
The Time-Triggered Sensor Fusion Model

W. Elmenreich and S. Pitzek

Institut für Technische Informatik
TU Vienna, Austria

Tel: +43 (1) 58801-18234
wil@vmars.tuwien.ac.at

September 14, 2001

Abstract

This paper compares current sensor fusion
models and proposes a new time-triggered
model for sensor fusion.

The time-triggered sensor fusion model de-
composes a real time system into three levels, a
node level, containing the sensors and the actu-
ators, a cluster level that gathers measurements
and performs sensor fusion, and an application
level where an application program makes con-
trol decisions based on environmental informa-
tion provided by the cluster level. Because the
application code is independent of the employed
sensors, the system is open to sensor recon-
figurations and reuse of the application code.
Furthermore, the model contains a hardware-
independent application interface and a time-
triggered smart transducer network.

An application of the presented concept is
shown with a mobile robot controlled by a time-
triggered communication network.

Keywords: sensor fusion, modelling, time-
triggered systems, architecture, interface.

1 Introduction

Many real-time systems reach decisions based
on sensor measurements on their environment.
Unfortunately, sensors, in their current form,
are not reliable interfaces for several rea-

sons [BI98, Elm00]. Methods for enhancing
sensor properties have emerged in the past
decades in form of sensor replication and sensor
fusion. Intelligent sensor fusion aids in the de-
velopment of systems that ”see” and ”compre-
hend” their environment using computational
methods to get a picture from the data col-
lected by sensors. Much research on sensor-
fusion and according models originated in the
military domain.

Decomposing a system into subsystems with
a high degree of inner connectivity, and defin-
ing adequate interfaces between these subsys-
tems is a well-known design principle [Krü97].
Finding an adequate model for a real-time
sensor-fusion application that allows such a de-
composition can be a difficult task, because
many existing fusion models rely heavily on
military applications and, thus, incorporate a
structure that does not map well to civil appli-
cations.

The objective of this paper is to provide a
generic architectural model of a time-triggered
sensor fusion system. The aim of this model
is to provide a framework for the decomposi-
tion of real-time applications. Such a decom-
position eases implementation, reconfiguration,
code reuse, testing, and debugging.

The rest of the paper is organized as follows:
Section 2 describes existing models related to
sensor fusion and real-time systems. Section 3
explains the time-triggered sensor fusion model

1

Inst. f. Tech. Inf.
Research Report 13/2001Proceedings of the 5th IEEE International Conference on Intelligent Engineering SystemsHelsinki, September 2001



with its computational stages and its commu-
nication interfaces. Section 4 describes a case
study based on the time-triggered sensor fusion
model. The paper is concluded in Section 5.

2 Related Work

Fusion Models

Due to the fact that data fusion models heav-
ily depend on the application, no generally ac-
cepted model of data fusion exists until to-
day [BO00].

A frequently referred fusion model originates
from the US Joint Directors of Laboratories
(JDL). It was proposed in 1985 under the guid-
ance of the Department of Defense (DoD). This
JDL model [WL90] consists of five levels of fu-
sion processing and a database, which are all
interconnected by a bus. The five levels (pre-
processing, single object refinement, situation
refinement, implication refinement, and pro-
cess refinement) are not meant to be processed
in a strict order. The JDL model is very pop-
ular for data fusion systems, but is not always
appropriate for other than defense data fusion
systems [BO00].

Another approach to model a fusion applica-
tion is to line out its cyclic character. Repre-
sentatives of such an approach are the intelli-
gence cycle [Shu91] and the Boyd control loop
[Boy87].

Observe Orient

Act Decide

Figure 1: The Boyd (or OODA) Loop

The Intelligence Cycle [Shu91] comprises the
following stages: (i) Planning and Direction
determinate intelligence requirements, (ii) Col-

lection performs a gathering of appropriate in-
formation, (iii) Collation lines up the collected
information, (iv) the Evaluation fuses and an-
alyzes information, and (v) Dissemination dis-
tributes the fused intelligence.

John Boyd has proposed a cycle
of observation–orientation–decision–
action [Boy87]. The Boyd control cycle
or OODA loop (see Figure 1) represents the
classic decision-support mechanism in military
information operations. Because decision-
support systems for situational awareness
are tightly coupled with data fusion systems
[Bas00], the Boyd loop has also been used for
data fusion.

The Time-Triggered Computation
Model and Client-Server Architec-
tures

The time-triggered model of computation
[Kop98] is a model for the representation and
analysis of real-time systems. It is intended for
the representation and analysis of the design of
large hard real-time systems. The model con-
sists of four building blocks: (i) interfaces that
contain temporally accurate data, (ii) a com-
munication subsystem that connects interfaces,
(iii) a host computer that reads input data
from interfaces and writes output data to in-
terfaces, and (iv) a transducer that transforms
the information representation in the environ-
ment into the digital form of the interface and
vice versa. The main idea is a compositional
design of a real-time system, supported by well-
defined interfaces to separate the design of the
interaction pattern among components from
the design of the components themselves. All
instants of communication are defined a pri-
ori in a configuration phase. Sporadic requests
are converted into periodic time-triggered mes-
sages. Thus, a time-triggered scheduling is de-
signed for the worst-case scenario and will al-
ways hold its deadlines, for the cost of high
average communication load.

The time-triggered model of computation
stands in contrast to classical client-server ar-

2



chitectures. In a client-server model services
are requested by a client from a server. Com-
munications take place in a request-response
pattern. A typical client server architecture
is CORBA, that introduces client-server inter-
faces to interconnect heterogeneous computer
systems [Vin97].

3 The Time-Triggered Sensor
Fusion Model

Because none of the existing fusion models was
adequate for modelling a real-time system with
data acquisition, fusion processing, and control
decisions, the concept of a time-triggered sen-
sor fusion model has been developed.

The Time-Triggered System Model incorpo-
rates properties of the approaches described in
Section 2, like a cyclic processing and a com-
posable design introducing well-defined inter-
faces between its subsystems.

S
�

ensor Nodes

E
�

nvironment

E
�

nvironmental
I

�
mage

Sensor
Fusion

Fault
Tol.Layer

Application

Actuator
Nodes

Node Level
C
�

luster Level

Application
LevelNode Level

Interface s� 

S
�

ensing

Actuating

Figure 2: The Time-Triggered Sensor Fusion
Model

The model, as depicted in Figure 2 identifies
three levels of data processing with well-defined
interfaces between them.

Three-Level Abstraction

The sensors and actuators that interface the
environment refer to the node level of the sys-
tem. Each sensor can be seen as a window
showing a small part of the environment. It
is the task of the node level to provide each
window view. The node level physically in-
teracts with the environment by performing
measurements with sensors or actions with
actuators. To support maximum modular-
ity, the nodes are build as smart transduc-
ers. The smart transducer technology offers a
number of advantages from the point of view
of technology, cost, and complexity manage-
ment [Kop99, KHE00].

The cluster level contains the hardware and
software that act as a glue between transduc-
ers and control program. It integrates the mea-
surements from the sensors into a unified view,
the environment image. If necessary, this im-
age is made independent of incomplete, erro-
neous or missing measurements by implement-
ing sensor fusion algorithms and a fault toler-
ance layer.

The control application level contains the
control intelligence to make decisions based on
the environment image. The environment im-
age may be any feasible abstraction of the en-
vironmental properties of interest. The prop-
erties of the environment image like content,
resolution, update timing, and data structure
depend on the application type. The control
application influences the environment via ac-
tuators and closes the control loop.

Interfaces

The breakdown into these three levels is justi-
fied by different tasks they have to fulfill and
the different knowledge necessary for imple-
menting the corresponding software (see Ta-
ble 1). To support composability the model
uses well-defined interfaces between the levels:

Smart Transducer Interface: This inter-
face connects the transducers (sensors or
actuators) with the cluster level. The

3



Level Task Implementer Knowledge
Node Provide Transducer Infor-

mation
Transducer Manufacturer Internals of the Node

Cluster Gather and represent Sen-
sor Information

System Integrator Sensor Fusion Algorithms, Fault
Tolerant Concepts

Control Ap-
plication

Control System Application Programmer Control/Navigation, Decision
finding

Table 1: Properties of Node, Cluster, and Control Application Level

smart transducer interface exports the
transducer properties in a unified manner
and hides the node’s internals. This
interface appears twice in the model, as a
sensor and as an actuator interface.

Environmental Image: While sensors often
provide incomplete or faulty measure-
ments for several reasons the environmen-
tal image is intended to provide a fire-
wall against malfunctions of single sensors.
A malfunction of a sensor may affect the
quality of the environmental image, but
may not require a change in the behavior
of the control application.

The motivation for the introduction of this
system of interfaces and components was the
reduction of system complexity at cluster and
control application level and the possibility of
software reuse. Because the control application
does not directly rely on the sensor measure-
ments, the same control program can be used
with different sensor configurations. The user
interface is also part of the application inter-
face.

Timing

In the abstract, the model described above
could use any possible communication and
computation schedule. Nevertheless, there
are several reasons, that drove us towards a
time-triggered communication and computa-
tion pattern.

Sensor fusion is the combination of two or
more sensor measurements to form a new en-
hanced value. To find a sensor agreement of

some sensor readings of a real-time object, ei-
ther the measurements are performed and de-
livered so frequently, that the actual instant
of measurement is of no concern or the sensor
fusion process must know the timely relation
between measurements, e.g. by knowing the
instants of measurement [EP01]. If all mea-
surements are performed simultaneously the
timely relation between measurements is im-
plicitly defined. This leads us to the require-
ment of a globally synchronized timebase avail-
able to all nodes in the system.

Two-sensor fusion algorithms require the
presence of both sensor’s measurements to
compute an agreed value. Although it makes
some sense to fuse values from alternately mea-
suring sensors, most fusion calculation can be
kept simpler, if both values are guaranteed to
be measured at the same time. However, such
simultaneously measured values can be trans-
mitted at different instants, e. g. by serial com-
munication line.

In a Time-Triggered Architecture [SHS+97]
all instants for measurement and transmission
are a priori known to all components. All com-
ponents have access to a global time and com-
munication can be synchronized with measure-
ment instants known by all nodes. Further-
more, deterministic timing behavior is a key
feature for replication of systems or subsystems
to increase dependability [Pol94].

4 Case Study

The time-triggered system model introduced in
the previous Section was used for the imple-

4



mentation of a model car, which acts as an au-
tonomous robot with sensory inputs [Pet01].

The model comprises a mobile robot (“smart
car”) equipped with a suit of pivoted distance
sensors, an electric drive, and a steering unit.
Distance sensors, servo motors for sensor piv-
oting, driving and steering units are all sepa-
rate nodes. Each node is implemented on a
low-cost microcontroller and equipped with a
smart transducer interface.

Sensor Beams

Sensor Fusion

Actuator

Real World Image

Application

Obstacle

uncertainty region
of single sensors

uncertainty region
of joint sensors

Smart Car

Figure 3: Smart Car

All nodes are build upon the Time-
Triggered Protocol for SAE class A applica-
tions (TTP/A). TTP/A is a fieldbus protocol
that supports the integration of smart trans-
ducer nodes with a predictable timing behav-
ior. Furthermore, the protocol comprehends
already a two level design methology with a
cluster and a node level [PAG+00]. By adding
a control application level this model can eas-
ily be extended to fit into the proposed time-
triggered system model. A detailed specifica-
tion on TTP/A and its smart transducer inter-
face can be found in [Kop00] and [HK01].

Figure 3 depicts the functionality of the
smart car. At node level the distance sensors
are swivelled around by servo motors so that
they are able to scan the area in front of the
robot. The sensors generate a value that cor-
responds to the distance of the object they are
aimed at.

At fusion level, the data stream provided by
the distance sensors is taken over by a data
processing node that fuses the perceptions from
the distance sensors and the directions they are
aimed at with a model of the robot environ-
ment. In this model, the shapes of obstacles are
stored and assigned with a probability value
that decreases with the progression of time and
increases when the object is re-scanned.

We used a sensor grid algorithm [BK91] to
obtain the environment image. Based on these
data, the control application makes decisions
about direction and speed of further move-
ment.

Although the control program is indepen-
dent, it is also hosted in the data processing
node so that the environment image does not
have to be transmitted over the network. Thus,
the necessary bus speed was kept low (about 20
KBit/s) which made it possible to use a low-
cost single-wire bus.

5 Conclusion

We have proposed an architecture that incor-
porates smart transducer networks with sensor
fusion processing and an environment image in-
terface, which is sensor-independent.

The time-triggered sensor fusion model de-
composes a real-time system into three levels:
a node level, containing the sensors and the
actuators; a cluster level that gathers measure-
ments and performs sensor fusion; and a con-
trol application level where a control program
makes control decisions based on environmen-
tal information provided by the cluster level.
Because the control code is independent of the
employed sensors, the system is open to sensor
reconfigurations and reuse of the application
control program.

The model has been already implemented in
an autonomous mobile robot, where it helped
to build a well-structured composable system.
Furthermore this model will build the basis
for a distributed time-triggered architecture for
sensor fusion applications.

5



Acknowledgments

We would like to give special thanks to our col-
league Michael Paulitsch for constructive com-
ments on earlier versions of this paper. This
work was supported in part by the Austrian
Ministry of Science, project TTSB and by the
European IST project DSoS under contract No
IST-1999-11585.

References

[Bas00] T. Bass. Intrusion detection systems
and multisensor data fusion: Creating cy-
berspace situational awareness. Commu-
nications of the ACM, 43(4):99–105, May
2000.

[BI98] R. R. Brooks and S. S. Iyengar. Multi-
Sensor Fusion: Fundamentals and Applica-
tions. Prentice Hall, New Jersey, 1998.

[BK91] J. Borenstein and Y. Koren. The vector field
histogram - fast obstacle avoidance for mo-
bile robots. IEEE Journal of Robotics and
Automation, 7(3):278–288, June 1991.

[BO00] M. Bedworth and J. O’Brien. The omnibus
model: a new model of data fusion? IEEE
Aerospace and Electronics Systems Maga-
zine, 15(4):30–36, April 2000.

[Boy87] J. R. Boyd. A discourse on winning and
losing. Unpublished set of briefing slides
available at Air University Library, Maxwell
AFB, Alabama, May 1987.

[Elm00] W. Elmenreich. An introduction to data fu-
sion. Technical Report 11, Technische Uni-
versität Wien, Institut für Technische Infor-
matik, July 2000.

[EP01] W. Elmenreich and S. Pitzek. Using sen-
sor fusion in a TTP/A network. Technical
Report 2, Technische Universität Wien, In-
stitut für Technische Informatik, Jan. 2001.

[HK01] W. Elmenreich H. Kopetz, W.Haidinger.
Specification of the smart sensor in-
terface. Technical Report 7, IST-
1999-11585 Dependable Systems of
Systems (DSoS), 2001. Available at
http://www.vmars.tuwien.ac.at.

[KHE00] H. Kopetz, M. Holzmann, and W. Elmen-
reich. A universal smart transducer inter-
face: TTP/A. Proceedings of the 3rd In-
ternational Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC),
March 2000.

[Kop98] H. Kopetz. The time-triggered model of
computation. Proceedings of the 19th IEEE
Systems Symposium (RTSS98), Dec. 1998.

[Kop99] H. Kopetz. Do current technology trends
enforce a paradigm shift in the industrial
automation market? Closing Keynote
at the 7th IEEE International Conference
on Emerging Technologies and Factory Au-
tomation (ETFA 99), Barcelona, Spain, Oc-
tober 1999.

[Kop00] H. Kopetz et al. Specification of the
TTP/A protocol. Technical report, Tech-
nische Universität Wien, Institut für Tech-
nische Informatik, March 2000. Available at
http://www.ttpforum.org.

[Krü97] A. Krüger. Interface Design for Time-
Triggered Real-Time System Architectures.
PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, Vienna,
Austria, April 1997.

[PAG+00] S. Poledna, H. Angelow, M. Glück,
M. Pisecky, I. Smaili, G. Stöger, C. Tanzer,
and G. Kroiss. TTP two level design ap-
proach: Tool support for composable fault-
tolerant real-time systems. SAE World
Congress 2000, Detroit, Michigan, USA,
March 2000.

[Pet01] P. Peti. Monitoring and configuration of
a TTP/A cluster in an autonomous mobile
robot. Master’s thesis, Technische Univer-
sität Wien, Institut für Technische Infor-
matik, Vienna, Austria, 2001.

[Pol94] S. Poledna. Replica determinism in dis-
tributed real-time systems: A brief survey.
Real-Time Systems, 6:289–316, 1994.

[SHS+97] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs,
H. Kopetz, and C. Temple. Time-Triggered
Architecture (TTA). Advances in Informa-
tion Technologies: The Business Challenge,
IOS Press, 1997.

[Shu91] A. N. Shulsky. Silent Warfare: Understand-
ing the World of Intelligence. Brassey’s,
New York, 1991.

[Vin97] S. Vinoski. CORBA: Integrating diverse
applications within distributed heteroge-
neous environments. IEEE Communica-
tions, 35(2):46–55, Feb. 1997.

[WL90] E. Waltz and J. Llinas. Multisensor Data
Fusion. Artech House, Norwood, Mas-
sachusetts, 1990.

6




