
A Universal Smart Transducer Interface: TTP/A 

H. Kopetz 
M. Holzmann  
W. Elmenreich 

hk@vmars.tuwien.ac.at 
 
 

Insitut für Technische Informatik 
Technische Universität Wien 

Austria 
 
 

Abstract 
The primary goal of a universal smart transducer 
interface is the provision of a framework that helps to 
reduce the complexity of large distributed real-time 
systems by introducing precisely specified (in the value 
domain and in the temporal domain) and small interfaces 
between smart transducers and their users. This paper 
presents a universal smart transducer interface that can 
be implemented on top of different real-time 
communication systems. It integrates a time-triggered 
communication protocol with an interface file system that 
provides the sources and sinks for the exchanged 
information. The final section discusses an 
implementation of this interface on a low cost (less than 
1 $) commercial off the shelf microcontroller. 

1. Introduction 

The point-to-point connection of process input/output 
devices to a control system is expensive, both from the 
installation point of view and from the engineering point of 
view. One approach to reduce these costs is the 
introduction of the emerging smart transducer technology. 
A smart transducer is an intelligent subsystem consisting 
of a sensing or actuating device (sometimes already an 
integrated device on a silicon die), a micro-controller with 
the necessary software, and a communication network 
interface (CNI) to a field bus.  A properly designed CNI of 
a smart transducer node should present a standardized 
high-level view of the sensor and encapsulate the 
idiosyncrasies of the particular sensing element within the 
smart transducer node. 

Such a smart-transducer CNI should be understandable, 
temporally predictable and implementable in available low-
cost microcontrollers. To improve the understandability, 
the externally visible interface of a smart transducer should 
be designed around few already familiar concepts. The 

transducer interface must be generic, i.e., the interfaces of 
most of the available transducer should be expressible 
within the model. Ideally, the same basic concepts--and as 
a consequence the same application software at the user's 
side--should suffice to communicate with the majority of 
the available sensing and actuating devices. Since the 
bandwidth and response time requirement of various 
transducers may differ by orders of magnitude, the model 
should be flexible to accommodate different 
communication speeds and different media access 
protocols, e.g., simple single wire UART channels as well 
as a high-speed fiberoptic channel.  

Since more than ten years it has been recognized that a 
standardized real-time communication network, a fieldbus, 
to replace and enhance the existing 4-20 mA analog signal 
standard would be an enabling technology beneficial to 
the industrial instrumentation business as a whole. 
However, many vendors were reluctant to support such a 
single common standard in fear of losing some of their 
competitive advantages [1]. As a consequence, a number 
of different mostly incompatible fieldbus solutions (see [2]) 
have been developed and promoted. In 1992 the two large 
rival fieldbus groups ISP (Interoperable Systems Project 
supported by Fisher-Rosemount, Siemens, Yokogawa, and 
others) and the WorldFIP (supported by Honeywell, 
Bailey, and others) introduced two competing interim 
fieldbus standards. In 1994 these two rival groups merged 
to form the Fieldbus Foundation (FF). It is the stated 
objective of the FF to develop a single interoperable 
fieldbus standard in cooperation with the IEC 
(International Standard Organization) and the ISA 
(Instrumentation Society of America). This new fieldbus 
standard IEC/ISA SP 50 should integrate different types of 
control instruments and support, as far as possible, 
existing interfaces.  In the meantime the Control Area 
Network CAN [3] was developed by the automotive 
industry to reduce the wiring harness within a car. From 
the functional point of view, the CAN bus can deliver a 
communication service that is closely related to that of the 



fieldbus, although with limited temporal predictability.  The 
immense size of the automotive market has led to the 
appearance of low-cost highly integrated CAN chips that 
are being used by a number of companies in the factory 
and process automation market. Many of the cited efforts 
to create a standardized fieldbus have focused on the 
issues of reliable communication and wiring, but have 
neglected the higher level issues that must be addressed if 
interoperability or interchangeability of devices and 
subsystems must be achieved.   

The IEEE 1451.2 [4] standard deals with the specification of 
interfaces for smart transducers. An idea proposed by this 
standard is the specification of electronic data sheets to 
describe the hardware interface and communication 
protocols of the smart transducer interface model [5]. 

In contrast to this work, it is the objective of this paper to 
present a generic interface for smart transducers that can 
be used to connect many different concrete sensor and 
actuator subsystems within the same conceptional 
framework. Although it can be implemented on diverse 
communication layer, the specification of the 
communication system relies to the protocol specification 
and is not part of the transducer interface. 

The rest of the paper is organized as follows: Section 2 
explores the abstract properties of an interface and 
discusses why the 4-20 mA current loop was highly 
successful. Section 3 presents the generic TTP/A protocol 
[6], a temporally predictable fieldbus protocol that can be 
implemented on different physical layers. Section 4 
discusses the three shared code spaces that must be 
provided to enable an information exchange across an 
interface: a common name space, provided by an interface 
file system (IFS), a time space, and a value space. Section 5 
presents an implementation of this interface on a low-cost 
microcontroller and an UART bus. The paper ends with 
the conclusions in Section 6. 

2. What is an Interface? 

An interface is a common boundary between two 
subsystems. An information exchange across an interface 
is only possible if the engaged subsystems share a 
common background of concepts and a common coding 
system.  In the context of a distributed control system, the 
smallest area of concern is a cluster, consisting of a set of 
sensor, actuator, and processing nodes connected by a 
broadbus communication medium. The set of all nodes of 
the cluster must thus share the same concepts and must 
agree on common code spaces.  

For example, the interface between a driver and a car for 
the purpose of braking is the brake pedal.  There are two 
relevant state variables associated with the brake pedal at 
this interface:  the pressure applied to the brake pedal by 
the driver and the tactile feedback, the resistance, provided 
by the brake pedal back to the driver. The position of the 

brake pedal in the car identifies these state variables 
uniquely to both interfacing subsystems. The temporal 
association between sending the information (e.g., by the 
driver) and receiving the information (e.g., by the car) is 
implicit, because of the mechanical connection of the two 
subsystems. The value space of the state variables is the 
domain of pressures that can be applied. In some braking 
system, the temporal sequence of states, i.e., the speed 
with which the brake pedal is pressed by the driver, is 
another important input.  If a driver starts to press the 
brake pedal quickly, the braking system assumes that 
she/he intends to brake hard.  In an electronic braking 
system this information is  sometimes used to initiate the 
appropriate braking action before the full pressure is 
applied to the pedal, thus gaining a few valuable 
milliseconds in the response time of the braking system.  In 
hydraulic braking systems, the tactile feedback is a 
sideproduct of the hydraulic mechanisms. In an electronic 
"brake-by-wire" system, the force of the tactile feedback 
must be calculated and actuated by an actuator node in 
order to give the driver the relevant tactile feedback about 
the consequences of the braking action according an 
accustomed, sometimes non-cognitive, model of the brake 
in the mind of the driver. 

2.1 Observations  

In the abstract, the purpose of a smart sensor interface is 
the timely exchange of "observations" of real-time entities 
between the engaged subsystems across the provided 
interfaces. An RT entity is a state variable of interest that 
has a name and a value. An observation [3] is thus an 
atomic triple 

<RT entity name, instant, value> 

where RT entity name  is an element of the common 
namespace of RT entities, instant  is point on the  "time 
space" and value is an element of the chosen domain of 
values. An observation thus states that the referenced RT 
entity possessed the stated value at the indicated instant. 
Communication across an interface is only possible, if the 
code spaces for names, instants, and values and the 
referenced concepts are shared by all engaged 
subsystems. One key task in the development of a generic 
smart transducer model is concerned with the specification 
of these code spaces and the meaning of the referenced 
elements. 

If the value of an observation does not change over the 
time interval of interest, we call this observation a timeless 
observation. Timeless observations can be represented by 
tuples, consisting only of an entity name and the 
associated value.  



2.2 Why was the 4-20 mA Current Loop 
Interface so Successful? 

In the industrial control industry, the classic 4-20 mA 
analog current loop interface has been highly successful 
for many years because of its  simplicity and its 
understandability: The name space of RT entities is formed 
by the set of interfacing wires, each wire denoting one 
particular RT entity. Being an analog system with minimal 
delay, the time of delivery (reading a value at a receiver) is 
about the same as the time of generating the value and is 
implicit to the reading operation. Any value between 0 and 
100% of the chosen range is mapped into the standardized 
4 to 20 mA current interval, that denotes the code space of 
good values. This codespace is extended to provide an in-
band error code, the value 0 mA, that denotes an error (no 
signal). 

The 4-20 mA interface standard realizes a multicast 
topology by supporting the installation of many receivers 
in the current loop.  Such a multicast topology is needed in 
many automation systems, where an observed signal must 
be distributed to a number of independent receivers, e.g., 
an operator display, a controller, and a computer system 
interface.  

2.3 Smart Sensors  

The 4-20 mA interface technology was primarily developed 
to interface an analog sensing element with a small amount 
of local analog processing logic to an (remote) analog 
controller. The noise pickup on the analog transmission 
line is one of the limiting factors for the accuracy of 4-20 
mA signals. A smart sensor is the combination of an 
analog or digital sensor or actuator element and a local 
microcontroller that contains the interface circuitry, a 
processor, memory and a network controller in a single 
unit. The smart sensor transforms the raw sensor signal to 
a digital representation, checks and calibrates the signal, 
and transmits this digital signal via a secure 
communication protocol to its users.  More and more 
sensor elements are themselves microelectronic mechanical 
systems (MEMS) that can be integrated on the same 
silicon die as the associated microcontroller.  The smart 
sensor technology offers a number of advantages from the 
points of view of technology, cost and complexity 
management [7]:  

(i) Electrically weak non-linear sensor signals that 
originate from an MEMS sensor can be generated, 
conditioned, transformed into digital form, and 
calibrated on a single silicon die without any noise 
pickup from long external signal transmission lines 
[8]. 

(ii) It is possible to locally monitor the sensor operation 
and thus simplify the diagnostics. In some cases it is 
possible to build smart sensors that have a single 

simple external failure mode--fail-silent, i.e., the 
sensor operates correctly or does not operate at all. 

(iii) The interface of the smart sensor to its environment 
is a well-specified digital communication interface to 
a sensor bus, offering "plug-and-play" capability if 
the sensor contains its own documentation on 
silicon. 

(iv) The internal complexity of the smart-sensor hardware 
and software and the internal sensor failure modes 
can be hidden from the user by a well-designed fully 
specified smart sensor interface that provides just 
those services that the user is interested in.  Thus, 
the smart sensor technology can contribute to a 
reduction of the complexity at the system level. 

A smart sensor needs a much larger name space than a 
simple analog sensor.  In addition to the actual measured 
values, the parameters for range selection, alarm limits, 
signal conditioning, and calibration must be set by the 
user. Furthermore, information about sensor performance 
and diagnostic information must be stored in the sensor 
and accessed during  maintenance. A generic smart sensor 
interface must thus provide a standardized name space for 
all these data elements. 

3. The Generic TTP/A Protocol 

The generic TTP/A communication protocol is a time-
triggered protocol for the communication among smart 
transducer nodes within a cluster. It is controlled by an 
active master who establishes the common time base 
within the cluster. In case the master fails, a secondary 
master can take over control. In TTP/A it is assumed that 
every node has a unique personal identification number, 
e.g., an eight byte integer that is used to assign a (short) 
logical name to the node after power up. The scope of the 
logical name is a single cluster. 

In TTP/A the communication is organized into rounds. A 
round consists of one or more frames. Between any two 
frames there is an interframe gap, the length of which is an 
implementation specific parameter. A frame is a sequence 
of bytes transmitted by a single node. From the point of 
view of the protocol, each round is independent of all 
other rounds. Any two rounds are separated by at least an 
interround gap that is significantly longer than the 
interframe gap. To simplify startup and recovery, there is 
no protocol state stored between rounds. Every round has 
a name, the round name ,  that identifies the round. The 
structure and duration of every round is static and 
specified a priori, i.e., it is common knowledge to all nodes 
of a cluster.  

A round starts with a special frame from the master, the 
fireworks frame that has characteristic features. The arrival 
of the fireworks frame from the master is a synchronization 
event that starts a common time-base for this round in 



each node. The fireworks frame contains the round name 
and can carry additional data. According to the 
specification of the selected round, the fireworks frame is 
followed by data frames of specified lengths from the 
specified nodes.  

TTP/A distinguishes between three types of rounds 

(i) A broadcast round that just consists of the 
fireworks frame sent by the active master. 

(ii) A master-slave round that consists of two frames, 
the fireworks frame from the master containing, 
among others, the address of a slave and a response 
frame from the slave. The main purpose of a master 
slave round is the reading and writing of data into a 
file of the distributed TTP/A file system. 

(iii) A multipartner round that starts with the fireworks 
frame from the master and continues with data frames 
from the specified nodes. Multipartner rounds are 
periodic and are used to update real-time images. 

The specification of a multipartner round is called a round 
descriptor list (RODL).  A RODL can be viewed as a set of 
related files, one in each participating node, that identify 
the file address of the exchanged data and specify the 
point in time (relative to the start of the round) when this 
node has to become active (read or write data or perform 
some action).  

During the normal TTP/A operation there is a regular 
sequence of multipartner rounds and master-slave (or 
broadcast) rounds (Figure 1). The periodic multipartner 
rounds exchange current real-time observations, while the 
sporadic master-slave rounds access a TTP/A file, if 
required.  

 
M u l t i p a r t n e r

R o u n d

Real-Time

M a s t e r - S l a v e

R o u n d

M u l t i p a r t n e r

R o u n d

Figure 1: Traffic on the TTP/A Bus 

The TTP/A master contains at least two interfaces, one to 
the TTP/A bus and the other to the environment of the 
sensor subsystem. In  the time-triggered architecture [9], 
this latter interface conforms to the communication 
network interface (CNI) of the TTP/C specification [10], 
such that the same access mechanisms (software tools) 
can be used to access sensor data from the local node and 
sensor data from a remote node. 

4. The Shared Code Spaces 

Communication is only possible, if the interfacing 
subsystems share the concepts and representation of the 
data items in the interface.  To exchange observations 
across a smart sensor interface, agreement on the name 

space, the time space, and the value domains must be 
provided.  

4.1 The Name Space 

The TTP/A protocol integrates the communication 
between nodes and the storage of the communicated data 
within each node by providing a distributed interface file 
system (IFS) of a cluster that acts as a source and sink of 
the data exchanged among the nodes.  This distributed file 
system is the collection of the local interface file systems 
of each node. The IFS supplies the shared and structured 
name space for the data-elements that are exchanged 
among the nodes of the cluster. It provides the stable 
intermediate structure that serves as the basis for the 
design of higher-level protocols that assign meanings to 
the contents of IFS file records. This meaning can be 
assigned either formally or informally by a documentation 
file. For example, a documentation file with informal 
information may contain  (in verbal form) that  

 "this sensor is a temperature sensor that provides 
the current temperature in record a1  of file f1. A 
lower alarm limit has to be written into record a2 .  
Diagnostic information about the sensor can be 
found in file f2. ". 

In the future we plan to formalize this information to 
support a "plug-and-play" capability of TTP/A sensors. 

File Structure 

The IFS is structured into a set of index-sequential files 
with constant record length and a static file structure. The 
address of any record in the IFS of a cluster is composed 
of the following fields 

<file name><node name><record number> 

The record is the smallest unit that can be addressed in an 
IFS. Since all records of a file have the same length, a file 
can be viewed as a matrix of bytes.  The last byte of every 
record is a horizontal check byte.  The last record of every 
file is the vertical check record.  The file system thus 
contains enough redundancy to correct a single error in 
the file.  This characteristic is used to perform periodic file 
checks that monitor the integrity of the files and, if desired, 
correct single bit flips. These periodic file checks improve 
the reliability of the file system significantly. The 
horizontal check byte is also used when a record is 
transmitted in a frame.   

File Operations and File Types 

There are three file operations defined in the IFS: read, 
write, and execute.  Read reads a record from a file, write 
writes a record into a file, and execute executes a file. The 
file operation code--op-code for short--can be coded into a 
two-bit field. 



There are four different file types in the IFS: read-only 
documentation files, input-output files, RODL files and 
special command files.  Read-only documentation files 
contain the documentation about a node. Input-output 
files are normally used to store observations and 
parameters. The RODL files contain the RODLs and special 
command files contain executable program modules that 
can be executed (e.g., a JAVA applet). The transmitted 
data of a round form the input parameters for such an 
execution. 

The following Table 1 indicates which operations may be 
performed on which file type: 

Table 1: IFS File Types and File Operations 

 File type  /  Operation Read Write Execute 

 Documentation file X   
 Input/Output file X X X 
 RODL File X X X 
 Command file X X X 

The TTP/A file system guarantees that any single read or 
write operation of a file record is atomic. This implies that 
after a file write the horizontal check byte and the check 
record must be updated atomically. If a user needs a level 
of atomicity beyond the single file record, he/she has to 
design his/her own concurrency control protocol, for 
example an NBW protocol [11] that uses one record as a 
concurrency control field. 

RODL Files 

A RODL file is a distributed file that contains the 
specification of a RODL for a particular round. A RODL file 
consists of a collection of (sub)files, one in each 
participating node. The RODL file name is also the round 
name. The master can initiate the execution of a RODL by 
naming, within the fireworks frame, the appropriate RODL 
file name in the file execute command.   

A record of a RODL file has the following structure 

<round position><op-code><file-name><length><file 
record address> 

The round position  tells the  node at what position in the 
round an action  (read,write, or execute ) is required. The 
op-code field specifies the action. The file-name field 
identifies the file that is involved in the action. The length 
field specifies the length of the data frame and the file-
record address specifies, in case of a read or write action, 
which record is involved in the action.  

Since the individual RODL subfiles can be addressed and 
manipulated just as any other files, the programming of a 
new RODL can be performed with the available file 
operations without having to introduce any new concepts 
or mechanisms. 

4.2 The Time  Space 

In TTP/A, the point of occurrence of an event is recorded 
by recording the state of the local clock at the instant of 
event occurrence. In order to economize the representation 
of the continuously flowing time, only an interval of time 
around "now", the current time, can be expressed in the 
slave-node local TTP/A time space. This is in agreement 
with the strategy of TTP/A to reduce the internal state of a 
slave as far as possible.  In TTP/A, the epoch of the time 
scale starts anew with the arrival of every fireworks frame 
of a multipartner round. The fireworks frame also contains 
synchronizing information to be able to synchronize the 
rate of the clock of the receiving slave to the rate of the 
master. This is important if "on-chip" oscillators are in use 
at the slaves, since these "on-chip" oscillators have a bad 
long-term stability. The  granularity of the time-scale is 
chosen such that the duration of a granule is an integer 
fraction of the physical second.  It is thus possible to 
express time values by the fractions of seconds that 
expired in the commonly agreed epoch. 

Since two succeeding epochs can be partially overlapping, 
it is necessary to provide a mechanism to identify which 
one of the overlapping epochs has been used for the time 
measurement.  For this purpose, an alternating time bit 
that classifies each epoch as either an even epoch or an 
odd epoch is provided. By making this alternating time bit 
part of the time value it is clear whether the time-
measurement refers to the last even epoch or the last odd 
epoch.  The alternating time bit is part of the fireworks 
frame that initiates an epoch. 

4.3 The Value Domain 

It is recommended to use the encoding schemes proposed 
in this section for encoding the data values transmitted in 
TTP/A networks.  The use of these value domains will 
improve interoperability.   Since TTP/A is intended to be 
used in very small sensor nodes utmost care has been 
taken to design an efficient coding scheme. In addition to 
the code space for values, TTP/A provides a code space 
for in-band error messages and out-of-band confidence 
markers.   

Confidence markers are introduced to give a smart sensor 
the capability to express its confidence [12] in a delivered 
value. In multi-sensor systems, where more than one 
sensor observe a physical quantity, the confidence marker 
can be manipulated on the basis of comparing multiple 
independent direct or indirect observations of the same 
physical quantity. The confidence marker is a half-byte 
that provides space for sixteen confidence classes ("0000" 
for highest confidence and "1111" for 'no confidence').  
The confidence marker has to be transmitted out-of-band, 
since it is produced in addition (and not instead) of a data 
value.  



The sequence of data items contained in a frame is  called a 
message. TTP/A distinguishes between three types of 
messages, restricted messages, unrestricted  and free 
messages. The restricted message reserves the codes 
binary '1111 0000" to '1111 1111' of the first byte for in-
band error codes to support the transmission of error 
information within the data bytes. This implies that in a 
restricted message the first byte may not contain a data 
code value that is equal or larger than binary '1111 0000'.  

An unrestricted message starts with a special first byte 
which contains in the first half byte the confidence code 
and in the second half byte an error code. If an error code 
is set, the confidence marker in the first half-byte must be 
'1111' (meaning no confidence). If the confidence marker 
has any other value than '1111' the error code must be 
'0000' (meaning no error). All other bytes of an unrestricted 
message are application specific. 

There are no rules that restrict the data coding of free 
messages. There is no in-band error code in free messages. 
The detailed error codes and data formats can be found in 
the TTP/A specification document. 

5. UART TTP/A Implementation 

In this section we describe a concrete implementation of 
the generic TTP/A protocol on a low-cost (cost of less 
than 1 US $) 8 bit microcontroller that uses an industry 
standard UART communication channel. Since the 8 bit 
microcontroller implementation of TTP/A should be 
executable on very small microcontrollers, the design of an 
efficient coding schema for the name spaces is of 
importance.  

5.1 Communication System 

As described in Section 3, the communication of TTP/A is 
organized into rounds. Every round starts with the 
fireworks frame from the master. The fireworks frame of a 
multipartner round consists of two UART bytes, the 
fireworks frame of a master-slave round consists of four 
UART bytes. The temporal distance between the first and 
the second byte in the fireworks frame is significantly 
longer than the temporal distance between the other bytes 
of a round, in order to generate a characteris tic feature of 
the fireworks frame in the temporal domain. In order to 
produce a characteristic feature in the value domain, the 
first byte of the fireworks frame has even parity, while all 
other bytes of the round (except the synchronization 
pattern, see Section 5.2) have odd parity. 

For the byte oriented data transmission, a standard UART 
format with the following characteristics has been chosen 
(for all bytes other than the first byte of the fireworks 
frame): 

One start bit, 8 data bits, one parity bit and one stop bit, 
odd parity. Between two consecutive UART bytes there is 
an inter frame gap (IFG) of 1 bit cell. A frame and the 
following IFG form a 12 bit cell long slot (11 bit UART 
frame + 1 bit IFG). Thus a message of one byte is 
transmitted in a slot of 12 bitcells. 

The selected bus interface conforms to the ISO K Line 
serial link bus interface (ISO-9141). The physical layer is a 
single-wire UART channel with a nominal bit rate of 10 
kbit/s. Higher UART speeds require a different physical 
layer. 

5.2 Synchronization 

Start Up Synchronization: To support low-cost 
microcontrollers with imprecise on-chip or R/C oscillators, 
a start up synchronization is required after the cold start of 
a node. Start up synchronization means adjustment of the 
speed of the local clock of such nodes, to enable UART 
communication. Differences up to 50% from nominal 
frequency can be compensated. The TTP/A master can be 
configured to send synchronization patterns to enable 
nodes with an imprecise oscillator to adjust the speed of 
their local clocks. For a synchronized node, the 
synchronization pattern reads as binary '0110 0110' with 
even parity. The synchronization pattern is unique, 
because the value binary '0110 0110' is forbidden in the 
first byte of a fireworks frame. 

Continuous Clock Synchronization: The local clocks of 
the nodes are re-synchronized with the reception of the 
first two bytes of the fireworks frame at the beginning of 
each round. The state correction of the clock is performed 
at the instant of reception of the second byte of the 
fireworks frame: every node sets its local clock to zero. 
Rate correction is done by measuring the interval between 
the instants of reception of the first two UART bytes of 
the fireworks frame. The master sends these two bytes 
with an a priori known temporal distance, providing 
information about its local clock to the slaves.  

5.3 Namespaces  

We have tried to map all names into single or multiple byte 
objects, such that these objects can be communicated 
efficiently by an UART protocol and stored in a single 
byte memory location of an 8-bit microcontroller 
architecture. 

File-operation: The generic TTP/A protocol requires 3 file 
operations: read, write, and execute.  The operation code 
is assigned to the first 2 bits of one byte. 

File-name: It has been decided to provide a name space 
for filenames of 64 interface files in each node. This 
requires a six-bit name field. The byte that carries the File-
operation code can also contain this six bit file-name field, 



such that a single byte contains file operation and file 
name. 

Node-name: It has been decided to provide a name-space 
for 256 different nodes in a cluster.  The node name can 
thus be represented in a single byte. 

Record-number:  It has been decided to limit an IFS file to 
256 records.  The record number can thus be presented in a 
single byte as well. 

Record identification It is thus possible to express an 
operation on any record within a cluster with three bytes: 
First byte: file operation/file name, Second byte: record 
number, Third byte: node-name. If an operation is directed 
to a local file of a node, a two-byte record identification is 
sufficient (the node name is implicit). 

RODL entry: A RODL entry contains 4 bytes: one byte for 
the identification of the round position of the data, one 
byte for the op-code and file name, one byte for the frame 
length and one byte for the record number in the selected 
local file. 

Record length: A constant record length of 4 bytes has 
been chosen for the IFS files 

Fireworks frame: The fireworks frame of a multipartner 
round consists of two bytes: the first byte contains the file 
operation/file name of the selected RODL file and the 
second byte contains an exclusive-or checksum over the 
first byte. The fireworks frame of a master-slave round 
consists of four bytes: the first three bytes contain a 
record identification, the fourth byte contains an 
exclusive-or checksum over the first three bytes. 

File write operation: A file write operation consists of 9 
bytes: four bytes operation code, identification of the 
record and exclusive-or checksum over the first three 
bytes, 4 bytes data, and one byte horizontal check field 
containing an exclusive-or checksum over the 4 data bytes.  

File read operation: A file read operation consists of two 
frames with 9 bytes in total. The first frame consisting of 
four bytes identifies the data, the second frame contains 
four data bytes and the final byte is the horizontal check 
field. 

5.4 UART TTP/A Implementation Experience 

Figure 2 depicts a typical TTP configuration. The five 
nodes A,B,C,D, and E are TTP/C nodes that construct the  
fault-tolerant global time base of a TTP/C cluster.  The 
nodes D and E are the masters of the two TTP/A buses. 
The implementation of the TTP/A protocol requires two 
parts, a master and a slave part. The master part of the 
protocol was implemented on a Motorola MC68376 on 
TTTech's TTP-Node-boards (Node E and node F of Fig. 2). 
In addition to the TTP/A interface, these TTP-Node-
boards contain a communication network interface to 
TTP/C, such that the global time established in the TTP/C  

A B C

D ETTP/C Bus

TTP/A Node

TTP/A Bus TTP/A Bus

 
Figure 2: TTP/C and two TTP/A clusters.  

cluster can be used as a synchronized timesource for both 
TTP/A clusters. 

The slave part of the protocol was implemented on the 
ATMEL AT90S2313, an 8 bit RISC microcontroller. The 
ATMEL AT90S2313 has 2K flash memory for program 
storage, 128 bytes EEPROM, 32x8 bit internal registers and 
additional 128 bytes of SRAM. No external memory was 
necessary to build up the node. The AT90S2313 does not 
provide an internal RC oscillator, but the algorithm for start 
up synchronization was implemented for evaluation 
purposes. The UART was implemented in software. 

Code Size: The code for the protocol takes about 500 
instructions, whereof 75 instructions are used for the 
UART implementation. An instruction needs 2 byte of 
flash memory, so 1 K of flash memory is used for protocol 
code, 1 K remains for application code and the storage of 
IFS files. The RODLs are located in SRAM. Initialization 
parameters like node identifier and standard RODLs are 
located in EEPROM. I/O Files are mapped to 
sensor/actuator values but could also be buffered in RAM.  

Performance: The performance of a TTP/A system 
depends on the number of nodes in the cluster, the length 
of messages and the speed of the bus. Normally the round 
sequence as shown in Figure 1 is executed.  The periodic 
multipartner round is used to transmit the newest version 
of the real-time data. The response time for the RT data can 
be guaranteed. The sporadic master slave rounds between 
the multi-partner rounds are normally used to read and 
write to the IFS files in a cluster.     

With the current implementation we have achieved a 
response time of 31 msec for the real-time data on the 10 
kbit/sec UART bus, assuming 4 nodes which have two 
data bytes in each frame.  Within this 28 msec interval 
there is also space for one master-slave round of 9 bytes 
between two subsequent multipartner rounds. 

Table 2: Response Times for Different TTP/A 
configurations 

 Speed  \  nodes  4 8 16 32 

 9.6 kbits/sec 28 38 58 98 
 100 kbits/sec 2.7 3.6 5.5 9.4 
 500 kbits/sec 0.53 0.72 1.11 1.88 

Inst. f. Tech. Inf.




Table 1 shows the calculated response times in 
milliseconds for different TTA configuration, assuming a 
two frames with 1 byte each for the RT data of each node. 
In order to support the higher transmission speeds, a more 
powerful microcontroller with an hardware UART interface 
is required. 

6. Conclusions 

The low-level programming of the input/output routines 
for the diverse I/O devices is cumbersome and error prone.  
The specification of a universal smart transducer interfaces 
makes it possible to hide the idiosyncrasies of the various 
I/O devices behind such an interface and to provide to the 
programmer a unified view of the I/O devices.  Such a 
universal smart transducer interface must guarantee 
predictable real-time performance and provide the flexibility 
to communicate all types of data among smart transducer 
devices. In this paper we have proposed to integrate the 
communication services with an interface file system (IFS) 
to provide such a standardized interface. 

The presented interface file systems (IFS) provides a 
common name space for the data items that are exchanged 
among the transducer nodes and a master node in a 
distributed real time system. It establishes a stable 
intermediate structure that is a solid base for many new 
services. In the future we plan to built higher level services 
by the standardization and automatic interpretation of the 
contents of IFS documentation files. 

The implementation of the IFS on a very small 
microcontroller has shown that it is economically feasible 
to assign local intelligence even to low-cost I/O devices 
and thus establish the foundation for a new effective style 
of I/O programming.  

Acknowledgments 

This work was supported, in part by the Austrian Ministry 
of Science, project TTSB and by the European IST project 
DSOS. 

References 

[1] Pinto, J. J. (1995). A Neutral Instrumentation Vendor's 
Perspective. ISA Proceedings '94 and Intech, July 
1995.  

[2] O’Riain, Eoin. (1999). Catching the Bus. 
http://read-out.net/signpost/fieldbus.html.  

[3] CAN (1990). Controller Area Network CAN, an In -
Vehicle Serial Communication Protocol. SAE 
Handbook 1992. SAE Press. pp. 20.341-20.355. 

[4] Eccles, Lee (1998). A Brief Description of IEEE 1451.2. 
Sensors Expo, San Jose, California, May 1998. 

[5] Travis, B (1999). Sensors Smarten Up. EDN Access, 
pp. 76-86, March, 1999. 

[6] Kopetz, H. (1997). Real-Time Systems, Design 
Principles for Distributed Embedded Applications; 
ISBN: 0-7923-9894-7 . Boston. Kluwer Academic 
Publishers. 

[7] Kopetz, H. (1999). Do Current Technology Trends 
Enforce a Paradigm Shift in the Industrial Automation 
Market? Closing Keynote at the 7th IEEE 
International Conference on Emerging Technologies 
and Factory Automation (ETFA 99), Barcelona, 
Spain, October 18-22, 1999. 

[8] Deirauer, P. and B. Woolever (1998). Understanding 
Smart Devices. Industrial Computing. Vol. pp. 47-50. 

[9] Scheidler, Chr., G. Heiner, R. Sasse, E. Fuchs, H. 
Kopetz, and Chr. Temple (1997). Time-Triggered 
Architecture (TTA). Advances in Information 
Technologies: The Business Challenge, IOS Press. 

[10] Kopetz, H. (1999). Specification of the TTP/C 
Protocol. TTTech, A 1040 Wien, Schönbrunnerstraße 
13.   

[11] Kopetz, H. and J. Reisinger (1993). The Non-Blocking 
Write Protocol NBW: A Solution to a Real-Time 
Synchronisation Problem. Proc. 14th Real-Time 
Systems Symposium, Raleigh-Durham, North Carolina. 
pp. 131-137 

[12] Parhami, B. (1991). A Data-Driven Dependability 
Assurance Scheme with Applications to Data and 
Design Diversity. Dependable Computing for 
Critical Applications A. Avizienis and J. C. Laprie 
Ed. Vienna. Springer Verlag. pp. 257-282. 

 

 

 

 


