21.8 218.6 32.2

Table 3. Timing properties of the enhanced SPEAR UART design

a one-byte identifier consisting of a six-bit address field
and a two-bit checksum. Each message is uniquely as-
signed to a single slave or the master in a particular bus
configuration. A message has a fixed length encoded
in the identifier of the message with two, four, or eight
data bytes and an additional checksum. The synchro-
nization in LIN for non-time-aware slave nodes occurs
before each master-slave round by sending a ”break”
byte and a synchronization byte which contains a reg-
ular bit pattern. Since start-up synchronization oc-
curs before every master-slave round, no mechanism for
the resynchronization of already integrated nodes is re-
quired. In LIN each message is preceded by a message
from the master, thus, the Inter-Slot condition (Sec-
tion 3.4) can be neglected. However the Intra-Slot (Sec-
tion 3.4) condition has to be regarded, thus LIN sup-
ports either standard hardware UARTs together with
appropriate clock sources (k · 1.8432MHz) or impre-
cise oscillators with software UARTs/enhanced UARTs
(Section 5.2).

TTP/A uses a TDMA scheme for bus arbitration.
Each node in a cluster is aware of a predefined message
schedule, a so-called round. Each round is initiated
by the so-called fireworks byte which is issued by the
master. After the fireworks byte each node transmits
in its assigned slot. One time slot is 13 bit cells long
and contains one UART frame of 11 bits length.

The start-up synchronization in TTP/A for non-
time-aware slave nodes is performed by a special fire-

works byte which contains a regular bit pattern that
can be used by integrating nodes.

In the TTP/A protocol both the Inter-Slot condition
(Section 3.4) and the Intra-Slot (Section 3.4) condition
have to be taken into account. Thus, already integrated
slave nodes need periodic resynchronization. It is per-
formed at the instance when a byte from a node with a
precise clock arrives, e.g., the fireworks byte from the
master. In a multi-partner round those bytes that orig-
inate from a node with precise clocks are known to the
slaves and are used for adjusting the node’s local time.
Like LIN, TTP/A also supports either standard hard-
ware UARTs together with appropriate clock sources
(k · 1.8432MHz) or imprecise oscillators with software
UARTs/enhanced UARTs (Section 5.2).

6. Outlook and conclusion

We have examined the applicability of common
UARTs in time-triggered systems and developed math-
ematical means to guarantee that a UART frame stays
within its given time slot (Inter-Slot condition) and
to guarantee that all sent bits are detected correctly
(Intra-Slot condition). Together, the Inter-Slot and the
Intra-Slot condition form a sufficient criterium for cor-
rect communication timing.

Two standard UARTs have been evaluated using
these conditions and have detected that certain fac-
tors limit the applicability of common UARTs, espe-

8



cially when combined with imprecise on-chip oscilla-
tors. Commercial UARTs exhibit timing imprecisions
caused by an arithmetic error in their baud rate set-
ting and a potenial send jitter. The unstableness of a
real clock leads to baud rate drift and clock deviations.
Special crystal frequencies (e. g. 1.8432 · 106) must be
selected to cancel the arithmetic error.

However some new fieldbus real-time protocols aim
at the low-cost commercial-off-the-shelf market. This
market segment offers low-cost general purpose micro-
controllers with imprecise on-chip oscillators. The pro-
tocols provide frequent clock synchronization and ade-
quate slackness in the communication timing to fulfill
the Inter-Slot condition. In general the Intra-Slot con-
dition can only be fulfilled by using adequate quartz
crystals, software UART implementations, or an en-
hanced UART architecture.

We have developed an alternative VHDL implemen-
tation of a UART unit that resolves the intrinsic UART
problems and allows the implementation of more effi-
cient protocols respectively the employment of cheap
on-chip oscillators with large drift rates.

The VLSI module was designed as an I/O module for
the composable SPEAR design. Utilizing the SPEAR
design it will be possible to build an embedded trans-
ducer node, incorporating a microelectronic mechanical
systems (MEMS) sensor, a microcontroller, an oscilla-
tor, and a communication controller on a single die.

Acknowledgments

This work was supported in part by the Austrian
Ministry of Science, project TTSB and by the Euro-
pean IST project DSoS under contract No IST-1999-
11585.

References

[1] Atmel Corporation, San Jose, CA. AVR Enhanced
Risc Microcontroller Data Book, May 1997.

[2] Audi AG, B. AG, D. AG, M. Inc. V. C. T. AB, V. AG,
and V. C. Corporation. LIN specification and LIN
press announcement. SAE World Congress Detroit,
http://www.lin-subbus.org, 1999.

[3] M. Delvai, W. Huber, B. Rahbaran, and A. Steininger.
SPEAR - Design-Entscheidungen für den “Scalable
Processor for Embedded Applications in Real-Time
Environments”. In Tagungsband of Austrochip 2001,
Oct. 12, Vienna, Austria, 2001.

[4] C. Ebner. Description and comparison of selected
UARTs. Technical Report 22/1994, Technische Uni-
versität Wien, Institut für Technische Informatik,
1994.

[5] R. K. Gupta and Y. Zorian. Introducing core-based
system design. IEEE Design & Test of Computers,
14(4):15–25, Oct.-Dec. 1997.

[6] M. Holzmann and W. Elmenreich. Implementation
details on the TTP/A slave protocol. Technical Re-
port 4/1999, Technische Universität Wien, Institut für
Technische Informatik, July 1999.

[7] W. Huber. Peripherieanbindung an SPEAR. Techni-
cal report, Technische Universität Wien, Institut für
Technische Informatik, 2001.

[8] H. Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Boston, Dordrecht, London, 1997.

[9] H. Kopetz, W. Elmenreich, and C. Mack. A compari-
son of LIN and TTP/A. Proceedings of the 3rd IEEE
International Workshop on Factory Communication
Systems, Porto, Portugal, pages 99–107, September
2000.

[10] H. Kopetz, M. Holzmann, and W. Elmenreich. A uni-
versal smart transducer interface: TTP/A. Interna-
tional Journal of Computer System Science & Engi-
neering, 16(2), March 2001.

[11] H. Kopetz et al. Specification of the TTP/A protocol.
Technical report, Technische Universität Wien, Insti-
tut für Technische Informatik, March 2000. Available
at http://www.ttpforum.org.

9


