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Abstract

Smart transducer technologies support the com-
posability, configurability and maintainability of
sensor networks. Sensor fusion techniques on
the other hand offer a lot of advantages for sys-
tems that interact with their environment via a
set of sensors. The combination of both leads to
an effective system regarding cost, robustness,
decomposability and maintainability.

This paper examines architecture require-
ments that incorporate smart transducer net-
works with sensor fusion processing and
a hardware-independent application interface.
These requirements are compared to the proper-
ties of the Time-Triggered Architecture and the
TTP/A protocol. A mobile robot controlled by a
Time-Triggered Protocol network shows the pre-
sented ideas.

Keywords: multi-sensor, sensor fusion, real-
time systems, time-triggered, fusion archi-
tecture, interface.

1 Introduction

Intelligent sensor processing aids in the develop-
ment of systems that “see” and “comprehend”
their environment using computational methods
to get a picture of the environment using the
data collected by sensors. Sensors measuring

a particular property differ in their measuring
methods, resolution, measuring range, conver-
sion time and reliability. Each single sensor is
only capable of viewing the part of the environ-
ment that we are interested in through a rather
narrow window of time and space. To overcome
those limitations of single sensors, methods for
the combination of data from different sensors
via sensor fusion algorithms have been devel-
oped.

Typical data fusion applications contain a
network of distributed sensors, intelligence to
process the sensor data, e. g. by sensor fusion
algorithms, a control program, that derives the
output value based on these sensor data, and
actuators that carry out these actions. Such
an application is a complex system, difficult to
build, to verify, to repair, and to change. A
good method to reduce the complexity of a sys-
tem is to “divide and conquer”. I. e., the sys-
tem is partitioned into interacting subsystems.
Partitioning can be applied to hard- and soft-
ware [Wol94]. To put these subsystems to work,
they must communicate in terms of energy, mat-
ter, and information. Design of this communica-
tion system is a critical task and if the composi-
tion of the subsystems fails because of interface
mismatches, the whole systems refuses to work
even if each particular subsystems was proven
to be functionally correct. Thus, if we want to
partition a complex system, we have to care-
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fully select the borderlines between subsystems.
These borderlines have to be well-defined inter-
faces to enable composability. In many cases a
subsystem is already given as a legacy system.
If the legacy system does not provide an appro-
priate interface to the other subsystems with
which it is interacting, the introduction of an
extra component, an interface system, may re-
solve this mismatch.

In this paper we examine the partitioning of a
data fusion system into three levels. An accord-
ing architectural model has already been pre-
sented in [EP01]. For the given model we will
examine the requirements and benefits for such
a three-level architecture. It will be shown that
beside the sensor fusion benefits listed in the
work of Bosse [BRG96] and Grossmann [Gro98],
sensor fusion also has a positive effect on inter-
face design between sensors and application. An
investigation of a time-triggered communication
protocol will show that the protocol is apt to im-
plement a distributed sensor fusion network for
mobile robots.

The remainder of the paper is structured as
follows: Section 2 describes an architectural
model for sensor fusion applications and argu-
ments for the three-level partitioning. Section 3
deals with the requirements for system architec-
ture and communication. Section 4 introduces
the principles of operation of the TTP/A proto-
col and compares the requirements of Section 3
to the properties of the TTP/A protocol. Sec-
tion 5 describes a case study implementation of
a mobile robot based on a TTP/A network that
has been implemented following this three-level
architecture and Section 6 discusses the results
received from this case study. Finally, the basic
ideas of this paper are summarized in Section 7.

2 Architectural Model

We assume a three-level design approach for
the system architecture. For the TTP/A pro-
tocol the idea of a two-level design approach
has already been proposed in [PAG+00]. In this
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Figure 1: Control Loop in the Three-Level
Model

work we partition the system into three lev-
els: The first level is the node level and con-
sists of nodes with transducers (sensors or actu-
ators) equipped with a smart transducer inter-
face. The second level is the cluster level that
integrates the transducer nodes into a network,
performs sensor fusion and presents the results
to the control application level. The cluster
level optionally contains a fault tolerance layer
handling node failures. At the third level, the
control application level, decisions about control
values are made and, if necessary, user interac-
tion is handled.

Between these levels well-defined interfaces
are introduced. A smart transducer interface
handles data flow from node to cluster level.
The cluster level presents its results to the en-
vironment in the form of a fault tolerant image
of the environment.

Fig. 1 shows a control loop modelled with this
three-level design approach.

The breakdown into these three levels is justi-
fied by different functions each level has to ful-
fill, different data types that are used in each
level and different teams implementing and sup-
porting the subsystems.

It might be advantageous in some cases to im-
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plement the levels in different hardware parts.
However, the presented conceptual model does
not depend on the employment of distinct hard-
ware parts.

The motivation for the introduction of these
levels is a reduction of system complexity at
cluster and control application level and the
possibility of software reuse. Furthermore the
standardization of the smart transducer inter-
face leads to benefits in the area of configura-
tion, diagnosis and maintenance.

2.1 Node Level

Each sensor can be seen as a window show-
ing a small part of the environment. It is the
task of the node level to provide each window
view. The node level interacts physically with
the environment by performing measurements
with sensors or actions with actuators. To sup-
port maximum modularity, the nodes are built
as smart transducers.

A smart transducer is the integration of an
analog or digital sensor or actuator element and
a local microcontroller that contains the inter-
face circuitry, a processor, memory and a net-
work controller in a single unit. The smart sen-
sor transforms the raw sensor signal to a stan-
dardized digital representation, checks and cali-
brates the signal, and transmits this digital sig-
nal via a standardized communication protocol
to its users [KHE00].

The smart sensor technology offers a number
of advantages from the point of view of technol-
ogy, cost and complexity management [Kop99]:

• Electrically weak non-linear sensor signals
can be conditioned, calibrated and trans-
formed into digital form on a single silicon
die without any noise pickup from long ex-
ternal signal transmission lines [DW98].

• The smart sensor contains a well-specified
digital communication interface to a sensor
bus, offering “plug-and-play” capability if
the sensor contains a reference to its doc-
umentation in form of an electronic data

sheet as it is proposed in the IEEE 1451
Standard [Ecc98].

• The internal complexity of the smart-
sensor hardware and software and internal
failure modes can be hidden from the user
by well-designed fully specified smart sen-
sor interfaces that provide just those ser-
vices that the user is interested in.

• It is possible to locally monitor the opera-
tion of the sensing element via the network,
thus simplifying diagnosis.

2.2 Cluster Level

The cluster level contains the hardware and
software that act as a glue between transduc-
ers and control application. It integrates the
measurements from the sensors into a unified
view of the environment into an environment
image. If necessary, this image is made toler-
ant to incomplete, erroneous or missing mea-
surements by implementing sensor fusion algo-
rithms and a fault tolerance layer. The proper-
ties of this image, e. g. content, resolution, up-
date timing, and data structure, depend on the
control application at the next level. A change
in the node configuration results in an adop-
tion of the cluster level software. The cluster
level contains software elements like communi-
cation schedules, fusion and voting algorithms
and hardware like bus lines with system nodes
controlling the communication and performing
fusion and voting.

2.3 Control Application Level

The control application programmer’s interest
focuses on the environment image, while the re-
sponsibility for its temporal accuracy and cor-
rectness is delegated to the designers of the sen-
sor fusion and fault tolerance layer.

The control application level contains the in-
telligence to make decisions based on the envi-
ronment image. The specification of the image
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derives from the control application level. Be-
cause the application does not directly rely on
the sensor measurements, the same control pro-
gram can be used with different sensor configu-
rations. The user interface is also settled in the
control application level.

3 Architectural Requirements

Following our three-level model presented in
Section 2 we worked out requirements for each
level that have to be met to provide an efficient
real-time system according to the assumed ar-
chitecture.

3.1 Node Level

To enable maintainance, monitoring and config-
uration of a real-time system, the smart trans-
ducer nodes at node level should support a
unique interface with the following features:

Composability A smart sensor should be in-
dependent of all other sensors in its en-
vironment. Communication is only per-
formed via a specified interface thus liber-
ating sensor manufacturers from interoper-
ability issues between sensors, naming in-
consistencies and the network topology of
the total system.

Standardized Sensor Data To facilitate fur-
ther processing at cluster level the sensor
data has to be preprocessed in the node and
transformed into a standardized format.

Flexibility In order to support the needs of
different applications some smart transduc-
ers must be capable of operating in different
modes. For example:

A signal smoothing in the signal processing
unit of a smart sensor node will do fine in
many applications, but must be bypassed
if the dynamical behavior of the signal is of
greater concern than the reduction of noise.

A light sensor can provide different out-
puts, an analogue output corresponding to
the amount of light the sensor is exposed
to, and a binary output corresponding to
the values “light” and “dark” compared to
an internal threshold value that can be con-
figured over the configuration interface.

Configurability To achieve the above men-
tioned flexibility, means for in-system con-
figuration and reconfiguration of transduc-
ers have to be provided by the sensor and
its working environment.

Plug-and-play capabilities For the auto-
matical integration of additional sensors to
a running cluster, some kind of hard-coded
reference to its specification has to be inte-
grated in the sensor.

3.2 Cluster Level

Sensor fusion processing and fault tolerance vot-
ing places some special requirements on the
underlying sensor framework concerning timing
behaviour and structure of the sensor data de-
livered by the sensor layer:

Fusing Real-Time Values To find an agreed
value when two or more real-time values are
fused, the instant of the measurement must
be transmitted with the measured value.

Control of Real-Time Objects Most con-
trol algorithms need periodical updates
of control values where the update times
must have low jitter. Also the time span
from performing measurements on the
controlled object until the execution of the
control decision on this object must not
exceed a certain time limit.

Fault-Tolerance To implement fault-
tolerance by active redundancy the
data sources have to be replica determinis-
tic [Sch90]. If the replicated nodes proceed
along different computational trajectories,
then, the switchover from one result of a
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replica to the result of another will upset
the controller and can lead to a serious
error [Kop97].

3.3 Control Application Level

The control application level comprises the
part of the real-time system that contains the
application-specific software. While the control
application level imposes timing and communi-
cation requirements on the underlying network,
the control software ought to be widely inde-
pendent from the employed transducers and the
signal processing algorithms among them.

Two requirements emerge from the view of
the control application level:

Interface to cluster level The data struc-
ture of the real world image has to be cho-
sen in a way, that the sensor fusion layer is
capable of mapping all possible sensor data
into this structure. On the other hand, the
data structure needs to be small to be com-
municated efficiently over the network.

Generic Coding To support software reuse of
the control application code in case of mod-
ification or redesign of sensor hardware or
topology, or changes in the processing soft-
ware the control program must be imple-
mented in a flexible, generic way.

4 System Architecture

For a case study we have chosen the Time-
Triggered Architecture [SHS+97, Kop98] and
the TTP/A Protocol [Kop00] to build a real-
time system according to the architecture de-
scribed in Section 2.

4.1 Principles of Operation

TTP/A is a master-slave protocol and a mem-
ber of the time-triggered protocol class. It is
possible to address up to 254 nodes on a bus.
One node is the active master. This master pro-
vides the time base for the slave nodes. The

communication is organized into rounds. Bus
access conflicts are avoided by a strict TDMA
schedule for each round. A round consists of
several slots. A slot is a unit for transmission of
one byte of data. Data bytes are transmitted in
a standard UART format.

Each communication round is started by the
master with a so-called fireworks byte. The fire-
works byte defines the type of round.

A multipartner round (see Fig. 2) consists of
a configuration dependent number of slots and
an assigned sender node for each slot. The con-
figuration of a round is defined in the RODL
(ROund Descriptor List). The RODL assigns
a writing node and several receiving nodes for
each time slot. RODLs must be configured in
the slave nodes prior to the execution of the cor-
responding multipartner round.

For unique addressing of the slave’s internals
all relevant data of a TTP/A node like round
definitions, application specific parameters and
I/O properties are organized into a structure
called Interface File System (IFS) [KHE00].
The IFS is structured in a record-oriented for-
mat. Each record is addressable separately by
master/slave rounds.

A master/slave round establishes a connec-
tion between the master and a slave for read-
ing/writing monitoring or configuration data,
e. g. the RODL information. The action and
the address in the IFS of a master/slave round
are encoded in three parameter bytes sent af-
ter the fireworks byte. In a further part of a
master/slave round the addressed data bytes are
transmitted between master and slave. A mas-
ter/slave round has a fixed layout that addresses
and transmits a particular record in the slave’s
IFS.

Time

FB DataByte DataByte DataByte DataByte

Slot 0 Slot nSlot 1 Slot 2 Slot 3

FB
DataByte

Fireworks  Byte, sent by master
sent either by master or slave

Figure 2: A TTP/A Multipartner Round
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All nodes contain several files that can be ac-
cessed via the TTP/A protocol in a unified man-
ner. The minimal set-up for a smart transducer
is:

Round Descriptor List (RODL) File:
Each node contains at least one and up
to six RODL files that contain TDMA
schedules for the TTP/A multipartner
rounds.

TTP/A Configuration File: This file con-
tains at least an 8 bit alias which is the
slave’s name when it is addressed via mas-
ter/slave rounds.

Documentation File: This file contains a 64
bit node identifier. The node identifier is
a world-wide unique number for each node
that is assigned invariably when the node is
manufactured. Optionally this documenta-
tion file contains the ASCII text of an uni-
form resource locator (URL) pointing to a
file containing the node’s data sheet. Docu-
mentation files are read-only from the mas-
ter’s viewpoint.

At startup the master uses master/slave (MS)
rounds for determining the types of the con-
nected nodes and configuring them. The mul-
tipartner (MP) round is intended to establish
a periodical, predictable and efficient real-time
communication. To support a diagnosis and
maintenance access concurrent to the real-time
traffic it is recommended to schedule multipart-
ner rounds and master/slave rounds interleaved
(see Fig. 3).

4.2 Suitability of TTP/A for a real-
time sensor fusion environment

In this section we examine how TTP/A fulfills
the requirements of the three-level model.

Time

MPround MPround MProundMSround MSround

Figure 3: Recommended TTP/A Schedule

TTP/A is intended to connect smart trans-
ducers to a real-time system [Kop00]. It pro-
vides communication with deterministic timing
behavior and low jitter. Nodes within a TTP/A
cluster are independent of each other. Each
node knows a priori when to send or receive,
there are no interdependencies between different
nodes. Transmission times are based on an ab-
solute synchronized time, even when imprecise
clock oscillators are used in the the slave nodes.
Therefore, communication in TTP/A is replica
deterministic even when employing clocks with
immoderate drift rates.

Because of the static schedule in the RODLs,
it is possible to determine exactly wether dead-
lines are met with a given bus capacity.

Clock synchronization is inherent in TTP/A,
thus generating precise time-stamps and acquir-
ing transmission times of data is straightforward
without the introduction of additional mecha-
nisms.

The TTP protocol family supports a two-
level design approach. On node level, the
smart transducers are implemented by compo-
nent suppliers, while on cluster level a system
integrator defines the subsystem functions and
specifies the communication interfaces in the
value and time domains [PAG+00].

This design approach can easily be aligned
with the three-level model discussed in section 3
by adding a control application level on top of
the cluster level.

The TTP/A protocol provides dedicated in-
terfaces for the (in-system) reconfiguration of
nodes in a cluster, which increases the flexibil-
ity of the total system.

4.3 Restrictions

Because of the low-cost nature of our examined
systems there are certain restrictions which have
to be taken into account.

The communication in TTP/A is optimized
for short messages. When working with rel-
atively simple sensors, messages are likely to
be short. But some sensor-fusion applications
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need complex data-structures to be transmitted.
This especially holds true for data transmitted
between the sensor fusion and the control ap-
plication level, where, as stated earlier, appli-
cations should be provided with enhanced ab-
stract data requiring complex data structures.
In applications that use multi-dimensional data
structures a communication network designed
for transducer data can become the bottleneck.

A solution to this problem can be an enhance-
ment of the transmission speed (TTP/A sup-
ports transmission speeds up to several MBit/s)
or an alternative realization of the interface be-
tween cluster level and control application level,
e. g. by a dual-ported RAM.

Connecting extra nodes to the network for
performing the fusion algorithms leads to in-
creased network traffic. Using a certain com-
munication medium places an upper boundary
to the number of nodes that can be served by
the system. For example, single wire busses are
restricted to several kBytes/s.

Thus, not all sensor fusion algorithms can be
implemented in a low-cost environment.

5 Case Study

To show the ideas described in Section 2 we de-
veloped a model car based on the architecture
proposed in Section 4.

The model comprises a mobile robot (“smart
car”) equipped with a suit of pivoted distance
sensors, an electric drive and a steering unit.
Distance sensors, servo motors for sensor pivot-
ing, driving and steering units are all separate
TTP/A nodes. Each node is implemented on
a low-cost microcontroller and equipped with a
smart transducer interface [KHE00].

The network also contains a master node and
a data processing node. The distance sensors
are swivelled around by servo motors so that
they are able to scan the area in front of the
robot. The sensors generate a value that cor-
responds to the distance of the object they are
aimed at.

Sensor Beams

Sensor Fusion

Actuator

Real World Image

Application

Obstacle

uncertainty region
of single sensors

uncertainty region
of joint sensors

Smart Car

Figure 4: Smart Car

The data stream provided by the distance
sensors is taken over by the data processing
node that fuses the perceptions from the dis-
tance sensors with a model of the robot’s envi-
ronment. In this model the shapes of obstacles
are stored and assigned with a probability value,
that decreases with the progression of time and
increases when the object is re-scanned.

Fig. 4 depicts the scanning range of the dis-
tance sensors and the fusing of sensor data into a
sensor grid [BK91]. Based on this grid the con-
trol application makes decisions about direction
and speed of further movement.

There are 16 slave nodes and one master node
on the car. The navigation program and the
sensor fusion program is hosted on a single node,
so that the real world image has not to be trans-
mitted over the network. Thus, the necessary
bus speed was kept low (about 20 KBit/s) which
made it possible to use a low-cost single-wire
bus.

Although the smart car is able to move auto-
nomously through its environment, it is planned
to apply an interface to a service point. As de-
picted in Fig. 5 the TTP/A master also main-
tains a monitoring interface to a service point.
The dotted line marks a possible virtual con-
nection from the service point to an arbitrary
node. Because the service access usually is not
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time critical it is possible to route this connec-
tion over different networks, e. g. the internet.
It is planned to implement a wireless connec-
tion between the car and the service point.

6 Results

The interface file system worked well as smart
transducer interface and made it possible to
split and to implement the tasks of protocol and
application concurrently.

Later we decided to add automatic node
recognition, a preliminary version of plug-and-
play. The generic structure of the interface file
system was easily adopted to this requirement.
Because the infrastructure was already present
with the interface file system, resource require-
ments for the upgrade were kept low.

Mapping all relevant information into the in-
terface file system created clean interfaces be-
tween the subsystems and enabled monitoring
of these properties over master-slave rounds.

However it takes two master-slave communi-
cations to retrieve a single record from a node.
This speed was not sufficient to monitor fast
changing values. Therefore an alternative mon-
itoring approach was implemented that accesses
the bus directly over an extra node (bus sniffer).
Neither the master-slave monitoring approach
nor the bus sniffer affect the timing behavior of

the cluster.
On TTP/A implementations for the Atmel

AT90S microcontroller series the expense for the
implementation of the interface file-system was
rated. The implementation overhead for the
filesystem implementation with master-slave ac-
cess was about 0.6 kB ROM code. The protocol
code itself took about 1.5 kB ROM code. Ap-
plication code sizes ranged from several instruc-
tions in the headlight nodes up to 5 kB in the
fusion node.

7 Conclusion

We presented an architectural model that sup-
ports a break down of a sensor fusion applica-
tion into three levels, the node level, the cluster
level, and the control application level. Com-
munication between these levels is performed
via an interface filesystem that provides well-
defined interfaces. Sensor fusion techniques are
used to establish a hardware-independent inter-
face to the control application.

The advantages of this approach rely on a
reduction of system complexity at cluster and
control application level and the possibility of
software reuse. Furthermore the standardiza-
tion of the smart transducer interface leads to
benefits in the area of configuration, diagnosis
and maintenance.

We also designed and implemented this archi-
tecture in a case study. The case study proved
the openness to changes or extensions of sen-
sor nodes and modifications on the control pro-
gram.
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