
IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 1

Monitoring and Configuration
in a Smart Transducer Network

Roman Obermaisser, Member, IEEE, Philipp Peti, Wilfried Elmenreich, Thomas Losert

Abstract – There is a strong necessity for monitor-
ing, runtime configuration, and maintenance of smart
transducer networks. This paper describes tools for
establishing these tasks in distributed real-time sys-
tems. A time-triggered architecture is presented, that
accomplishes deterministic, reproducible monitoring of
a smart transducer network without probe effects. This
architecture allows access to the relevant node internal
information to render all conditions observable, which
cause a specific system behavior. Timeliness during
dynamic reconfiguration and maintenance is preserved,
which allows evolutionary changes and maintenance of
the system during real-time operation. The architec-
ture comprises both a local application and a CORBA
client/server communication. We present a case study
providing insight into a concrete implementation of this
architecture based on the fieldbus protocol TTP/A.

Index Terms—Smart Sensor, Runtime Configuration,
Time-Triggered Architecture, Interface Design, Moni-
toring, CORBA, Distributed Real-Time Systems

1 Introduction

In 1982 Wen H. Ko and Clifford D. Fung introduced
the term “intelligent transducer” [1]. An intelligent or
smart transducer is the integration of an analog or dig-
ital sensor or actuator element and a local microcon-
troller that contains the interface circuitry, a proces-
sor, memory, and a network controller in a single unit.
The smart sensor transforms the raw sensor signal to
a standardized digital representation, checks and cali-
brates the signal, and transmits this digital signal via
a standardized communication protocol to its users [2].

Smart transducer technology implicates the develop-
ment of transducer networks, that allow monitoring,
plug-and-play configuration and the communication of
digitized transducer data. Such a smart transducer net-
work provides a framework that helps to reduce the
complexity and cost of large distributed real-time sys-
tems.

Monitoring and debugging of distributed embedded
real-time systems differ significantly from debugging
and testing programs for desktop computers, because
only few interfaces to the outside world are present [3].
In addition, a distributed system contains multiple lo-
cations of control and therefore conventional break-
point techniques result in an undesired modification
of the timing behavior. This indeterministic effect is

All four authors are with the Real-Time Systems Group of the
Insitut für Technische Informatik at the Vienna University of
Technology.

called the “Probe Effect” [4], [5] or the “Heisenberg
Uncertainty” [6] applied to software. Therefore a vital
property of a convenient monitoring environment is the
absence of disturbances or intrusions on the system be-
havior. Users expect tools to avoid the probe effect and
to incorporate a deterministic and reproducible behav-
ior.

Much research has focused on monitoring, debugging,
configuration, and maintenance of distributed real-time
systems. However, existing tool sets generally neglect
a subset of the major monitoring qualities like repro-
ducibility, determinism and the elimination of the probe
effect. The tool sets presented in Section 2.4 restrict
observations to the bus contents, although determin-
ism involves the ability to observe all conditions, which
cause a specific system behavior. These solutions elimi-
nate the probe effect by renouncing deterministic mon-
itoring as defined in [7]. They also lack mechanisms for
preserving timeliness during dynamic reconfiguration
and maintenance. This fact makes these approaches
unsuited for online reconfiguration and maintenance in
a hard real-time environment, i. e. modifications to the
system require a system shut down.

We have developed a tool set for hard real-time
environments, which integrates the above mentioned
functions while exploiting the properties of the time-
triggered protocol TTP/A to establish the major mon-
itoring qualities. In contrast to existing tools relevant
node internal information is accessible while preventing
any modification to the behavior in either the temporal
or value domain. On-the-fly configuration and mainte-
nance can be performed while preserving the timeliness
in the exchange of real-time data. Therefore, evolution-
ary changes of the system can occur during real-time
operation.

This paper describes tools and architectures to ac-
complish this task and is structured as follows. In Sec-
tion 2 related work in the field of monitoring of dis-
tributed real-time systems is presented. Section 3 gives
an overview of smart transducer interfaces. Section 4
describes the Time-Triggered Architecture with Inter-
net tool support. In Section 5 the implementation of
monitoring tools as a case study is described. Section 6
gives an outlook to future work and Section 7 concludes
the paper.

2 An Overview on Monitoring

Monitoring is the process of gathering information
about a program’s execution that cannot be obtained
by static analysis of the source code.

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 2

2.1 Purposes of Monitoring

One function of monitoring is the collection of run-
time information of a real-time system for testing and
debugging. Monitoring is often an effective procedure
for locating incorrect system behavior and serves the
purpose of a debugging tool [5]. In a critical real-time
system it can provide additional confidence for the va-
lidity of a static analysis. In non-critical real-time sys-
tem software dynamic debugging and testing may be
preferred due to lower cost and complexity.

Distributed real-time systems require the possibility
for on-the-fly configuration and maintenance without
a system shut down [8]. This allows the accommo-
dation of evolutionary changes of the system, which
is especially important for networks with a long ex-
pected lifetime. Configuration is aided by electronic
data-sheets that contain all relevant information of a
transducer [9]. This information is located on the chip
in persistent memory and may not be separated from
the chip. Hence human errors associated with entering
sensor parameters manually are completely eliminated.
Losing transducer paper data sheets is no longer a con-
cern. Enhanced capabilities like plug and play are pos-
sible [10].

Monitoring also aids in the automatic detection and
handling of anomalous system states. If erroneous con-
ditions described by monitoring constraints occur, a
monitoring application can initiate corrective actions.

2.2 Monitoring Requirements

Useful monitoring tools must satisfy certain quali-
ties [11], [7].

Elimination of the Probe Effect: The act of observing
a distributed real-time system can change its behavior.
Existing errors can be hidden and new errors can be
introduced. Due to multiple locations of control, the
halting of a single control path introduces a temporal
distortion. Therefore a vital property of a convenient
monitoring environment is the absence of disturbances
or intrusions on the system behavior.
Deterministic Monitoring: Deterministic monitoring
means that all conditions are observed, which cause a
specific system behavior. For deterministic monitoring
all entities must be observed with respect to contents,
order and timing.
Reproducible Monitoring: Reproducible monitoring is
advantageous for debugging, since erroneous conditions
can be deterministically reproduced. For sustaining re-
producibility in a conventional sequential program, it
is sufficient to start at the same initial state and to
provide the same inputs. In a real-time system, there
is the additional requirement for a reproducible timing
behavior. Therefore, the inputs have to be reproduced
with respect to contents, order and timing. Tasks have
to be executed in the same order and the probe effect
must be eliminated.

2.3 Monitoring Approaches

Various monitoring mechanisms are available and
categorized into three types: hardware, software, and
hybrid monitors. These monitoring mechanisms can be
distinguished in terms of cost, reusability and the elim-
ination of the probe effect.
Hardware Monitoring: Separate hardware objects ob-
serve the distributed system. Tsai et al. [12] use phys-
ical probes that are connected to the processors and
memory ports. The main advantage of this approach is
its non-intrusive nature. Since information is read from
busses and processor ports only, processor internal data
is invisible to hardware monitoring.
Software Monitoring: Resources are shared with the
monitored system. Software probes are inserted into
the code to gather information. The main disadvantage
of this approach is the problem of predicting the per-
turbations caused by the additional code. However this
approach offers flexibility, portability, lower cost, and
easier design than hardware monitors. A tradeoff be-
tween predictability and cost exists in the final system.
If the code pieces for software monitoring are removed
from the target system after testing, the probe effect
may occur. On the other hand remaining of monitoring
code results in increased usage of hardware resources.
An example for software monitoring is presented in [13].
Hybrid Monitoring Hybrid monitors are designed to
overcome the shortcomings of the above mentioned ap-
proaches. Typically hybrid systems consist of an inde-
pendent hardware device that receives monitoring infor-
mation generated by software probes. Software probes
are inserted into the monitored software objects [12]. So
called “Triggers”, which are implemented in software,
assist the dedicated hardware on recording important
events. The code used for monitoring must also be re-
source adequate in order to avoid the probe effect. This
way the level of abstraction is increased and the amount
of the recorded information is decreased [3]. Functional
limitations of hardware monitoring are eliminated and
the internal state of the target system and intermedi-
ate results of computations are accessible. Neverthe-
less, disadvantages of increased cost and usability for a
specific target system only remain.

2.4 Related Work

A network configuration and monitoring tool suite
developed for the fieldbus protocol LIN is described
in [14], [15]. A hardware monitoring tool records the
contents and the points of time of occurrence of LIN
frames. This bus traffic is stored in log-files for later
analysis. The internal state of nodes remains hidden.
For configuration purposes a tool chain allows the gen-
eration of a target image out of a specification of com-
munication requirements. This target image is loaded
into the nodes during service mode. In contrast to the
monitoring solution described in this paper no online
maintenance and reconfiguration is supported.

For CAN bus systems the CANalyzer tool [16] is
available. It allows observing and analyzing of bus traf-

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 3

fic. During passive mode no probe effect can occur. The
internal state of the nodes remains hidden, if it is not
transmitted on the network. Determinism and repro-
ducibility are limited, since conditions contributing to
a specific system behavior are not necessarily broadcast
on the bus.

A hardware monitoring tool developed for the time-
triggered fieldbus TTP/A is described in [17], [18]. It
records and stores all data on the real-time bus for later
analysis. Trigger conditions are employed for filtering
purposes, i. e. to reduce the amount of recorded data.
Due to the fact that only information transmitted on
the bus is accessible, node internal data values cannot
be inspected.

Table 1 summarizes the capabilities of the described
tool sets and compares them to the properties of the
monitoring solution presented in this paper.

Bus Relevant Dynamic
Tool Contents Internals Config.

Observ. Observ. Support
CANalyzer yes no no
LINspector yes no no
TTP/A HW yes no no
TTP/A Hybrid yes yes yes

Table 1: Comparison of Monitoring and Configuration Tools

3 System Architecture with Internet Tool
Support

Figure 1 depicts the system architecture of our ap-
proach. We identified 4 levels above each other, with a
well-defined interface between each two levels.

The first level is the fieldbus level. It comprises trans-
ducers (sensors and actuators) which are interconnected
by a digital fieldbus. The transducers consist of a physi-
cal sensor or actuator integrated with a microcontroller
unit and a communication interface. The microcon-
troller contains the “intelligence” to transform the raw
sensor signal to a standardized digital representation
respectively transform a digital control value to an ap-
propriate actuator signal.

All smart transducers are accessible via a standard-
ized smart transducer interface. In order to support
complexity management and composability, it is use-
ful to specify distinct interfaces for functional different
services [19]. Three types of interfaces can be distin-
guished: The Real-time Service interface (RS) provides
the timely real-time services to the component during
the operation of the system. The Diagnostic and Main-
tenance interface (DM) opens a communication chan-
nel to the internals of a component. It is used to set
parameters and to retrieve information about the in-
ternals of a component, e. g., for the purpose of fault
diagnosis. This interface is available during system op-
eration without disturbing the real-time service. The
Configuration and Planning interface (CP) is necessary

Fieldbus Smart
Transducer Interface

Fieldbus
Gateway Node

RS232 or any other
Standard Interface

Internet TCP/IP or
CORBA Interface

Smart Sensors and Actuators

Internet or
CORBA ORB
Server

Monitoring
Application
(Local)

Monitoring
Application
(Remote)

Diagnosis
Tools Configuration

Tool

V
ir

tu
al

 A
cc

es
s

to
an

y
fi

el
db

us
 n

od
e

Figure 1: System Architecture

to access configuration properties of a node. It is used
for initial configuration and for system reconfiguration.

The second level is the gateway level. The fieldbus
gateway node is connected to the fieldbus and contains
the software and hardware to establish a connection via
a standard PC interface. We used an RS232 serial con-
nection. Other possible connections are RS485, USB,
IEEE 1394, or a wireless connection with IrDA or ra-
dio signals. The used protocol for this connection shall
guarantee real-time behavior.

The next level hosts a PC running a communication
module and local tools for monitoring and configuration
and a server module. Because the timing behavior of
the communication from the local tools into the field-
bus network provides a deterministic timing behavior,
the local tools can support deterministic real-time mon-
itoring. However, compared to access at fieldbus level
data is accessible at a lower bandwidth.

The communication module running on the PC will
be a CORBA (Common Object Request Broker Archi-
tecture) ORB server. The OMG (Object Management
Group), the largest standardization group for CORBA
services, currently examines a standard for smart trans-
ducer interfaces [20]. Our interface will conform to this
future standard.

The CORBA system enables the transparent Internet
access of remote service applications (level four) to the
fieldbus network. This interface is independent of the
employed protocols and physical layers at fieldbus level.

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 4

4 Case Study

The goal was to develop a set of tools allowing rapid
development, monitoring and dynamic reconfiguration
of TTP/A networks. This task was accomplished by
devising a hybrid monitoring solution combining mon-
itoring hardware with instrumentation code. The tools
were designed according to the presented system archi-
tecture with Internet tool support. Emphasis was set
on the realization of the monitoring qualities described
in section 2.2, namely reproducibility, determinism and
the elimination of the probe effect. The tools were im-
plemented as part of the development of smart TTP/A
transducer networks. These networks controlled an au-
tonomous mobile robot and a demonstrator with an
arm prosthesis [17], [18], [21].

4.1 Fieldbus Level - TTP/A Bus

TTP/A is a time-triggered master/slave communi-
cation protocol for fieldbus applications that uses a
time division multiple access (TDMA) bus arbitration
scheme [22]. It is possible to address up to 255 nodes
on a bus. One single node is the active master. This
master provides the time base for the slave nodes. The
communication is organized into rounds. Bus access
conflicts are avoided by a strict TDMA schedule for
each round. A round consists of several slots. A slot is a
unit for transmission of one byte of data. Data bytes are
transmitted in a standard UART format. Each commu-
nication round is started by the master with a so-called
fireworks byte. The fireworks byte defines the type of
round.

Time

FB DataByte DataByte DataByte DataByte

Slot 0 Slot nSlot 1 Slot 2 Slot 3

FB
DataByte

Fireworks Byte, sent by master
sent either by master or slave

Figure 2: A TTP/A Round

A TTP/A round (see Figure 2) consists of a con-
figuration dependent number of slots and an assigned
sender node for each slot. The configuration of a round
is defined in the RODL (ROund Descriptor List). The
RODL defines which node transmits in a certain slot,
the semantics of each individual slot, and the receiv-
ing nodes of a slot. RODLs must be configured in the
slave nodes prior to the execution of the corresponding
multipartner round.

A master/slave round is a special round with a fixed
layout that establishes a connection between the master
and a particular slave for reading/writing monitoring or
configuration data, e. g. the RODL information. In a
master/slave round the master addresses a data record
in the IFS format and specifies an action like reading,
writing or executing on that record.

The master/slave rounds establish the CP and DM
interface to the transducer nodes. Master/slave rounds
are intended to be scheduled periodically between mul-
tipartner rounds as depicted in Figure 3.

Time

MPround MPround MProundMSround MSround

Figure 3: Recommended TTP/A Schedule

The TTP/A protocol [22] offers a unique addressing
scheme for all relevant data of a node like communi-
cation schedules, calibration data, and I/O properties.
This addressing scheme is called Interface File System
(IFS) [2]. The IFS provides a universal interface to
the TTP/A network for configuration and maintenance
tools as well as for applications running local on a node.
The IFS is structured in a record-oriented format. The
smallest addressable unit is a record of 4 bytes. All
nodes contain several files with a number of records
that can contain information for automatic configura-
tion, similar to the idea of Transducer Electronic Data
Sheets in the IEEE 1451.2 standard [23].

4.2 Gateway Level - TTP/A Gateway Component

The TTP/A gateway component represents the in-
terface between the workstation level and the fieldbus
level. It performs the task of the fieldbus gateway node
described in section 3. The gateway node is designed
to support the TTP/A master by shifting load from it.
Requests for accessing the IFS are queued at the gate-
way component and forwarded to the master at points
in time determined by the master. Since the TTP/A
master controls the rate at which information is ex-
changed with the gateway component, no violation of
timing constraints with respect to the TTP/A commu-
nication can occur. Probe effects are avoided, because
timely execution of the protocol code in the master can
be ensured despite monitoring activities. The gateway
component also performs the prioritization of the re-
quests for IFS accesses according to the different types
of interfaces introduced in Section 3. Time critical op-
erations of the RS interface are forwarded prior to the
operations of the DM and CP interfaces.

As a consequence of the preprocessing and queuing
performed by the gateway component the additional in-
structions needed for monitoring take less than 15µs in
the master implementation on the Microchip PIC16F84
microcontroller unit (clocked at 8MHz). These are
2.2% of the processing time of the microcontroller
unit during a time slot of 677 µs (communication at
19200 Baud). The cost for the additional hardware is
minimized, since commercial off the shelf components
(COTS) are utilized. An Atmel AT90S2313 microcon-
troller unit was used as gateway component.

4.3 Workstation Level

The workstation level consists of both a local moni-
toring application and a CORBA server module repre-
senting the interface to remote monitoring clients. The
local monitoring application allows real-time monitor-
ing, maintenance and dynamic configuration without
indeterministic delays caused by the Internet. Remote
client applications performing monitoring, diagnosis or

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 5

configuration tasks access the Interface File System of
the fieldbus level by sending requests to the CORBA
Server Module (see Figure 4).

������������	
������� �

����������������� � �� !� ��"�#��$�%�� &

')(+*�,�-.(/,�*

0213-�*�451365657894:-)-);<-),�='�>@?

A+BDC/E/FHG�IKJMLNIOJP�Q�R�S�T I

UVUVWYX Z[]\<^�_

UVUVWYX Z[]\/^�_

UVUVWYX Z`9a�b�c:_�de�f@g

UVUVWYX:Zihkj�b

UVUkWlX Z[]\<^<_

m n�o p q r
s t u v w
xy.z|{

} ~!��l� � �+�
� � ��� �

� � �:� �
��)� ��

�!�

���K� � ��� � �:� ��� � � � �
 �+¡ � ¢ �M£

���K� � � � � �:� � � �M� � �

¤/¥N¦ � � ¡ ¥�§ � � ¥ � � § ¨

©ªM«¬
®¯°±M²³
«

©ª «¬
®¯°± ²³
««

´iµ/¶)·/¸�¹:º�¹:»:µ<¼

½�¾À¿!Á�Â
Ã�Ä Å Æ3Ç È
É Ê+ËÍÌ

Î�ÏÑÐ
ÒÔÓMÕ ÓlÖ

× Ó Ø:ÙÛÚ
Ü Ó Ý�Þ ß

à á�â ÖÒ2ãkä

Figure 4: Workstation Interacting with other Levels

Records accessed through the Real-Time Service In-
terface (RS) are placed in a shared memory called the
“Partially Mirrored IFS”. Data elements stored in this
data structure are updated at a constant bandwidth.
Thereby the age of the data elements is bounded by
the update period. The maximum age is independent
of the user’s access rate.

The contents of the “Partially Mirrored IFS” are ob-
servations. An observation is any property of a relevant
state variable that is observed by a smart transducer
(ST). An observation records the state of a state vari-
able at a particular instant, the point of observation.
An observation can be expressed by the atomic triple
<name of the observed state variable, observed value,
time of observation>. An observation is stored in a
record of the IFS within an ST and is normally peri-
odically updated by internal encapsulated processes of
the ST. The observed value is contained in the record
and the time of observation is the time of updating the
record by the internal process of the ST.
CORBA Server Module: The CORBA Server estab-
lishes a connection to the remote clients. Client ap-
plication automatically benefit of the properties of the
CORBA concept. Among the advantages are scala-
bility, maintenability, fault tolerance, independence of
the physical layer, language independence and trans-
parency of the network layer [24].

In our architecture the maximum age of data elements
gained at the fieldbus level is known up to the CORBA
server. In conjunction with real-time CORBA it is pos-
sible to additionally achieve end-to-end predictability,
i. e. the temporal behaviour of all transmission activi-
ties are deterministic. This results in knowledge about
the maximum data element age at the clients.
Due to the nature of the Internet, the timing of the
master/slave access is indeterministic at this point. The
timing unpredictability is caused by the bursty network
traffic of the Internet. This lack of temporal certainty
is non-critical because access to the configuration inter-
face of the cluster nodes is not a time critical task (see
Section 3).
Local Monitoring Module: The local monitoring mod-
ule is superior to remote monitoring applications in
terms of temporal predictability. The values of the in-
terface file system are presented to the user in a graph-
ical representation. The tool also offers configuration
capabilities. The local monitoring application serves
the purpose of visualization of the real-time data. This
visualization takes place with a scalable window of the
information space. This approach to adjust the proper
level of detail is called “Pan and Zoom approach” [25].
Operators are aided in the comprehension of events
on the network. The monitoring functions of testing,
debugging, configuration, maintenance and electronic
datasheet extraction are enabled. Configuration and
maintenance are achieved by establishing the possibil-
ity to write directly into the interface file system of a
master node.

TTP/
�
A

Master

TTP/
�
A Bus

TTP/
�
A

Slave
TTP/

�
A

Slave

TTP/
�
A

Slave

newly
c� onnected

node

File s� eries s� erial a� lias

i-1 0
�

xFC4567DA 0
�

xFF113411 0
�

x25

i 0
�

xFF565611 0
�

xAAFF1234 0
�

x17

i+1

S
�

can for
n� odes

IFS

TTP/
�
A

Slave

newly
c� onnected

node

Figure 5: Dynamic Configuration Example: Plug’n’Play

Figure 5 illustrates the concept of using the IFS for
dynamic configuration purposes. The user can initi-
ate a scan for new nodes followed by a configuration of
newly connected nodes according to their transducer
electronic datasheets. This approach is based upon
the work presented in [26]. As a consequence of the
user command the master scans for recently added
nodes and automatically assigns a unique node iden-
tifier (alias) to each found node without affecting the

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 6

real-time services. In addition to the series and serial
number (assigned by the hardware manufacturer) the
alias of the newly connected node is stored in a record of
the IFS providing feedback for the user. As soon as the
alias is assigned the node can be configured according
to its electronic datasheet using master/slave accesses.
The alias is necessary for addressing a particular node
during a master/slave access (see Section 4.1).

Figure 6: User Interface of the Monitoring Application

Figure 6 shows the user interface of the local monitoring
application. Most of the window space is consumed by
the visualization of the status information (IFS). The
electronic datasheet of the master node and details of
the monitoring process are also displayed. Both elec-
tronic datasheets and file system entries of other nodes
can be queried.

4.4 Establishment of the Monitoring Requirements

The probe effect was eliminated by executing the
monitoring code in TTP/A nodes only during idle
times. As a consequence no modification of the tem-
poral behavior could occur. The determination of the
necessary resources for allowing both time critical real-
time operations and monitoring during peak load sce-
narios was possible by the a-priori knowledge of the
processing time required for the execution of the mon-
itoring code.

Determinism was established by mapping all relevant
data elements into the interface file system (see Sec-
tion 4.1). This eases the monitoring task significantly.
The IFS provides a fully specified interface in both the
value and time domain between the application and the
protocol code of the node. Reading this IFS periodi-
cally enables the system developer to gain insight of the
node’s behavior. By the provision of a global time in all
TTP/A nodes events can be time stamped. Therefore
all conditions causing a certain system behavior are ob-

servable with respect to their values and the point in
time of monitoring. In contrast to the monitoring solu-
tions presented in Section 2.4 the internal state of nodes
need not be broadcast on the bus to be observable.

Reproducibility was ensured by the properties of
the TTP/A protocol. The time-triggered architec-
ture results in a predefined execution order of tasks
and no need for explicit synchronizing constructs
(e. g. semaphores).

5 Outlook

Because the Internet interface opens a wide gap for
security threats like data interception and manipula-
tion, the connection to the cluster interface will be pro-
tected by strong encryption. The performance of the
local server respective the client workstation will suf-
fice for the encryption algorithms. On the other hand
the access to the cluster should be very comfortable. To
support this we plan to implement an authentification
service with different access levels.

As a further improvement the server module may be
implemented on a single board computer running the
CORBA-Object Request Broker on embedded Linux –
thus reducing cost by replacing the workstation.

6 Conclusion

It can be stated that monitoring, configuration and
maintenance tools are essential development compo-
nents. We have devised a tool set for hard real-time en-
vironments, which integrates monitoring, maintenance
and configuration functions while exploiting the prop-
erties of the time-triggered protocol TTP/A to estab-
lish the major monitoring qualities. In contrary to ex-
isting tools relevant node internal information can be
accessed while preventing any modification to the be-
havior in either the temporal or value domain. Con-
figuration and maintenance of the running system can
be performed, thus evolutionary changes of the sys-
tem can occur during real-time operation. The time-
triggered architecture is well suited for the implementa-
tion of monitoring, online reconfiguration and mainte-
nance because protocol mechanisms (e. g. master/slave
access) ensure hard real-time constraints despite moni-
toring. To gain reproduciblity explicit synchronization
is avoided. In TTP/A implicit synchronization is estab-
lished by a static temporal control structure ensuring
mutual exclusion and precedence requirements without
any further need for explicit synchronization.

A container for the significant part of the information
space is formed by the IFS. The IFS is the key data-
structure for our TTP/A tool implementation, because
it makes the node data for monitoring, configuration
and maintenance accessible in a uniform manner. In
order to provide remote CORBA clients with informa-
tion about the age of an IFS record, the time of the
corresponding observation is transmitted in addition to
the record data. Therefore, the age of a record is known
at remote clients despite indeterministic delays caused
by the internet.

IEEE REAL-TIME EMBEDDED SYSTEM WORKSHOP, DEC. 3, 2001 7

7 Acknowledgments

We would like to give special thanks to our colleague
Michael Paulitsch for constructive comments on earlier
versions of this paper. This work was supported in part
by the Austrian Ministry of Science, project TTSB and
by the European IST project DSoS under contract No
IST-1999-11585.

8 References

[1] W. H. Ko and C. D. Fung. VLSI and intelligent trans-
ducers. Sensors and Actuators, (2):239–250, 1982.

[2] H. Kopetz, M. Holzmann, and W. Elmenreich. A uni-
versal smart transducer interface: TTP/A. Interna-
tional Journal of Computer System Science & Engi-
neering, March 2000.

[3] H. Thane. Monitoring, Testing and Debugging of Dis-
tributed Real-Time Systems. Phd thesis, Mechatronics
Laboratory, Royal Institute of Technology, Stockholm,
Sweden, May 2000.

[4] J. Gait. A probe effect in concurrent programs. Soft-
ware Practice and Experience, 16(3):225–233, March
1986.

[5] C. E. McDowell and D. P. Helmbold. Debug-
ging concurrent programs. ACM Computing Surveys,
21(4):593–622, December 1989.

[6] C. H. Ledoux and D. Stott Parker. Saving traces for
Ada debugging. In Ada in Use (1985 International Ada
Conference), pages 97–108, Cambridge, England, May
1985. Cambridge University Press.

[7] M. Mansouri-Samani and M. Sloman. Monitoring dis-
tributed systems. IEEE Network, 7(6):20–30, Novem-
ber 1993.

[8] J. Kramer and J. Mageee. Dynamic configuration for
distributed systems. IEEE Transactions on Software
Engineering, SE-11(4):424–436, 1985.

[9] K. Lee. IEEE 1451: A standard in support of smart
transducer networking. Proceedings of the 17th IEEE,
2:525–528, 2000.

[10] R. Johnson. Building plug-and-play networked smart
transducers. Sensors Magazine, October 1997.

[11] C. Glawan. Monitoring von Echtzeitbetriebssystemen.
Master’s thesis, Technische Universität Wien, Institut
für Technische Informatik, Vienna, Austria, 2000.

[12] J. P. Tsai, K. Fang, and H. Chen. A noninvasive archi-
tecture to monitor real-time distributed systems. Com-
puter, 23(3):11–23, March 1990.

[13] H. Beier and T. Bemmerl. Software monitoring of par-
allel programs. In Proceedings of CONPAR ’88, pages
71–78, Manchester, England, 1988.

[14] A. Rajnak J. Specks. LIN protocol development tools
and software interfaces for local interconnection net-
works in vehicles. 9th International Conference on Elec-
tronic Systems for Vehicles, Baden-Baden, 2000.

[15] Audi AG, BMW AG, DaimlerChrysler AG, Motorola
Inc., Volcano Communication Technologies AB, Volk-
swagen AG, and Volvo Car Corporation. LIN spec-
ification and LIN press announcement. SAE World
Congress Detroit, http://www.lin-subbus.org, 1999.

[16] IXXAT, Inc. CANalyzer – new product descriptions.
The Embedded Systems Conference San Francisco,
2001.

[17] R. Obermaisser. Design and Implementation of a Dis-
tributed Smart Transducer Network. Master’s thesis,

Technische Universität Wien, Institut für Technische
Informatik, Vienna, Austria, 2001.

[18] P. Peti. Monitoring and Configuration of a TTP/A
Cluster in an Autonomous Mobile Robot. Master’s
thesis, Technische Universität Wien, Institut für Tech-
nische Informatik, Vienna, Austria, 2001.

[19] H. Kopetz. Software engineering for real-time: A
roadmap. IEEE Software Engineering Conference,
Limmerick, Ireland, 2000.

[20] Objective Interface Systems, TTTech Computertech-
nik, and VERTEL Corporation. Smart transducers in-
terface. OMG TC Document orbos/2001-06-03, July
2001. Supported by Technische Universität Wien.
Available at http://www.omg.org.

[21] L. Schneider. Real time Robot Navigation with a Smart
Transducer Network. Master’s thesis, Technische Uni-
versität Wien, Institut für Technische Informatik, Vi-
enna, Austria, 2001.

[22] H. Kopetz et al. Specification of the TTP/A protocol.
Technical report, Technische Universität Wien, Institut
für Technische Informatik, March 2000. Available at
http://www.ttpforum.org.

[23] L. H. Eccles. A brief description of IEEE P1451.2.
Sensors Expo, May 1998.

[24] J. Siegel. CORBA 3: Fundamentals and Programming.
John Wiley and Sons, Heidelberg, 1999.

[25] L. Bartram, A. Ho, J. Dill, and F. Henigman. The
continuous zoom: A constrained fisheye technique for
viewing and navigating large information spaces. In
ACM Symposium on User Interface Software and Tech-
nology, pages 207–215, 1995.

[26] W. Elmenreich, W. Haidinger, P. Peti, and L. Schnei-
der. New node integration for TTP/A networks. Tech-
nical Report 5, Technische Universität Wien, Institut
für Technische Informatik, 2001.

