
A Universal Smart Transducer Interface: TTP/A

H. Kopetz
M. Holzmann
W. Elmenreich

hk@vmars.tuwien.ac.at

Insitut für Technische Informatik
Technische Universität Wien

Austria

Abstract
The primary goal of a universal smart transducer
interface is the provision of a framework that helps to
reduce the complexity of large distributed real-time
systems by introducing precisely specified (in the value
domain and in the temporal domain) and small interfaces
between smart transducers and their users. This paper
presents a universal smart transducer interface that can
be implemented on top of different real-time
communication systems. It integrates a time-triggered
communication protocol with an interface file system that
provides the sources and sinks for the exchanged
information. The final section discusses an implementation
of this interface on a low cost (less than 1 $) commercial
off the shelf microcontroller.

1. Introduction

The point-to-point connection of process input/output
devices to a control system is expensive, both from the
installation point of view and from the engineering point
of view. One approach to reduce these costs is the
introduction of the emerging smart transducer technology.
A smart transducer is an intelligent subsystem consisting
of a sensing or actuating device (sometimes already an
integrated device on a silicon die), a micro-controller with
the necessary software, and a communication network
interface (CNI) to a field bus. A properly designed CNI of
a smart transducer node should present a standardized
high-level view of the sensor and encapsulate the
idiosyncrasies of the particular sensing element within the
smart transducer node.

Such a smart-transducer CNI should be understandable,
temporally predictable and implementable in available
low-cost microcontrollers. To improve the
understandability, the externally visible interface of a

smart transducer should be designed around few already
familiar concepts. The transducer interface must be
generic, i.e., the interfaces of most of the available
transducer should be expressible within the model. Ideally,
the same basic concepts--and as a consequence the same
application software at the user’s side--should suffice to
communicate with the majority of the available sensing
and actuating devices. Since the bandwidth and response
time requirement of various transducers may differ by
orders of magnitude, the model should be flexible to
accommodate different communication speeds and
different media access protocols, e.g., a simple single wire
UART channel as well as a high-speed fiberoptic channel.

Since more than ten years it has been recognized that a
standardized real-time communication network, a fieldbus,
to replace and enhance the existing 4-20 mA analog signal
standard would be an enabling technology beneficial to the
industrial instrumentation business as a whole. However,
many vendors were reluctant to support such a single
common standard in fear of losing some of their
competitive advantages. As a consequence, a number of
different mostly incompatible fieldbus solutions (see [1])
have been developed and promoted. In 1992 the two large
rival fieldbus groups ISP (Interoperable Systems Project
supported by Fisher-Rosemount, Siemens, Yokogawa, and
others) and the WorldFIP (supported by Honeywell,
Bailey, and others) introduced two competing interim
fieldbus standards. In 1994 these two rival groups merged
to form the Fieldbus Foundation (FF). It is the stated
objective of the FF to develop a single interoperable
fieldbus standard in cooperation with the IEC
(International Standard Organization) and the ISA
(Instrumentation Society of America). This new fieldbus
standard IEC/ISA SP 50 should integrate different types of
control instruments and support, as far as possible, existing
interfaces. In the mean-time the Control Area Network
CAN was developed by the automotive industry to reduce
the wiring harness within a car. From the functional point
of view, the CAN bus can deliver a communication
service that is closely related to that of the field bus,

although with limited temporal predictability. The
immense size of the automotive market has led to the
appearance of low-cost highly integrated CAN chips that
are being used by a number of companies in the factory
and process automation market. Many of the cited efforts
to create a standardized field-bus have focused on the
issues of reliable communication and wiring, but have
neglected the higher level issues that must be addressed if
interoperability or interchangeability of devices and
subsystems must be achieved.

It is the objective of this paper to present a generic
interface of a smart transducer that can be used to connect
many different concrete sensor and actuator subsystems
within the same conceptional framework and can be
implemented on diverse communication systems. The rest
of the paper is organized as follows: Section 2 explores the
abstract properties of an interface and discusses why the 4-
20 mA current loop was highly successful. Section 3
presents the generic TTP/A protocol [3], a temporally
predictable field-bus protocol that can be implemented on
different physical layers. Section 4 discusses the three
shared code spaces that must be provided to enable an
information exchange across an interface: a common name
space, provided by an interface file system (IFS), a time
space, and a value space. Section 5 presents an
implementation of this interface on a low-cost
microcontroller and an UART bus. The paper ends with
the conclusions in Section 6.

2. What is an Interface?

An interface is a common boundary between two
subsystems. An information exchange across an interface
is only possible if the engaged subsystems share a
common background of concepts and a common coding
system. In the context of a distributed control system, the
smallest area of concern is a cluster, consisting of a set of
sensor, actuator, and processing nodes connected by a
broadbus communication medium. The set of all nodes of
the cluster must thus share the same concepts and must
agree on common code spaces.

For example, the interface between a driver and a car for
the purpose of braking is the brake pedal. There are two
relevant state variables associated with the brake pedal at
this interface: the pressure applied to the brake pedal by
the driver and the tactile feedback, the resistance,
provided by the brake pedal back to the driver. The
position of the brake pedal in the car identifies these state
variables uniquely to both interfacing subsystems. The
temporal association between sending the information
(e.g., by the driver) and receiving the information (e.g., by
the car) is implicit, because of the mechanical connection
of the two subsystems. The value space of the state
variables is the domain of pressures that can be applied. In
some braking system, the temporal sequence of states, i.e.,
the speed with which the brake pedal is pressed by the

driver, is another important input. If a driver starts to
press the brake pedal quickly, the braking system assumes
that she/he intends to brake hard. In an electronic braking
system this information is sometimes used to initiate the
appropriate braking action before the full pressure is
applied to the pedal, thus gaining a few valuable
milliseconds in the response time of the braking system.
In hydraulic braking systems, the tactile feedback is a
sideproduct of the hydraulic mechanisms. In an electronic
"brake-by-wire" system, the force of the tactile feedback
must be calculated and actuated by an actuator node in
order to give the driver the relevant tactile feedback about
the consequences of the braking action according an
accustomed, sometimes non-cognitive, model of the brake
in the mind of the driver.

2.1 Observations

In the abstract, the purpose of a smart sensor interface is
the timely exchange of "observations" of real-time entities
between the engaged subsystems across the provided
interfaces. An RT entity is a state variable of interest that
has a name and a value. An observation [3] is thus an
atomic triple

<RT entity name, instant, value>

where RT entity name is an element of the common
namespace of RT entities, instant is point on the "time
space" and value is an element of the chosen domain of
values. An observation thus states that the referenced RT
entity possessed the stated value at the indicated instant.
Communication across an interface is only possible, if the
code spaces for names, instants, and values and the
referenced concepts are shared by all engaged subsystems.
One key task in the development of a generic smart
transducer model is concerned with the specification of
these code spaces and the meaning of the referenced
elements.

If the value of an observation does not change over the
time interval of interest, we call this observation a timeless
observation. Timeless observations can be represented by
tuples, consisting only of an entity name and the
associated value.

2.2 Why was the 4-20 mA Current Loop Interface
so Successful?

In the industrial control industry, the classic 4-20 mA
analog current loop interface has been highly successful
for many years because of its simplicity and its
understandability: The name space of RT entities is
formed by the set of interfacing wires, each wire denoting
one particular RT entity. Being an analog system with
minimal delay, the time of delivery (reading a value at a
receiver) is about the same as the time of generating the
value and is implicit to the reading operation. Any value

between 0 and 100% of the chosen range is mapped into
the standardized 4 to 20 mA current interval, that denotes
the code space of good values. This codespace is extended
to provide an in-band error code, the value 0 mA, that
denotes an error (no signal).

The 4-20 mA interface standard realizes a multicast
topology by supporting the installation of many receivers
in the current loop. Such a multicast topology is needed in
many automation systems, where an observed signal must
be distributed to a number of independent receivers, e.g.,
an operator display, a controller, and a computer system
interface.

2.3 Smart Sensors

The 4-20 mA interface technology was primarily
developed to interface an analog sensing element with a
small amount of local analog processing logic to an
(remote) analog controller. The noise pickup on the analog
transmission line is one of the limiting factors for the
accuracy of 4-20 mA signals. A smart sensor is the
combination of an analog or digital sensor or actuator
element and a local microcontroller that contains the
interface circuitry, a processor, memory and a network
controller in a single unit. The smart sensor transforms the
raw sensor signal to a digital representation, checks and
calibrates the signal, and transmits this digital signal via a
secure communication protocol to its users. More and
more sensor elements are themselves microelectronic
mechanical systems (MEMS) that can be integrated on the
same silicon die as the associated microcontroller. The
smart sensor technology offers a number of advantages
from the points of view of technology, cost and
complexity management [4]:

(i) Electrically weak non-linear sensor signals that
originate from an MEMS sensor can be generated,
conditioned, transformed into digital form, and
calibrated on a single silicon die without any noise
pickup from long external signal transmission lines
[2].

(ii) It is possible to locally monitor the sensor operation
and thus simplify the diagnostics. In some cases it is
possible to build smart sensors that have a single
simple external failure mode--fail-silent, i.e., the
sensor operates correctly or does not operate at all.

(iii) The interface of the smart sensor to its environment
is a well-specified digital communication interface to
a sensor bus, offering "plug-and-play" capability if
the sensor contains its own documentation on silicon.

(iv) The internal complexity of the smart-sensor
hardware and software and the internal sensor failure
modes can be hidden from the user by a well-
designed fully specified smart sensor interface that
provides just those services that the user is interested

in. Thus, the smart sensor technology can contribute
to a reduction of the complexity at the system level.

A smart sensor needs a much larger name space than a
simple analog sensor. In addition to the actual measured
values, the parameters for range selection, alarm limits,
signal conditioning, and calibration must be set by the
user. Furthermore, information about sensor performance
and diagnostic information must be stored in the sensor
and accessed during maintenance. A generic smart sensor
interface must thus provide a standardized name space for
all these data elements.

3. The Generic TTP/A Protocol

The generic TTP/A communication protocol is a time-
triggered protocol for the communication among smart
transducer nodes within a cluster. It is controlled by an
active master who establishes the common time base
within the cluster. In case the master fails, a secondary
master can take over control. In TTP/A it is assumed that
every node has a unique personal identification number,
e.g., an eight byte integer that is used to assign a (short)
logical name to the node after power up. The scope of the
logical name is a single cluster.

In TTP/A the communication is organized into rounds. A
round consists of one or more frames. Between any two
frames there is an interframe gap, the length of which is an
implementation specific parameter. A frame is a sequence
of bytes transmitted by a single node. From the point of
view of the protocol, each round is independent of all other
rounds. Any two rounds are separated by at least an
interround gap that is significantly longer than the
interframe gap. To simplify startup and recovery, there is
no protocol state stored between rounds. Every round has a
name, the round name, that identifies the round. The
structure and duration of every round is static and
specified a priori, i.e., it is common knowledge to all
nodes of a cluster.

A round starts with a special frame from the master, the
fireworks frame that has characteristic features. The arrival
of the fireworks frame from the master is a
synchronization event that starts a common time-base for
this round in each node. The fireworks frame contains the
round name and can carry additional data. According to
the specification of the selected round, the fireworks frame
is followed by data frames of specified lengths from the
specified nodes.

TTP/A distinguishes between three types of rounds

(i) A broadcast round that just consists of the fireworks
frame sent by the active master.

(ii) A master-slave round that consists of two frames,
the fireworks frame from the master containing,
among others, the address of a slave and a response
frame from the slave. The main purpose of a master

slave round is the reading and writing of data into a
file of the distributed TTP/A file system.

(iii) A multipartner round that starts with the fireworks
frame from the master and continues with data
frames from the specified nodes. Multipartner rounds
are periodic and are used to update real-time images.

The specification of a multipartner round is called a round
descriptor list (RODL). A RODL can be viewed as a set
of related files, one in each participating node, that
identify the file address of the exchanged data and specify
the point in time (relative to the start of the round) when
this node has to become active (read or write data or
perform some action).

During the normal TTP/A operation there is a regular
sequence of multipartner rounds and master-slave (or
broadcast) rounds (Figure 1). The periodic multipartner
rounds exchange current real-time observations, while the
sporadic master-slave rounds access a TTP/A file, if
required.

Multipartner
Round

Real-Time

Master-Slave
Round

Multipartner
Round

Figure 1: Traffic on the TTP/A Bus

The TTP/A master contains at least two interfaces, one to
the TTP/A bus and the other to the environment of the
sensor subsystem. In the time-triggered architecture, this
latter interface conforms to the communication network
interface (CNI) of the TTP/C specification [5], such that
the same access mechanisms (software tools) can be used
to access sensor data from the local node and sensor data
from a remote node.

4. The Shared Code Spaces

Communication is only possible, if the interfacing
subsystems share the concepts and representation of the
data items in the interface. To exchange observations
across a smart sensor interface, agreement on the name
space, the time space, and the value domains must be
provided.

4.1 The Name Space

The TTP/A protocol integrates the communication
between nodes and the storage of the communicated data
within each node by providing a distributed interface file
system (IFS) of a cluster that acts as a source and sink of
the data exchanged among the nodes. This distributed file
system is the collection of the local interface file systems
of each node. The IFS supplies the shared and structured
name space for the data-elements that are exchanged
among the nodes of the cluster. It provides the stable

intermediate structure that serves as the basis for the
design of higher-level protocols that assign meanings to
the contents of IFS file records. This meaning can be
assigned either formally or informally by a documentation
file. For example, a documentation file with informal
information may contain (in verbal form) that

"this sensor is a temperature sensor that provides the
current temperature in record a1 of file f1. A lower
alarm limit has to be written into record a2 .
Diagnostic information about the sensor can be
found in file f2. ".

In the future we plan to formalize this information to
support a "plug-and-play" capability of TTP/A sensors.

File Structure

The IFS is structured into a set of index-sequential files
with constant record length and a static file structure. The
address of any record in the IFS of a cluster is composed
of the following fields

<file name><node name><record number>

The record is the smallest unit that can be addressed in an
IFS. Since all records of a file have the same length, a file
can be viewed as a matrix of bytes. The last byte of every
record is a horizontal check byte. The last record of every
file is the vertical check record. The file system thus
contains enough redundancy to correct a single error in the
file. This characteristic is used to perform periodic file
checks that monitor the integrity of the files and, if
desired, correct single bit flips. These periodic file checks
improve the reliability of the file system significantly. The
horizontal check byte is also used when a record is
transmitted in a frame.

File Operations and File Types

There are three file operations defined in the IFS: read,
write, and execute. Read reads a record from a file, write
writes a record into a file, and execute executes a file. The
file operation code--op-code for short--can be coded into a
two-bit field.

There are four different file types in the IFS: read-only
documentation files, input-output files, RODL files and
special command files. Read-only documentation files
contain the documentation about a node. Input-output files
are normally used to store observations and parameters.
The RODL files contain the RODLs and special command
files contain executable program modules that can be
executed (e.g., a JAVA applet). The transmitted data of a
round form the input parameters for such an execution.

The following Table 1 indicates which operations may be
performed on which file type:

Table 1: IFS File Types and File Operations

File type / Operation Read Write Execute

Documentation file X
Input/Output file X X X
RODL File X X X
Command file X X X

The TTP/A file system guarantees that any single read or
write operation of a file record is atomic. This implies that
after a file write the horizontal check byte and the check
record must be updated atomically. If a user needs a level
of atomicity beyond the single file record, he/she has to
design his/her own concurrency control protocol, for
example an NBW protocol [6] that uses one record as a
concurrency control field.

RODL Files

A RODL file is a distributed file that contains the
specification of a RODL for a particular round. A RODL
file consists of a collection of (sub)files, one in each
participating node. The RODL file name is also the round
name. The master can initiate the execution of a RODL by
naming, within the fireworks frame, the appropriate
RODL file name in the file execute command.

A record of a RODL file has the following structure

<round position><op-code><file-name><length><file
record address>

The round position tells the node at what position in the
round an action (read,write, or execute) is required. The
op-code field specifies the action. The file-name field
identifies the file that is involved in the action. The length
field specifies the length of the data frame and the file-
record address specifies, in case of a read or write action,
which record is involved in the action.

Since the individual RODL subfiles can be addressed and
manipulated just as any other files, the programming of a
new RODL can be performed with the available file
operations without having to introduce any new concepts
or mechanisms.

4.2 The Time Space

In TTP/A, the point of occurrence of an event is recorded
by recording the state of the local clock at the instant of
event occurrence. In order to economize the representation
of the continuously flowing time, only an interval of time
around "now", the current time, can be expressed in the
slave-node local TTP/A time space. This is in agreement
with the strategy of TTP/A to reduce the internal state of a
slave as far as possible. In TTP/A, the epoch of the time

scale starts anew with the arrival of every fireworks frame
of a multipartner round. The fireworks frame also contains
synchronizing information to be able to synchronize the
rate of the clock of the receiving slave to the rate of the
master. This is important if "on-chip" oscillators are in use
at the slaves, since these "on-chip" oscillators have a bad
long-term stability. The granularity of the time-scale is
chosen such that the duration of a granule is an integer
fraction of the physical second. It is thus possible to
express time values by the fractions of seconds that
expired in the commonly agreed epoch.

Since two succeeding epochs can be partially overlapping,
it is necessary to provide a mechanism to identify which
one of the overlapping epochs has been used for the time
measurement. For this purpose, an alternating time bit
that classifies each epoch as either an even epoch or an
odd epoch is provided. By making this alternating time bit
part of the time value it is clear whether the time-
measurement refers to the last even epoch or the last odd
epoch. The alternating time bit is part of the fireworks
frame that initiates an epoch.

4.3 The Value Domain

It is recommended to use the encoding schemes proposed
in this section for encoding the data values transmitted in
TTP/A networks. The use of these value domains will
improve interoperability. Since TTP/A is intended to be
used in very small sensor nodes utmost care has been
taken to design an efficient coding scheme. In addition to
the code space for values, TTP/A provides a code space
for in-band error messages and out-of-band confidence
markers.

Confidence markers are introduced to give a smart sensor
the capability to express its confidence [7] in a delivered
value. In multi-sensor systems, where more than one
sensor observe a physical quantity, the confidence marker
can be manipulated on the basis of comparing multiple
independent direct or indirect observations of the same
physical quantity. The confidence marker is a half-byte
that provides space for sixteen confidence classes ("0000"
for highest confidence and "1111" for ’no confidence’).
The confidence marker has to be transmitted out-of-band,
since it is produced in addition (and not instead) of a data
value.

The sequence of data items contained in a frame is called a
message. TTP/A distinguishes between three types of
messages, restricted messages, unrestricted and free
messages. The restricted message reserves the codes
binary ’1111 0000" to ’1111 1111’ of the first byte for in-
band error codes to support the transmission of error
information within the data bytes. This implies that in a
restricted message the first byte may not contain a data
code value that is equal or larger than binary ’1111 0000’.

An unrestricted message starts with a special first byte
which contains in the first half byte the confidence code
and in the second half byte an error code. If an error code
is set, the confidence marker in the first half-byte must be
’1111’ (meaning no confidence). If the confidence marker
has any other value than ’1111’ the error code must be
’0000’ (meaning no error). All other bytes of an
unrestricted message are application specific.

There are no rules that restrict the data coding of free
messages. There is no in-band error code in free messages.
The detailed error codes and data formats can be found in
the TTP/A specification document.

5. UART TTP/A Implementation

In this section we describe a concrete implementation of
the generic TTP/A protocol on a low-cost (cost of less than
1 US $) 8 bit microcontroller that uses an industry
standard UART communication channel. Since the 8 bit
microcontroller implementation of TTP/A should be
executable on very small microcontrollers, the design of
an efficient coding schema for the name spaces is of
importance.

5.1 Communication System

As described in Section 3, the communication of TTP/A is
organized into rounds. Every round starts with the
fireworks frame from the master. The fireworks frame of a
multipartner round consists of two UART bytes, the
fireworks frame of a master-slave round consists of four
UART bytes. The temporal distance between the first and
the second byte in the fireworks frame is significantly
longer than the temporal distance between the other bytes
of a round, in order to generate a characteristic feature of
the fireworks frame in the temporal domain. In order to
produce a characteristic feature in the value domain, the
first byte of the fireworks frame has even parity, while all
other bytes of the round (except the synchronization
pattern, see Section 5.2) have odd parity.

For the byte oriented data transmission, a standard UART
format with the following characteristics has been chosen
(for all bytes other than the first byte of the fireworks
frame):

One start bit, 8 data bits, one parity bit and one stop bit,
odd parity. Between two consecutive UART bytes there is
an inter frame gap (IFG) of 1 bit cell. A frame and the
following IFG form a 12 bit cell long slot (11 bit UART
frame + 1 bit IFG). Thus a message of one byte is
transmitted in a slot of 12 bitcells.

The selected bus interface conforms to the ISO K Line
serial link bus interface (ISO-9141). The physical layer is
a single-wire UART channel with a nominal bit rate of 10

kbit/s. Higher UART speeds require a different physical
layer.

5.2 Synchronization

Start Up Synchronization: To support low-cost
microcontrollers with imprecise on-chip or R/C oscillators,
a start up synchronization is required after the cold start of
a node. Start up synchronization means adjustment of the
speed of the local clock of such nodes, to enable UART
communication. Differences up to 50% from nominal
frequency can be compensated. The TTP/A master can be
configured to send synchronization patterns to enable
nodes with an imprecise oscillator to adjust the speed of
their local clocks. For a synchronized node, the
synchronization pattern reads as binary ’0110 0110’ with
even parity. The synchronization pattern is unique,
because the value binary ’0110 0110’ is forbidden in the
first byte of a fireworks frame.

Continuous Clock Synchronization: The local clocks of
the nodes are re-synchronized with the reception of the
first two bytes of the fireworks frame at the beginning of
each round. The state correction of the clock is performed
at the instant of reception of the second byte of the
fireworks frame: every node sets its local clock to zero.
Rate correction is done by measuring the interval between
the instants of reception of the first two UART bytes of the
fireworks frame. The master sends these two bytes with an
a priori known temporal distance, providing information
about its local clock to the slaves.

5.3 Namespaces

We have tried to map all names into single or multiple
byte objects, such that these objects can be communicated
efficiently by an UART protocol and stored in a single
byte memory location of an 8-bit microcontroller
architecture.

File-operation: The generic TTP/A protocol requires 3
file operations: read, write, and execute. The operation
code is assigned to the first 2 bits of one byte.

File-name: It has been decided to provide a name space
for filenames of 64 interface files in each node. This
requires a six-bit name field. The byte that carries the File-
operation code can also contain this six bit file-name field,
such that a single byte contains file operation and file
name.

Node-name: It has been decided to provide a name-space
for 256 different nodes in a cluster. The node name can
thus be represented in a single byte.

Record-number: It has been decided to limit an IFS file
to 256 records. The record number can thus be presented
in a single byte as well.

Record identification It is thus possible to express an
operation on any record within a cluster with three bytes:
First byte: file operation/file name, Second byte: record
number, Third byte: node-name. If an operation is directed
to a local file of a node, a two-byte record identification is
sufficient (the node name is implicit).

RODL entry: A RODL entry contains 4 bytes: one byte
for the identification of the round position of the data, one
byte for the op-code and file name, one byte for the frame
length and one byte for the record number in the selected
local file.

Record length: A constant record length of 4 bytes has
been chosen for the IFS files

Fireworks frame: The fireworks frame of a multipartner
round consists of two bytes: the first byte contains the file
operation/file name of the selected RODL file and the
second byte contains an exclusive-or checksum over the
first byte. The fireworks frame of a master-slave round
consists of four bytes: the first three bytes contain a record
identification, the fourth byte contains an exclusive-or
checksum over the first three bytes.

File write operation: A file write operation consists of 9
bytes: four bytes operation code, identification of the
record and exclusive-or checksum over the first three
bytes, 4 bytes data, and one byte horizontal check field
containing an exclusive-or checksum over the 4 data bytes.

File read operation: A file read operation consists of two
frames with 9 bytes in total. The first frame consisting of
four bytes identifies the data, the second frame contains
four data bytes and the final byte is the horizontal check
field.

5.4 UART TTP/A Implementation Experience

Figure 2 depicts a typical TTP configuration. The five
nodes A,B,C,D, and E are TTP/C nodes that construct the
fault-tolerant global time base of a TTP/C cluster. The
nodes D and E are the masters of the two TTP/A buses.
The implementation of the TTP/A protocol requires two
parts, a master and a slave part. The master part of the
protocol was implemented on a Motorola MC68376 on
TTTech’s TTP-Node-boards (Node E and node F of Fig.
2). In addition to the TTP/A interface, these TTP-Node-
boards contain a communication network interface to
TTP/C, such that the global time established in the TTP/C
cluster can be used as a synchronized timesource for both
TTP/A clusters.

A B C

D ETTP/C Bus

TTP/A Node

TTP/A Bus TTP/A Bus

Figure 2: TTP/C and two TTP/A clusters.

The slave part of the protocol was implemented on the
ATMEL AT90S2313, an 8 bit RISC microcontroller. The
ATMEL AT90S2313 has 2K flash memory for program
storage, 128 bytes EEPROM, 32x8 bit internal registers
and additional 128 bytes of SRAM. No external memory
was necessary to build up the node. The AT90S2313 does
not provide an internal RC oscillator, but the algorithm for
start up synchronization was implemented for evaluation
purposes. The UART was implemented in software.

Code Size: The code for the protocol takes about 500
instructions, whereof 75 instructions are used for the
UART implementation. An instruction needs 2 byte of
flash memory, so 1 K of flash memory is used for protocol
code, 1 K remains for application code and the storage of
IFS files. The RODLs are located in SRAM. Initialization
parameters like node identifier and standard RODLs are
located in EEPROM. I/O Files are mapped to
sensor/actuator values but could also be buffered in RAM.

Performance: The performance of a TTP/A system
depends on the number of nodes in the cluster, the length
of messages and the speed of the bus. Normally the round
sequence as shown in Figure 1 is executed. The periodic
multipartner round is used to transmit the newest version
of the real-time data. The response time for the RT data
can be guaranteed. The sporadic master slave rounds
between the multi-partner rounds are normally used to
read and write to the IFS files in a cluster.

With the current implementation we have achieved a
response time of 31 msec for the real-time data on the 10
kbit/sec UART bus, assuming 4 nodes which have two
data bytes in each frame. Within this 28 msec interval
there is also space for one master-slave round of 9 bytes
between two subsequent multipartner rounds.

Table 1 shows the calculated response times in
milliseconds for different TTA configuration, assuming a
two frames with 1 byte each for the RT data of each node.

Table 2: Response Times for Different TTP/A
configurations

Speed \ nodes 4 8 16 32

9.6 kbits/sec 28 38 58 98
100 kbits/sec 2.7 3.6 5.5 9.4
500 kbits/sec 0.53 0.72 1.11 1.88

In order to support the higher transmission speeds, a more
powerful microcontroller with an hardware UART
interface is required.

6. Conclusions

The low-level programming of the input/output routines
for the diverse I/O devices is cumbersome and error prone.
The specification of a universal smart transducer interfaces
makes it possible to hide the idiosyncrasies of the various
I/O devices behind such an interface and to provide to the
programmer a unified view of the I/O devices. Such a
universal smart transducer interface must guarantee
predictable real-time performance and provide the
flexibility to communicate all types of data among smart
transducer devices. In this paper we have proposed to
integrate the communication services with an interface file
system (IFS) to provide such a standardized interface.

The presented interface file systems (IFS) provides a
common name space for the data items that are exchanged
among the transducer nodes and a master node in a
distributed real time system. It establishes a stable
intermediate structure that is a solid base for many new
services. In the future we plan to built higher level services
by the standardization and automatic interpretation of the
contents of IFS documentation files.

The implementation of the IFS on a very small
microcontroller has shown that it is economically feasible
to assign local intelligence even to low-cost I/O devices
and thus establish the foundation for a new effective style
of I/O programming.

Acknowledgments

This work was supported, in part by the Austrian Ministry
of Science, project TTSB and by the European IST project
DSOS.

References

[1] AB, P. A. (1999). Catching the Bus.
http://www.iol.ie/readout/~fieldbus.

[2] Deirauer, P. and B. Woolever (1998). Understanding
Smart Devices. Industrial Computing. Vol. pp. 47-50.

[3] Kopetz, H. (1997). Real-Time Systems, Design Principles
for Distributed Embedded Applications; ISBN: 0-7923-
9894-7. Boston. Kluwer Academic Publishers.

[4] Kopetz, H. (1999).Do Current Technology Trends Enforce
a Paradigm Shift in the Industrial Automation Market?
Closing Keynote at the 7th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA 99), Barcelona, Spain, October 18-22, 1999.

[5] Kopetz, H. (1999). Specification of the TTP/C Protocol.
TTTech, A 1040 Wien, Schönbrunnerstraße 13.

[6] Kopetz, H. and J. Reisinger (1993). The Non-Blocking
Write Protocol NBW: A Solution to a Real-Time
Synchronisation Problem. Proc. 14th Real-Time Systems
Symposium, Raleigh-Durham, North Carolina. pp.

[7] Parhami, B. (1991). A Data-Driven Dependability
Assurance Scheme with Applications to Data and Design
Diversity. Dependable Computing for Critical
Applications A. Avizienis and J. C. Laprie Ed. Vienna.
Springer Verlag. pp. 257-282.

