
New Node Integration in TTP/A Networks

W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider
Institut für Technische Informatik

TU Vienna, Austria
wil@vmars.tuwien.ac.at

May 14, 2001

Abstract

The industry calls for fieldbus architectures that allow
transducer nodes to be connected into a network in a
true “plug and play” fashion.

A plug and play configuration consists of at least
three tasks: to identify the new nodes, to obtain the
documentation, and to download the configuration.
This paper deals with node identification and config-
uration programming for the TTP/A fieldbus.

We present a method for identification and con-
figuration of new nodes that is suitable for master-
slave fieldbus networks with deterministic timing be-
havior. The method integrates well with the TTP/A
protocol and is implementable in standard TTP/A
slave and master nodes. Even though configuration
of new components is normally not time critical, our
method inherits a deterministic timing behavior from
the TTP/A protocol and can be used in parallel with
real-time traffic for hot plug and play of new nodes.

Keywords: TTP/A, Plug and Play, Smart Sensor,
In-System Configuration, Fieldbus, Embedded
Systems.

1 Introduction

The installation and configuration of a new network is
a difficult task. The system integrator must identify
many different nodes, access their specification and
integrate them into the network according to their
specification. Currently these steps are often per-
formed manually, with high human resource costs and
a fair probability of misconfiguration due to human er-
rors [1].

With large data acquisition systems, there is a need
for self-identification of nodes. This means that a node
can describe itself to the network, thus facilitating an
automatic system configuration. This feature provides

substantial savings in the labor required to identify
new nodes, record serial numbers, calibration factors
and data for transducers and reduces the chance of
error.

Plug and Play functionality is already integrated in
the personal computer world. In the fieldbus world,
the many existing protocol standards complicate the
introduction of consistent and vendor-spanning plug
and play systems. There exist software tools work-
ing on Profibus, Ethernet [2], CAN and the Foun-
dation Fieldbus [3]. Standard configuration inter-
faces are presented by the IEEE P1451 [4] standard
and the Common Object Request Broker Architecture
(CORBA) [5].

The smart transducer interface standard
IEEE P1451 supports self-identification via a
memory chip physically attached to the node. This
chip stores information such as manufacturer name,
identification number, device type, and calibration
data. This information is called the transducer
electronic data sheet (TEDS) [6].

CORBA offers object services (Naming/Trading,
Events, etc.) that provide important features to plug
and play components. CORBA can be used to im-
plement a consistent interface to whole fieldbus clus-
ters [7] but most smart transducer node resources, es-
pecially for low-cost solutions in mass markets, would
not suffice for the implementation of CORBA inter-
faces.

A plug and play configuration consists of at least
three tasks: to identify the new nodes, to obtain the
documentation, and to download the configuration.
The second task is assigned to configuration tools that
access electronic documentation from databases at a
higher level than the fieldbus level. This paper deals
with node identification and configuration program-
ming that rely on the fieldbus network level.

While new node identification is trivial in many net-
works it is a difficult task in networks where determin-

1

istic behavior is achieved by master-slave addressing.
In case of new nodes, the master doesn’t have knowl-
edge of the identifiers of new nodes, because address-
ing of such is not supported. If the new nodes are
connected one by one, a special command for address-
ing any new node can be used for assigning a node
identifier (baptizing). However when a number of new
nodes are expected, a different addressing among the
new nodes has to be implemented. The linear search
through the name space is often impossible because
of the high number of possible nodes (e. g. in the
TTP/A protocol nodes own an eight byte identifier,
yielding 264 iterations!).

For the TTP/A network we searched for (and
found) a method that integrates well with the exist-
ing TTP/A communication features at an expense of
about 64 iterations.

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview on the TTP/A protocol and
describes especially the mechanism that is used for
the node identification function. Section 3 describes a
method for automatic node identification and address
configuration called baptizing. Section 4 examines re-
quirements for transducer nodes supporting plug and
play. Section 5 discusses the application scope of the
presented approach, suggests some optimizations and
gives some implementation experiences. Finally, the
basic ideas of this paper are summarized in Section 6.

2 The TTP/A Protocol

Basic Principles

TTP/A is a time-triggered master-slave communi-
cation protocol for fieldbus applications that uses a
time division multiple access (TDMA) bus arbitration
scheme [8].

TTP/A
Master

TTP/A Bus

TTP /A
Slave

TTP /A
Slave

TTP /A
Slave

TTP /A
Slave

TTP /A
Slave

Figure 1: TTP/A Cluster

It is possible to address up to 254 nodes on a bus.
One single node is the active master. This master
provides the time base for the slave nodes. The com-

munication is organized into rounds. Bus access con-
flicts are avoided by a strictly TDMA schedule for each
round. A round consists of several slots. A slot is a
unit for transmission of one byte of data. Data bytes
are transmitted in a standard UART format. Each
communication round is started by the master with
a so-called fireworks byte. The fireworks byte defines
the type of round.

Time

FB DataByte DataByte DataByte DataByte

Slot 0 Slot nSlot 1 Slot 2 Slot 3

FB
DataByte

Fireworks Byte, sent by master
sent either by master or slave

Figure 2: A TTP/A Multipartner Round

A multipartner round (see Figure 2) consists of a
configuration dependent number of slots and an as-
signed sender node for each slot. The configuration of
a round is defined in the RODL (ROund Descriptor
List). The RODL defines which node transmits in a
certain slot, the semantics of each individual slot, and
the receiving nodes of a slot. RODLs must be config-
ured in the slave nodes prior to the execution of the
corresponding multipartner round.

Master-Slave Rounds

A master-slave round establishes a connection be-
tween the master and a slave for reading/writing mon-
itoring or configuration data, e. g. the RODL infor-
mation. The action and the memory addressing is
encoded in three parameter bytes of a master-slave
round. In a further part the addressed data bytes are
transmitted between master and slave.

MSR Alias Rec# Check

FB

OP /File #

FB
MSR
MSD
Alias
Rec #
OP
File #
Check

Fireworks Byte, sent by master
Code for Master/Slave Request
Code for Master/Slave Data
Alias of adressed node
Record number of addressed file
Operation Code (Read , Write , eXecute)
File number of addressed node
Checksum byte of round

MSD DB1

FB

DB2 DB3 CheckDB0

Time

Record Data Bytes

a)

b)

Time

Figure 3: TTP/A Master-Slave Round

Figure 3 depicts the fixed layout of a master-slave

2

round. A master-slave round consists of two parts.
In the addressing part (Figure 3 a)) the action and
the memory addressing is encoded in three parameter
bytes.

In a further part (Figure 3 b)) the addressed data
bytes are transmitted between master and slave. The
fireworks byte (MSD) is always sent by the master,
while the data bytes are either sent by master or
slave depending on the action defined in the address-
ing part.

The last byte of each round contains a checksum
byte that protects the communication from bus fail-
ures. Master-slave rounds have idempotent semantics,
thus it is possible to repeat the action in case of com-
munication failures.

Thus a master-slave round has a fixed layout. The
address scheme is derived from the Interface File Sys-
tem that is explained later in this Section.

Time

MP round MP round MP roundMS round MS round

Figure 4: Recommended TTP/A Schedule

At startup the master uses master-slave (MS)
rounds for determining the types of the connected
nodes and configuring them. The multipartner (MP)
round is intended to establish a periodical, predictable
and efficient real-time communication. To support a
diagnosis and maintenance access concurrent to the
real-time traffic it is recommended to schedule mul-
tipartner rounds and master-slave rounds interleaved
(see Figure 4).

The Interface File System

For unique addressing of the slave’s internals all rel-
evant data of a TTP/A node like round definitions,
application specific parameters and I/O properties are
organized into a structure called Interface File Sys-
tem (IFS) [9]. The IFS is structured in a record-
oriented format. Each record is addressable separately
by master-slave rounds.

The Interface File System was introduced for two
reasons:

• Provide a consistent view of the transducer prop-
erties.

• Decouple subsystems from the point of view of
temporal control.

All nodes contain several files that can be accessed
over the TTP/A protocol in a unified manner. The
minimal set-up for a smart transducer is:

Round Descriptor List (RODL): Each node con-
tains at least one and up to six RODLs that con-
tain TDMA schedules for the TTP/A multipart-
ner rounds.

TTP/A Configuration File: This file contains at
least an 8 bit alias which is the slave’s name
within its cluster.

Documentation File: This file consists of the
node’s unique identifier. This value is assigned in-
variably to each node. The number identifies the
node’s type while the serial number distinguishes
nodes of equal type. Optionally this documenta-
tion file contains the ASCII text of an uniform
resource locator (URL) pointing to a file contain-
ing the node’s data sheet. Documentation files
are read-only from the master’s viewpoint.

To support ultra-low-cost implementations of
TTP/A slave nodes, it is also possible to omit the
implementation of the file system and hard-code the
TDMA schedule for the TTP/A multipartner rounds.
Such a node would not respond to any master-slave
round and does not support configurability. It is pos-
sible to build heterogeneous networks with ultra-lost-
cost nodes and configurable nodes together but this
might have an negative effect for the system overview
because the maintenance program is “blind” on the
ultra-low-cost nodes.

3 Baptize Algorithm

The baptize mechanism performs a binary search on
all node identifiers.

Binary Search

The binary search is done by the master. The identi-
fication of a new node takes 64 iterations of the algo-
rithm depicted in Figure 5. The master has to keep
three 64 bit integer variables, lo, hi and the compar-
ison identifier ci. The values of lo and hi are only
needed internally for the calculation of new ci values.

The variables lo and hi are initialized to
the minimum and maximum value of the ex-
pected identifiers (lo:=0x00000000 00000000,
hi:=0xFFFFFFFF FFFFFFFF). During the it-
erations the values of lo and hi move towards each
other until lo equals hi. Then, the identifier of a node
is found and the master assigns an alias (different
to 0xFF) to this node. The assigning of the new
alias is supported by a particular Baptize Operation
described later.

3

hi+lo

2
ci:=

any

write ci into
comparison
identifier

execute
compare

T F
ci>=hici>=hi

lo:=ci hi:=ci-1

F F

T T

New Node’s Id := loNew Node’s Id := ci

any
Node

Identifier
>=ci

New Node Search

lo:= 0x 0000 0000 0000 0000
hi:= 0x ffff ffff ffff ffff

write 0 into
comparison identifier

compare
execute

F
No New Node

T

>=0
Identifier

Node

Figure 5: New Node Identification Algorithm

Identifier Comparison

The master performs identifier comparisons as fol-
lows:

• First, the master sets a lower limit of a node iden-
tifier in the nodes to be baptized. The memory
for this lower limit is located in the slave node’s
IFS described as the comparison series number
and the comparison serial number. Henceforth
the combination of this value will be called com-
parison identifier.

The initial value for the comparison identifier is
(0x00000000,0x000000). Figure 6 a)-d) depicts
the bus interactions for setting a comparison iden-
tifier with a master-slave round. The master-slave
round normally communicates only between the
master and a single slave, but in this case there
are several slaves addressed, because all unbap-
tized slaves have the node alias 0xFF.

• Then the master broadcasts an execute command
on the comparison series number file (Figure 6 e)).
The special action assigned with an execute com-
mand on that file/record is the comparison of the

MSR 0xFF 0x02 W/0x08 Check

FB Alias Rec # OP /File #

FB
MSR
MSD
Alias
Rec #
OP
File #
Check

Fireworks Byte, sent by master
Code for Master/Slave Request
Code for Master/Slave Data
Alias of adressed node
Record number of addressed file
Operation Code (Read , Write , eXecute)
File number of addressed node
Checksum byte of round

MSD DB1

FB

DB2 DB3 CheckDB0

Time

Comparison Series Number

MSR 0xFF 0x03 W/0x08 Check

FB Alias Rec # OP /File #

MSD DB1

FB

DB2 DB3 CheckDB0

Comparison Serial Number

MSR 0xFF 0x02 X/0x08 Check

FB Alias Rec # OP /File #

MSD

FB

0x00

Node Answer

a)

b)

c)

d)

e)

f)

Time

Time

Time

Time

Time

Figure 6: Identifier Comparison

slave’s own hard-coded identifier to the compari-
son identifier written before.

• The fireworks byte of the second part of the
master-slave round initiates a round where all
nodes with alias 0xFF whose hard-coded identi-
fier is higher or equal than the comparison iden-
tifier write a data frame with content 0x00 in the
first slot (see Figure 6 f)). If there are no nodes
fulfilling this condition, there are no further bytes
sent in this round.

The TDMA rounds for the comparison depicted
in Figure 6 a)-f) may be interleaved by other mul-
tipartner rounds (The blocks a)-b), c)-d), and e)-f)
may even be interleaved by other master-slave rounds.
Thus it is possible to perform identifier comparisons
concurrently with real-time operation of the already
integrated nodes.

Baptize Operation

When the Series and Serial number of an unbaptized
node are known, either derived from the above pre-
sented binary search algorithm or entered on a con-
sole by a system manager, the master has to change

4

the node alias of the particular node from unbaptized
(0xFF) to its intended alias. Because there may multi-
ple unbaptized nodes in the network, a simple master-
slave write access will not success in this task, because
the addressing with the alias 0xFF will not be unique.
Therefore the nodes have to support a mechanism to
overwrite only the alias of the node with a special Se-
ries and Serial number.

MSR 0xFF 0x01 W/0x08 Check

FB Alias Rec # OP /File #

FB
MSR
MSD
Alias
Rec #
OP
File #
Check

Fireworks Byte, sent by master
Code for Master/Slave Request
Code for Master/Slave Data
Alias of adressed node
Record number of addressed file
Operation Code (Read , Write , eXecute)
File number of addressed node
Checksum byte of round

MSD 0x00

FB
New Alias 0xFF Check0x00

Time

MSR 0xFF 0x01 X/0x08 Check

FB Alias Rec # OP /File #

a)

b)

c)

Time

Time

Figure 7: Baptize Operation

The Baptize operation includes the setting of the
Comparison Identifier to the Series and Serial number
of the node desired to baptize. This is done by two
master slave write rounds (Figure 6 a)-b) and 6 c)-
d)). Afterwards the desired new alias is written into
the node alias buffer which resides in the same record
as the node alias (See Section 4: the node alias buffer
occupies byte 0x02, the node alias occupies byte 0x03)
by a normal master-slave write round (Figure 7 a)-b)).
Because a master-slave write round accesses always a
whole record, all four bytes are overwritten. As de-
picted in Figure 7 a) the values to be written are 0x00,
0x00, the desired node alias, and 0xFF.

For setting the alias in the desired node we use
an execute command on file 0x08, record 0x01 (Fig-
ure 7 c)). This command causes the nodes whose com-
parison identifier is equal to its hard-coded node iden-
tifier to copy the value of the new alias to the alias
byte. Thus the node responds to future requests on
its new alias. It is the task of the master to keep an
account of assigned aliases.

4 Requirements For Baptizing

There are some few requirements for nodes to support
an in-system plug and play functionality (There are
no extra requirements for all other nodes except that
they may not use the node alias 0xFF):

Protocol Requirements

The TTP/A protocol includes a generic smart trans-
ducer interface with an interface file system (IFS) that
offers versatile possibilities for configuration manage-
ment. The presented approach does not require mod-
ifications on the protocol.

Slave Node Requirements

Plug-and-Play configurable nodes must support
master-slave rounds with the read, write and execute
command and contain at least the following entries in
its file system:

• Documentation File No. 0x3E (read only) con-
taining

– Record 0x01: Most significant 4 bytes of
node identifier

– Record 0x02: Least significant 4 bytes of
node identifier

• Configuration File No. 0x08 (all records read- and
writeable) containing

– Record 0x01: Byte 0x00 and 0x01 are re-
served, Byte 0x02 contains a node alias
buffer, Byte 0x03 contains the node alias,
must be initialized to 0xFF

– Record 0x02: Comparison Series Number,
this record has assigned an execute function

– Record 0x03: Comparison Serial Number

Experiences from TTP/A slave protocol implemen-
tations on various platforms [10, 11, 12] have shown
that the hardware requirements are moderate. The
minimal TTP/A slave protocol needs about 1.5 kB of
program memory, 64 bytes RAM and 1 MIPS process-
ing speed (for networks up to 19200 Bit/sec). Because
the demanding parts of the node identification algo-
rithm are executed in the master node, the slave nodes
stay slim and need just about 10 more bytes of RAM
memory for the comparison identifier, the node alias
buffer and some state flags.

5

Task Not Optimized Optimized
Initial baptizing (10 nodes) 23,77 sec 15,97 sec
Writing configuration (10 nodes) 0,244 sec 0,244 sec
Identifying a new node during operation 5,92 sec 5,14 sec
Writing configuration for 1 node during operation 0,079 sec 0,079 sec

Table 1: Durations for Node Identification and Configuration

Master Node Requirements

The hardware requirements for a typical TTP/A mas-
ter are between 3.5 kB and 8 kB programm memory
and about 1 kB RAM additional to the RAM used
by the files. The filesystem must at least contain
one RODL (≈ 40 bytes), three special RODLs (12
bytes), documentation file (12 bytes) and the configu-
ration file (16 bytes). The implementation of the bap-
tize mechanism incorporates functions for the binary
search, baptize algorithm and communication struc-
tures for accessing a configuration database. These
functions can easily be supported with the typical
TTP/A master hardware.

5 Discussion

The complexity order of the presented approach has
the same magnitude as the best possible. However the
implementation of the communication between master
and slaves has not been optimized for speed. The
breakdown of the method in master-slave rounds costs
some time, but is justified by:

• The configuration phase is normally not time crit-
ical.

• The presented method integrates well with the
TTP/A protocol without changes to the specifi-
cation.

• Interleaving multipartner and master-slave
rounds enable hot plug and play during real-time
system operation.

The presented algorithm can be accelerated by
omitting the rewriting of comparison serial or series
numbers that did not change from one iteration to the
next. For a comparison we defined a test network run-
ning at 19200 Bit/sec containing 10 transducer nodes
and one master.

Table 1 shows the calculated durations for different
tasks. For the initial baptizing and configuration writ-
ing we assumed that all 10 nodes are new and need
to be detected, and the full bandwidth is available for
detection. For node detecting and configuring during

operation we assumed, that each of the 10 integrated
nodes periodically sends two bytes of data. Between
this communication rounds the parts of a master-slave
round are scheduled. The third column in the table
depicts the improvements achieved by the acceleration
of the baptize algorithm as proposed above.

Another application of the approach is automatic
new node detection. Figure 5 shows that the algo-
rithm terminates in the first iteration if no new node
is present. This property can be used to build a system
with automatic new node detection where the master
polls periodically for new slaves during real-time op-
eration.

Furthermore the algorithm can be used for repair-
ing a cluster where several nodes have assigned the
same alias. While such an erroneous configuration is
not solvable in a standard TTP/A system, the appli-
cation of the presented algorithm on such a cluster
can reassign different aliases if the concerned nodes
support identifier comparison and baptize operations.

6 Conclusion

We presented a method for new node identification
and configuration that is suitable for master-slave
fieldbus networks with deterministic timing behavior.

The method integrates well with the TTP/A pro-
tocol and is implementable in standard TTP/A slave
and master nodes.

Even though configuration of new components is
normally not time critical our method inherits a de-
terministic timing behavior from the TTP/A protocol
and can be used in parallel with real-time traffic for
hot plug and play of new nodes.

Acknowledgments

This work was supported in part by the Austrian Min-
istry of Science, project TTSB and by the European
IST project DSoS under contract No IST-1999-11585.

6

References

[1] S. K. Raza, B. Pagurek, and T. White. Distributed
computing for plug-and-play network service config-
uration. Network Operations and Management Sym-
posium (NOMS), pages 933–934, 2000.

[2] M. T. Hoske. Software tools ease network setup and
use. Control Engineering, June 1999.

[3] J. Berge and S. Mitschke. Building better open net-
works using foundation fieldbus and OPC. Sensors
Magazine, Feb. 2000.

[4] L. H. Eccles. A brief description of IEEE P1451.2.
Sensors Expo, May 1998.

[5] J. Siegel. CORBA 3: Fundamentals and Program-
ming. John Wiley and Sons, Heidelberg, 1999.

[6] K. B. Lee and R. D. Schneeman. Internet-based
distributed measurement and control applications.
IEEE Instrumentation and Measurement Magazine,
2(2):23–27, June 1999.

[7] O. Barheine and K. D. Müller-Glaser. Concepts for
the usage of real-time CORBA in time-triggered ar-
chitectures. Proceedings of the 3rd IFAC Workshop
on Advances in Automotive Control, Karlsruhe, Ger-
many.

[8] H. Kopetz et al. Specification of the TTP/A protocol.
Technical report, Technische Universität Wien, Insti-
tut für Technische Informatik, March 2000. Available
at http://www.ttpforum.org.

[9] H. Kopetz, M. Holzmann, and W. Elmenreich. A uni-
versal smart transducer interface: TTP/A. Proceed-
ings of the 3rd International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC),
March 2000.

[10] M. Holzmann and W. Elmenreich. Implementation
details on the TTP/A slave protocol. Technical Re-
port 4, Technische Universität Wien, Institut für
Technische Informatik, July 1999.

[11] R. Obermaisser and A. Kanitsar. Application of
TTP/A for the Otto Bock Axon bus. Technical Re-
port 27, Technische Universität Wien, Institut für
Technische Informatik, July 2000.

[12] P. Peti and L. Schneider. Implementation of the
TTP/A slave protocol on the Atmel ATmega103
MCU. Technical Report 28, Technische Universität
Wien, Institut für Technische Informatik, August
2000.

7

