Self-Organizing Smart Microgrids

Priv.-Doz. Dr. Wilfried Elmenreich 2012-07-09

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN Networked and Embedded Systems

Overview

- Self-organizing systems
- Engineering self-organizing systems
- Smart microgrids
- The smart microgrid lab
- Goals for this workshop

A School of Fish as SO example

- Several swarm fish with simple behavior ("local rules")
 - 1) Swim where other fish are
 - 2) Avoid coming too close
 - 3) Being attracted by food
 - 4) Flee from predators

Properties of a Fish Swarm

Robustness

Scalability

aus C. Bettstetter, "Lakeside Labs"

Fish School Example Analysis

- Individuals ("Fish")
- Local observations
- Interaction with other fish
- No centralized control
- Simple behavior

Emergence

- Overall system ("Fish school")
- Complex behavior
- Robust, adaptive and scalable

Overview

- Self-organizing systems
- Engineering self-organizing systems
- Smart microgrids
- The smart microgrid lab
- Goals for this workshop

Evolving a self-Organizing System

- Simulation of target system as playground
- Evolvable model of local behavior (e.g., fuzzy rules, ANN)
- Define goal via fitness function (e.g., maximize throughput in a network)
- Run evolutionary algorithm to derive local rules that fulfill the given goal

Agent behavior to be evolved

- Controls the agents of the SOS
- Processes inputs (from sensors) and produces output (to actuators)
- Must be evolvable
 - Mutation
 - Recombination
- Currently we can evolve
 - Multi-layer artificial neural networks
 - Fully meshed recursive neural networks
 - Finite state machines (Mealy model)

Framework for Evolutionary Design

- FREVO (Framework for Evolutionary Design)
- Modular Java tool allowing fast simulation and evolution
- FREVO defines flexible components for
 - Controller representation
 - Problem specification
 - Optimizer

Giving FREVO a Problem

- Basically, we need a simulation of the problem
- Interface for input/output connections to the agents
 - E.g. for the public goods game:
 - Your input last round
 - Your revenue
- Feedback from a simulation run -> fitness value
- FREVO source code and simple tutorial for a new problem at http://www.frevotool.tk

Example Applications of FREVO

 Evolution of cooperative behavior in simulated robot soccer

- Study on evolution of cooperative behavior
- Algorithm for coordinating microcopters in a search mission

Example Applications of FREVO (cnt.)

• Case study on self-organizing cellular automata patterns

• Estimating consumer behavior in a real-time energy market

Gen 1

Gen 100

Gen 20

Overview

- Self-organizing systems
- Engineering self-organizing systems
- Smart microgrids
- The smart microgrid lab
- Goals for this workshop

Why microgrids?

- Economies of scale are failing for central plants
 - Alternative energy generation is inherently distributed

ž

- Significant transmission losses
- Single grid = single point of failure
 - Reliability against random faults
 - Security against targeted attacks
- Expected reduced cost for maintenance of grid infrastructure
- Now we have the technology to overcome these problems!

Components of a Smart Microgrid

- Power generation
- Energy storage
- Energy consumers
 - Smart appliances
 - "Dumb devices"
- Interface to other grids
 - Market agent
 - Transmission
- User control interface

A. Sobe, W. Elmenreich: "Smart Microgrids: Overview and Outlook"; ITG INFORMATIK 2012, Workshop on Smart Grids, September, 2012.

Smart Appliances

- A smart appliance consists of
 - a communication interface
 - a local processing and decision unit
 - the appliance's actual function
- Smart plug concept
 - plug with measurement, control and communication features
 (1) Unified communication interface
 - (+) Unified communication interface
 - (-) Missing knowledge about device condition
- Embedded intelligent control
 - measurement, control and communication integrated with device

(+) Device parameters (e.g., fridge temperature) can be considered for control decisions

(-) Different implementations of data structures and access

Waistline Architecture

- Proposed solution: Waistline architecture supporting different systems
- Interoperability via core services
- Use concept of self-describing nodes from smart transducers

W. Elmenreich, D. Egarter: " Design Guidelines for Smart Appliances "; Proceedings of the 10th International Workshop on Intelligent Solutions in Embedded Systems (WISES'12), 2012.

Smart Transducers Concept

- Integration of
 - Sensor/actuator
 - Microcontroller (ADC and local signal conditioning)
 - Standardized network interface

- Advantages of smart transducer technology
 - No noise pickup over long analog transmission lines
 - Support for configuration and set-up
 - Parallel processing/measurements
 - Enhanced diagnosis via combination of local observations and global phenomena

W. Elmenreich: "Time-Triggered Smart Transducer Networks"; IEEE Transactions on Industrial Informatics, 2 (2006), 3; 192 - 199.

Configuration and Maintenance Architecture

 Configuration interface allows to read unique identifier

ALPEN-ADRIA

- Repository holds machine-readable device descriptions
- Tools support the user in creating a configuration
- Configuration interface allows to upload configuration to nodes

Elmenreich, Pitzek, Schlager: "Modeling Distributed Embedded Applications on an Interface File System" Proc. IEEE ISORC (2004), 175 - 182.

Need for Self-Organizing Smart Devices

- Problem: configuration of large networks via central authority is error-prone and cumbersome
- Understand devices as independent agents
- Self-organizing process reduces effort and number of possible (meaningful) configurations
- Implementation of smart appliances will be part of InterReg MONERGY
 - Project start Q4 2012
 - Partners are Lakeside Labs (Klagenfurt) and WitiKee company (Udine)

Source: Wikipedia

Pitzek, Elmenreich: "Plug-and-play: Bridging the semantic gap between application and transducers". Proc. IEEE Int. Conf. Emerging Technologies and Factory Automation, 2005.

Overview

- Self-organizing systems
- Engineering self-organizing systems
- Smart microgrids
- The smart microgrid lab
- Goals for this workshop

The Smart Microgrid Lab

ALPEN-ADRIA UNIVERSITAT KLAGENFURT I WIEN GRAZ

- Provide a hands-on lab for measurement in a real microgrid
 - Power generation from photovoltaic panels
 - Island mode/grid mode possible
 - Measurement equipment
 - Reference consumers
 - Energy storage based on batteries
- Train engineers in the field
 - Two PhD students on energy topics, two on complex systems
 - One Postdoc
 - Master and Bachelor students from Information Technology and Computer Science
- Funded by Lakeside Labs/KWF until end of 2014

Current Research Topics (1)

- Non-Intrusive Load Monitoring
 - (How) can devices be detected based on their energy signature?
 - Research existing methods
 - Adjust approach to work with smart plug/smart meter systems
 - Add self-organizing aspect to reduce configuration effort
- Research potential
 - Intelligent configuration
 - Bio-inspired detection algorithms
- Application potential
 - Device detection for smart home
 - Profile hiding using small energy buffers

Current Research Topics (2)

- Modeling and simulation of smart microgrids
 - Assumptions based on real measurements
 - Graphical user interface
- Simulation/emulation in real-time mode
 - Interfacing the real lab
- Research potential
 - Hardware-in-the-loop approach
 - energy/information coupling of real lab to simulation
- Application potential
 - Provide validation platform for distributed algorithms that span over multiple smart microgrids

- Middleware for hormone-based distribution
- **Research potential**
 - Complex systems, bio-inspired algorithms for smart grid
- Application potential
 - Smart microgrid networks
 - Generic solutions that can be applied in different fields

- Bio-inspired information distribution (hormone model)
- algorithms for smart microgrids

Modeling and testing self-organizing

Current Research Topics (3)

Source: Wikipedia

Wilfried Elmenreich

Overview

- Self-organizing systems
- Engineering self-organizing systems
- Smart microgrids
- The smart microgrid lab
- Goals for this workshop

Our goals for this Workshop

- Find topics for collaboration on
 - Self-organizing smart microgrids
 - Evolutionary design of self-organizing systems
- Possibilities:
 - Exchange of ideas
 - Joint work/publications
 - Students exchange
 - Inviting guest researchers
 - Joint project proposals
- Looking forward to great and fruitful workshop!

Thank you very much for your attention!

- Project SmartGrid: http://smartmicrogrid.blogspot.com/
- Publications: http://www.elmenreich.tk