Interface Design for Smart Transducers

W. Elmenreich, W. Haidinger, and H. Kopetz
Institut fiir Technische Informatik
TU Vienna, Austria
{wilfried,wolfgang,hk } @vmars.tuwien.ac.at

June 22, 2001

Abstract

This paper describes design issues on smart trans-
ducer interfaces to hide the internal node properties
and allow a decoupling of applications from commu-
nication properties like message timing, flow con-
trol and bus access. We present a smart transducer
interface that incorporates three different interfaces
(real-time service, diagnostic/maintenance, configu-
ration/planning).

Further decomposition of real-time systems can be
provided by hiding the sensor properties from the ap-
plication program. Therefore, a data structure that
represents a model of the environment is introduced.
This extra interface reduces the complexity of the ap-
plication and enables reuse of the application code.

Finally, an application of the presented concepts is
described in a case study featuring a mobile robot.

Keywords: transducer interface, sensor fusion, real
time, time-triggered architecture, interface de-
sign.

1 Introduction

Transducers are sensors and actuators in order that
a computer system can interact with the physical en-
vironment. Today’s requirements for transducer net-
works are multifaceted: The communication service
must guarantee transmission of real-time data with
predictable timing and small jitter, the interface to
transducers should be simple and consistent, the sys-
tem should be expandable, and, at last, acquisition,
operational, and maintenance costs should be low.

To achieve this goals the design of transducer net-
works has to follow several guidelines:

First, common boundaries between smart transduc-
ers and their users have to be introduced. Informa-
tion exchange across such an interface is only possi-
ble if the engaged subsystems share a common back-
ground of concepts and a common coding space [1].

Second the application of sensor fusion algorithms
on the physical sensor data increases the accuracy of
the physical sensor. Thus, the necessary resolution
or coverage of a sensor system is achievable with a
set of less precise, but cheaper sensors.

A further motivation for sensor fusion is the reduc-
tion of system complexity by hiding data streams of
physical sensors behind a sensor fusion unit. Since
in a traditionally designed system the sensor mea-
surements are fed directly into the application, the
application has to cope with a lot of imprecise, am-
biguous, and incomplete data streams. In a system
where sensor data is preprocessed by fusing meth-
ods the input to the application is a more robust
and more comprehensive view of the environment [2],
which reduces the complexity of the application.

Related work on smart transducer interfaces can be
found in [3] and [4] regarding the IEEE P1451:2 stan-
dards. This standard has its main focus on generic
sensor interfaces for different communication layers.

In our work, we examine a smart transducer interface
in a Time-Triggered Architecture (TTA) [5] with a
focus on its communication timing behavior.

The rest of the paper is organized as follows: Sec-
tion 2 explores the abstract properties of an inter-
face. Section 3 describes the specification of a smart

transducer interface as part of the Time-Triggered
Architecture [5] and Section 4 describes the imple-
mentation of the Time-Triggered Architecture for a
mobile robot. The paper is concluded in Section 5.

2 Interfaces

An interface is a common boundary between two sub-
systems. An information exchange across an inter-
face is only possible if the engaged subsystems share
a common background of concepts and a common
coding system. In the context of a distributed con-
trol system, the smallest area of concern is a cluster,
consisting of a set of sensors, actuators, and process-
ing nodes connected by a communication medium.

Common Code Spaces

Communication is only possible, if the interfacing
subsystems share the concepts and representation of
the data items in the interface. To exchange obser-
vations across a smart sensor interface, agreement on
three code spaces must be provided [1]:

The Name Space is necessary for the meaning of
transmitted values.

The Time Space serves for the definition of an in-
stant of an event among the communicating
nodes.

The Value Domain provides encoding schemes
for the transmitted values.

One key task in the development of a generic smart
transducer model is concerned with the specification
of these code spaces and the meaning of the refer-
enced elements.

Observations

In the abstract, the purpose of a smart sensor inter-
face is the timely exchange of ”observations” of real-
time entities between the engaged subsystems across
the provided interfaces. An RT entity is a state vari-
able of interest that has a name and a value. An
observation [6] is thus an atomic triple:

<RT entity name, instant, value>,

where RT entity name is an element of the common
name space of RT entities, instant is point on the
”time space” and value is an element of the chosen
domain of values. An observation thus states that
the referenced RT entity possessed the stated value

at the indicated instant.

If the value of an observation does not change over
the time interval of interest, we call this observation
a timeless observation. Timeless observations can be
represented by tuples, consisting only of an entity
name and the associated value.

Flow Control

Communication between subsystems exchanges in-
formation in two distinct domains, the time domain
and the value domain. In the value domain the mes-
sage data is transmitted, while in the time domain
control information is exchanged [7]. Control infor-
mation allows the generating subsystem to influence
the temporal control flow [6] of the other subsystem.

Commonly a communication between two subsys-
tems is either controlled by the sender’s request (push
style) or by the receiver’s request (pull style) [8].

a) Control flow
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

Producer Push

Data flow

b) Control flow
e T

Producer Pull

Data flow

Global Time

- QQ']{': O! fl ow

0 o9
- BN

e

Producer Time-Triggered Communication

Data flow

Figure 1: Push-, Pull-, and decoupled Communica-
tion

For explanation let us assume two components, A
and B that need to exchange data over a network.

Further, without restrictions to generality, we as-
sume the message data to be transmitted from pro-
ducer A to consumer B.

In order to transfer data between two components,
they must agree on the mechanism to use and the
direction of the transfer.

Figure 1 a) shows the push method. The supplier A
is empowered to generate and send its message at any
time. Flow control relies on A. This method is very
comfortable for the push supplier (A4), but the re-
ceiving push consumer (B) has to be watchful for in-
coming data messages at any time, which may result
in high resource costs and difficult scheduling. Popu-
lar “push” mechanisms are: messages, interrupts, or
writing to a file [9]. The push style communication
is the basic mechanism of event-triggered systems.

In Figure 1 b) the flow control is on the consumer
(B). Whenever B wants to access the message infor-
mation, supplier A has to respond on the request.
This facilitates the task for the pull consumer B, but
the pull supplier A has now to be watchful for in-
coming data requests. Popular “pull” mechanisms
are reading a file, polling, state messages, or shared
variables [9]. The pull style communication is the

basic mechanism of client-server systems.

Figure 1 ¢) depicts a communication model where the
flow control of A is decoupled from the flow control
of B.

Each subsystem possesses a memory object that acts
as a data source and sink for communication activi-
ties. Components that want to submit data are able
to write the data into this memory without hesita-
tion. After transmission of the message data from
the memory element in subsystem A to the memory
element in subsystem B via a communication system
component B accesses this data at any time. The val-
ues in the memory are state messages that keep their
content until they are updated and overwritten [10].

This approach combines a push supplier interface
for component A and a pull consumer interface for
component B. The critical ends of the push and the
pull communication rely on the memory elements.
However, because these elements are usually passive
components, the negative effects of the push and the
pull communication do not affect the system perfor-
mance.

To avoid interference between concurrent read and
write operations on the memory element, the task
of the communication system is done by a time-
triggered protocol like TTP/A [11] or TTP/C [12].
Since in the time-triggered architecture all nodes
have knowledge about transmission schedules and
access to a global time base, the instant when the
protocol updates a value in the memory element is
known to all components.

Interfaces for Smart Transducers

A smart transducer is the integration of an analog or
digital sensor or actuator element and a local micro-
controller that contains the interface circuitry, a pro-
cessor, memory, and a network controller in a single
unit. The smart sensor transforms the raw sensor sig-
nal to a standardized digital representation, checks
and calibrates the signal, and transmits this digital
signal via a standardized communication protocol to
its users [1].

The smart sensor technology offers a number of ad-
vantages from the points of view of technology, cost,
and complexity management [13]:

e Electrically weak non-linear sensor signals can
be conditioned, calibrated and transformed into
digital form on a single silicon die without any
noise pickup from long external signal transmis-
sion lines [14].

e The smart sensor contains a well-specified dig-
ital communication interface to a sensor bus,
offering ”plug-and-play” capability if the sen-
sor contains a reference to its documentation in
form of an electronic data sheet as it is proposed
in the IEEE 1451 Standard [15].

e It is possible to monitor locally the operation
of the sensing element via the network and thus
simplify the diagnosis at the system level.

The internal complexity of the smart-sensor hard-
ware and software and internal failure modes can be
hidden from the user by well-designed fully specified
smart sensor interfaces that provide just those ser-
vices that the user is interested in.

In order to support complexity management and
composability, it is useful to specify distinct inter-
faces for functional different services [16]. We have
identified the following three types of interfaces:

Real-Time Service (RS) Interface: This inter-
face provides the timely real-time services to the
component during the operation of the system.

Diagnostic and Maintenance (DM) Interface:

This

interface opens a communication channel to

the internals of a component. It is used to set

parameters and to retrieve information about

the internals of a component, e. g., for the

purpose of fault diagnosis. The DM interface

is available during system operation without

disturbing the real-time service. Normally, the
DM interface is not time-critical.

Configuration and Planning (CP) Interface:
This interface is necessary to access config-
uration properties of a node. During the
integration phase this interface is wused to
generate the “glue” between the nearly au-
tonomous components. The CP interface is not
time-critical.

3 The Approach of the Time
Triggered Architecture

In this section, the principles of operation of the
Time-Triggered Protocol, the ideas behind the Inter-
face File System and the different views of a trans-
ducer node are described.

Time-Triggered Communication

TTP/A [11] is a time-triggered master-slave commu-
nication protocol for fieldbus applications that uses
a time division multiple access (TDMA) bus arbitra-
tion scheme.

It is possible to address up to 255 nodes on a bus.
One single node is the active master. This master
provides the time base for the slave nodes. The com-
munication is organized into rounds. Bus access con-
flicts are avoided by a strictly TDMA schedule for

Node
oo TTPIA : :
N T Master Service Point
TTP/A BUSI—----‘ = &QD
O sensor [T Microcontroller
_DQ Smart Sensor _ TTP/A Node
X Actuator —~ Baﬁ;kbone Bus
Ethernet
DX Smart Actuator Internet

Figure 2: TTP/A Cluster

each round. A round consists of several slots. A slot
is a unit for transmission of one byte of data. Data
bytes are transmitted in a standard UART format.
Each communication round is started by the master
with a so-called fireworks byte. The fireworks byte
selects one of 8 rounds with a preconfigured commu-
nication layout.

The Interface File System

For unique addressing of the slave’s internals all rel-
evant data of a TTP/A node like round definitions,
application specific parameters and I/O properties
are organized into a structure called Interface File
System (IFS) [1]. The IFS is structured in a record-
oriented format. Each record is addressable sepa-

rately by master-slave rounds.

The Interface File System was introduced for two
reasons:

e Provide a consistent view of the transducer
properties.

e Decouple subsystems from the point of view of
temporal control.

The addressing scheme of the IFS serves as the com-
mon name space for the smart transducer interface
as described in Section 2. Time space and value do-
main are also standardized in the TTP/A protocol
specification.

All nodes contain several files that can be accessed
over the TTP/A protocol in a unified manner. The
minimal set-up for a smart transducer is:

Round Descriptor List (RODL) File: Each
node contains at least one and up to six RODL
files that contain TDMA schedules for the
TTP/A multipartner rounds.

TTP /A Configuration File: This file contains at
least an 8 bit alias which is the slave’s name
when it is addressed via master-slave rounds.

Documentation File: This file consists of the
node’s serial and series number, two 32 bit iden-
tifiers that are assigned invariably to each node.
The series number identifies the node’s type
while the serial number distinguishes nodes of
equal type. Optionally this documentation file
contains the ASCII text of an uniform resource
locator (URL) pointing to a file containing the
node’s data sheet. Documentation files are read-
only from the master’s viewpoint.

TTP/A Round Types

A multipartner round (see Figure 3) consists of a
configuration dependent number of slots and an as-
signed sender node for each slot. The configuration
of a round is defined in the RODL (ROund Descrip-
tor List). The RODL defines which node transmits in
a certain slot, the semantics of each individual slot,
and the receiving nodes of a slot. RODLs must be
configured in the slave nodes prior to the execution
of the corresponding multipartner round.

Slot 0 Slot 1 Slot 2 Slot 3 Slot n
| FB ”DataByte”DataByte||DataByte| eoe |DataByte|
Time
FB Fireworks Byte, sent by master

DataByte sent either by master or slave

Figure 3: A TTP/A Multipartner Round

A master-slave round establishes a connection be-
tween the master and a slave for reading/writing
monitoring or configuration data, e. g. the RODL
information. The action and the memory address-
ing is encoded in three parameter bytes of a master-

slave round. In a further part the addressed data

bytes are transmitted between master and slave. A
master-slave round has a fixed layout. The address
scheme is derived from the Interface File System that
is explained in the next Section.

At startup the master uses master-slave (MS) rounds
for determining the types of the connected nodes and
configuring them. The multipartner (MP) round is
intended to establish a periodical, predictable and
efficient real-time communication. To support a di-
agnosis and maintenance access concurrent to the
real-time traflic it is recommended to schedule multi-
partner rounds and master-slave rounds interleaved
(see Figure 4).

| |MS roundl | | |MSround| | MP round |

Time

Figure 4: Recommended TTP/A Schedule

| MP round MP round

To support ultra-low-cost implementations of
TTP/A slave nodes, it is also possible to omit the
implementation of the master-slave rounds and the
file system and hard-code the TDMA schedule for
the TTP/A multipartner rounds. Such a node would
not respond to any master-slave round and does
not support configurability. It is possible to build
heterogeneous networks with ultra-lost-cost nodes
and configurable nodes together but this might
have an negative effect for the system overview
because the maintenance program is “blind” on the

ultra-low-cost nodes.

4 Case Study

For evaluation purposes we worked out the concept
of a mobile robot (“smart car”) equipped with a suit
of pivoted distance sensors, an electric motor and
a steering unit. The distance sensors and the DC
motors for sensor pivoting, the driving and steering
are all equipped with a smart TTP/A transducer
interface implemeted on a low-cost microcontroller.
The fieldbus network also contains a master node
and a data processing node. The distance sensors are
swiveled around by stepping motors so they are able
to scan the area in front of the robot. The sensors
return a value that correspondents to the distance of
the object they are aimed at.

- — Obstacle
Sensor Beams

Sensor Fusion

Smart Car

[0 uncertainty region
of single sensors

M uncertainty region
of joint sensors

Actuator

T

Application) =—

Rea World Image

Figure 5: Smart Car

The data stream that is provided by the distance sen-
sors is taken over by the data processing node, that
fuses the perceptions from the distance sensors with
a model of the robot environment. In this model the
shapes of obstacles are stored and assigned with a
probability value, that decreases with the progression
of time and increases when the object is re-scanned.
Figure 5 depicts the scanning range of the distance
sensors, the fusing of sensor data into a real world
image and the control application that makes deci-
sions about direction and speed of further movement
on basis of this real world image. Fusing the data
from two sensors leads to the following benefits [17]:

Robustness: In case one sensor fails, the other one
is sufficient to update a constricted sector of the
real world image.

Extended Temporal Coverage: One sensor can
perform a measurement when the other cannot,
thus the effective sampling rate increases.

Extended Spatial Coverage: The real world im-
age presents an area that is expanded in com-
parison to the scanning sector of a single sensor.

Increased Confidence: In the overlapping sector
in front of the robot, measurements of one sen-
sor are confirmed by measurements of the other
Sensor.

Reduced Uncertainty: Combining information

reduces the region of uncertainty about the en-

vironment. E. g. the area behind an object can-
not be observed by the sensors, but this area of
uncertainty is much smaller, when observations
from different angles and sensors are joint (see
Figure 5).

Although the smart car is able to move auto-
nomously through its environment, it also comprises
an interface to a service point. As depicted in Fig-
ure 2 the TTP/A master also acts as a gateway,
that communicates over a backbone network. Via
a service point, the user gets access to the configura-
tion/planning and diagnostic/maintenance interface
as described in section 2.

5 Conclusion

We introduced a smart transducer interface that
hides the internal node properties and allows a de-
coupling of applications from communication prop-
erties like message timing, flow control, and bus ac-
cess. A smart transducer needs three different inter-
faces for real-time service, diagnostic/maintenance
and configuration/planning.

A further decomposition of a real time system can
be achieved by hiding the sensor properties behind a
data structure that represents a model of the envi-
ronment the sensors are observing. This data struc-
ture can be serviced by a sensor fusion node and
reduces the complexity of the application.

These concepts can be used in real-time applications
like mobile robots.

Acknowledgments

We would like to give special thanks to our colleagues
Giinther Bauer, Raimund Kirner, Michael Paulitsch,
Philipp Peti, Stefan Pitzek, and Lukas Schneider for
constructive comments on earlier versions of this pa-
per. This work was supported in part by the Aus-
trian Ministry of Science, project TTSB and by the
European IST project DSoS under contract No IST-
1999-11585.

References

1]

2]

3l

(5]

(6]

(7l

(8]

[10]

(1]

(12]

(13]

H. Kopetz, M. Holzmann, and W. Elmenreich. A
universal smart transducer interface: TTP/A. Pro-
ceedings of the 3rd International Symposium on
Object-Oriented Real-Time Distributed Computing
(ISORC), March 2000.

E. Bosse, J. Roy, and D. Grenier. Data fusion con-
cepts applied to a suite of dissimilar sensors. Cana-
dian Conference on Electrical and Computer Engi-
neering, 1996, 2:692-695, May 1996.

B. Travis. Sensors smarten up. EDN Access, pages
7686, March 1999.

K. B. Lee and R. D. Schneeman. Distributed mea-
surement and control based on the IEEE 1451 smart
transducer interface standards. IEEE Transactions
on Instrumentation and Measurement, 49(3):621—
627, June 2000.

C. Scheidler, G. Heiner, R. Sasse, E. Fuchs,
H. Kopetz, and C. Temple. Time-Triggered Archi-
tecture (TTA). Advances in Information Technolo-
gies: The Business Challenge, 10S Press, 1997.

H. Kopetz. Real-Time Systems, Design Principles
for Distributed Embedded Applications. Kluwer Aca-
demic Publishers, Boston, Dordrecht, London, 1997.

A. Kriiger. Interface Design for Time-Triggered
Real-Time System Architectures. PhD thesis, Tech-
nische Universitdt Wien, Institut fiir Technische In-
formatik, Vienna, Austria, April 1997.

Alcatel Corp., Fujitsu Ltd., IBM, NEC Corp., NTT
Corp., and IONA Tech. Management of event do-
mains. OMG TC Document telecom/2000-01-01,
Jan. 2000. Available at http: /www.omg.org.

R. Deline. Resolving Packaging Mismatch. PhD the-
sis, Computer Science Department, Carnegie Mellon
University, Pittsburgh, June 1999.

Information Society Technologies IST. Prelim-
inary version of conceptual model. Techni-
cal Report 20, IST-1999-11585 Dependable Sys-
tems of Systems (DSoS), 2000. Available at
http: /www.vmars.tuwien.ac.at.

H. Kopetz et al. Specification of the TTP/A proto-
col. Technical report, Technische Universitat Wien,
Institut fiir Technische Informatik, March 2000.
Available at http: /www.ttpforum.org.

H. Kopetz. Specification of the TTP/C Protocol.
TTTech, Schénbrunner Strafle 7, A-1040 Vienna,
July 1999. Available at http: /www.ttpforum.org.

H. Kopetz. Do current technology trends enforce
a paradigm shift in the industrial automation mar-
ket? Closing Keynote at the 7th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 99), Barcelona, Spain, October
1999.

[14]
[15]

[16]

[17]

P. Dierauer and B. Woolever. Understanding smart
devices. Industrial Computing, pages 47-50, 1998.

L. H. Eccles. A brief description of IEEE P1451.2.
Sensors FExpo, May 1998.

H. Kopetz. Software engineering for real-time: A
roadmap. IEEE Software Engineering Conference,
Limmerick, Ireland, 2000.

E. Waltz and J. Llinas. Multisensor Data Fusion.
Artech House, Norwood, Massachusetts, 1990.

