
Decisional issues in multi UAV systemsDecisional issues in multi-UAV systems

Simon Lacroix
Laboratoire d’Analysey

et d’Architecture des Systèmes
CNRS, Toulouse

Where do I come from?

Robotics at LAAS/CNRS Toulouse FranceRobotics at LAAS/CNRS, Toulouse, France

• Research topics
A�keyword:�autonomy

p
– Perception, planning and decision-making, control
– Plus: control architecture, interactions, ambient 

intelligence systems, learningg y g

3�research�groups�:
12�full�time�researchers
10 university researchers

� Research�domains
� Cognitive�and�interactive�Robotics

10�university�researchers
4�visitors
50�PhD�students
10 post docs

� Aerial�and�Terrestrial�Field�Robotics
� Human�and�anthropomorphic�motion
� Bio�informatics,�Molecular�motion

10�post�docs

� Considered�applications: Planetary exploration,�Service�and�personal
robotics virtual worlds and animation biochemistry embedded systemsrobotics,�virtual worlds and�animation,�biochemistry,�embedded systems,�
transport,�driver�assistance,�defense,�civil�safety
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Open source software tools: www.openrobots.org

On autonomy



On autonomy

Notion of dependence
• Dependance on the humansDependance on the humans

• Command
• Skilled operators
• Lambda usersa bda use s

• Dependence on the infrastructure
• Abandonned sensors
• Localisation
• Communication
• Databases (géographic, semantic, …)
• … 

Autonomies :

• Dependence on the other robots

Autonomies :
- Power autonomy
- Execution control autonomy (rather “automatic control”)
- Navigation autonomy
- Decisional autonomy

From automatic control 
to autonomous control

• Automatic control :  

to autonomous control

– Well defined task (“regulate variable”, “follow trajectory”…)
– “Direct” link between perception and action
– Environment well modeled

• Autonomous control :
– More general task (“reach position” “monitor area ” )More general task ( reach position , monitor area …)
– Environment mostly “unknown”, variable…
– Calls for decisional processes

� “perception / Decision / Action” loop
Decision

Plus :

Perception

Action

Plus :
– Processes integration
– Learning

Interaction with humans– Interaction with humans
– Interactions with other robots
– …

Autonomy
E.g. for a drone:

– Regulate heading / speed / altitude

– Follow a list ordered waypoints ActionFollow a list ordered waypoints

– Follow a geometric trajectory

– Follow a road Perception
Action

Decision

Survey an area while avoiding threats

– Follow a target

Perception
Action

– Survey an area while avoiding threats
and obstacles

“Decision”: notion of deliberation, planning, prediction 
and evaluation  of the outcomes of an action

On the importance of models for
AutonomyAutonomy

Planning = Simulation + Search 
• Simulation of the effects of an action with a predictive model
• Search over possible organizations of possible actions to• Search over possible organizations of possible actions to
meet a goal or to optimize a criteria

Illustration: autonomous rover navigation

Simple instance of a perception / decision / action loop:
• Gather data on the environment, structure it into a model
• Plan the trajectory to find the “optimal” one
• Execute the trajectoryj y



On the importance of models for
AutonomyAutonomy

Planning = Simulation + Search 
• Simulation of the effects of an action with a predictive model
• Search over possible organizations of possible actions to• Search over possible organizations of possible actions to
meet a goal or to optimize a criteria

Illustration: autonomous rover navigation

Environment models:
at the heart of a tonomSimulation = convolution of • at the heart of autonomy

• at the heart of cooperationaction and environment models

Multiple robots call for more autonomy
Main drivers for autonomy

• Dirty, Dull, Dangerous tasks
• Operations in remote areas
• Allows the deployment of complex systemsAllows the deployment of complex systems
• Money savings !

Multiple robotics systems

Are inherently more complex• Are inherently more complex
• Call for new specific processes :

• Cooperation 
T k ll i• Task allocation

• Task coordination
• Implies new decisional architectures

Outline

Notion of AutonomyNotion of Autonomy

M lti l UAV i th kMultiple UAVs in the sky

Multiple UAV/UGV systems

Current projects

Multiple UAVs in the sky

Environment model ? an empty space !Environment model ? an empty space !
(possibly with a non uniform atmospheric flow field)

Allows for “easy” development at the core of decision

Example 1: “Monitoring a set of locations” missionExample 1: Monitoring a set of locations mission

For a fleet of UAVs, mainly a task allocation problem:
which UAV will observe which location?which UAV will observe which location?



The task allocation problem

The�“canonical”�task�allocation�problem:
Gi• Given:

• A�set�of�robots�
• A�set�of�tasks�

{ } �� � { }

{R}
{T}

• A�cost�function
• Find�the�allocation�������that�minimizes�the�cost�sum�(or�the�max.�of�
individual�costs,�or�the�individual�cost�repartition,�or…)�

�c :{R �T}��� � {��}
A�

A�well�known�and�well�posed�problem�(also�name�“optimal�allocation�
problem)�– but�highly�combinatorial

Main�approaches:
• Centralized�:�optimization�(MILP),�genetic�algorithm,�simulated�annealing
Di t ib t d• Distributed�:�

• DCOP,�distributed�protocols
• Negotiation�based�approaches:�market�based�approaches

Market based task allocation 
Auctions (tasks) are published, robots bid, the “best” bidder gets the task

Basic functions required
• Ability to bid: task insertion cost evaluation
• Auctioning strategies: who places auctions ?
• Overall objective function to minimize

Many possibilities for each function, e.g.:
• Task insertion

F i l t dditi• From a simple cost addition…
• … to a (complex) plan update 
• Mix costs, risks, utilities…

• Auctioning strategiesAuctioning strategies
• Centralized vs. bidders can emit auctions
• When to close the market ? 
• Auctions can concern a set of tasks…

• Objective function
• Sum of individual costs, dispersion of individual costs, max of 
individual costs… 

B. Dias “Market-Based Multirobot Coordination: A Survey and Analysis”  2006

Market based task allocation 

Illustration 1: the Multiple travelling salesman problem

• White dot = auction token
Si l t k i ti• Simple task insertion

• The cost includes an 
“equity” constraint
• All tasks are allocated 
before moving
• All robots must fly back y
home

Market based task allocation 

Main features of market-based approaches
A simple protocol applicable to a ide ariet of comple• A simple protocol, applicable to a wide variety of complex

problems
• Can be distributed (can bear with communication constraints)
• Can handle dynamic events:

• Robot failures
• Unexpected events
• New tasks

• No guarantee on any optimalityo gua a tee o a y opt a ty



Satisfying communication constraints

• One�single�“survey”�task�(=�
square�pattern)

• The�constraint�satisfaction�
yields�new�tasks�(“com�relay”)

Satisfying communication constraints

Illustration:�multi�TSP�+�several�constrained�“survey”�tasks

• 4�robots
5 k• 5�survey�tasks

• 18�places�to�visit

Multiple UAVs in the sky

Environment model ? an empty space !Environment model ? an empty space !
(possibly with a non uniform atmospheric flow field)

Allows for “easy” development at the core of decision

Example 2: “Fly a flock of drones amidst threats”Example 2: Fly a flock of drones amidst threats

For a fleet of UAVs, again mainly a task allocation 
problem: which UAV will jam a threat / protect others?problem: which UAV will jam a threat / protect others?

Fly a flock of drones amidst threats
Given:

• A convoy mission planned on a map of known threats (EW 
d ) h k h (TF d )radars) – there are unknown threats (TF radars)

• A fleet of heterogeneous UAVs
• Some are equipped with EW jammers
• Some are equipped with defence against TF jammers 

Geometry of EW jammers



Fly a flock of drones amidst threats
Given:

• A convoy mission planned on a map of known threats (EW 
d ) h k h (TF d )radars) – there are unknown threats (TF radars)

• A fleet of heterogeneous UAVs
• Some are equipped with EW jammers
• Some are equipped with defence against TF jammers 

Geometry of TF jammers

Fly a flock of drones amidst threats
Given:

• A convoy mission planned on a map of known threats (EW 
d ) h k h (TF d )radars) – there are unknown threats (TF radars)

• A fleet of heterogeneous UAVs
• Some are equipped with EW jammers
• Some are equipped with defence against TF jammers 

Fly safely the fleet 
(“Formation-less formation 
flight”) though the routeflight ) though the route

• Define the optimal 
configuration (“formation”)configuration ( formation )
of UAVs

M fi ti• Manage configuration
transitions

Fly a flock of drones amidst threats

Fly safely the fleet (“Formation-less formation flight”) though the 
routeroute

• Define the optimal configuration (“formation”) of UAVs
• Manage configuration transitions

Fly a flock of drones amidst threats

Illustration



Outline

Notion of AutonomyNotion of Autonomy

M lti l UAV i th kMultiple UAVs in the sky
Monitoring a set of locations
Fly a flock of drones amidst threats

Multiple UAV/UGV systemsp y

Current projectsCurrent projects

Context: teams of AGVs/UGVs

Where and what for?

Dozens of heterogeneous robots cooperate to achieve 
l l ti i i i l i tlong-lasting missions in large environments

Considered missions:
observations scene analyses situation assessments• observations, scene analyses, situation assessments

• interventions in the environment
In various application contexts:

E i i i ( ll i i )• Environment monitoring (pollutions, science, …)
• Search and rescue
• Defense applications, Civil security

Where and what for?

Dozens of heterogeneous robots cooperate to achieve 
l l ti i i i l i t

Large scale (km3) implies:
Faster robots longer missions (“lifelong autonomy”)

long-lasting missions in large environments

• Faster robots, longer missions ( lifelong autonomy )
• Communication constraints
• Large (mutli-scale) environment models



1. Planning a surveillance mission
Given:

• A team of robots

• An environment to monitor

• A set of constraints to satisfy (e.g. communications)

Find the (optimal) trajectories to observe the whole environment 

1. Planning a surveillance mission
Given:

• A team of robots
• An environment to monitor
• A set of constraints to satisfy (e.g. communications)

Actions to plan:
Ob ti t k (h ti t k )• Observation tasks (hence motion tasks)

• Communications

Approach:
• A task allocation process (distributed• A task allocation process (distributed
market-based approach)
• Large scale: necessity to interleave 
ll ti d d itiallocation and decomposition processes

1. Planning a surveillance mission

The�overall�mission�is�not�necessarily�expressed�as�a�set�of�elementary�
k h b d d/ f dtasks:�it�has�to�be�decomposed/refined

Decompose�then�allocate Allocate�then�decompose

1. Planning a surveillance mission

Decomposition�made�according�to�a�Hierarchical�Task�Network�scheme�
(HTN)(HTN)

• Breaks�down�the�planning�complexity
• Allows�auctions�on�variable�complexity�structures



1. Planning a surveillance mission

2. Navigating a rover in an unknown environment

Given:

• A team of robots

• An unknown environment

• A set of constraints to satisfy (e.g. communications)

Find the (optimal) trajectory for the rover to reach a given goal

2. Navigating a rover in an unknown environment

Given:
• A team of robots
• An unknown environment
• A set of constraints to satisfy (e.g. communications)

Actions to plan:
E i t d lli t k• Environment modelling tasks

• Rover Motions
• Communications

Approach:
• The UAV serves the UGV, by providing traversability maps
• Find the areas to perceive relevant for the mission

2. Navigating a rover in an unknown environment

(simulation with http://morse.openrobots.org )



Decision and environment models
Planning = Simulation + Search 

• Simulation of the effects of an action with a predictive modelp
• Search over possible organizations of possible actions to 
meet a goal or to optimize a criteria

Decision and environment models
Planning = Simulation + Search 

• Simulation of the effects of an action with a predictive modelp
• Search over possible organizations of possible actions to 
meet a goal or to optimize a criteria

Surveillance Rover navigation

• Environment�
observations�

• Environment�
modeling

• Motions
• Communications

• Motions
• Communications

Task�allocation�scheme Heuristic graph�search

En ironment modelsEnvironment models:
• at the heart of autonomy
• at the heart of cooperation

Simulation = convolution of 
action and environment models

Decision and environment models
Planning = Simulation + Search 

• Simulation of the effects of an action with a predictive modelp
by “convolving” action models with environment 

models

What are the actions to plan / decide?
• Motions
• Environment observations (payload)Environment observations (payload)
• Communications (within robots, with the control station)

L li ti• Localization
• Environment perception and modeling

Decision and environment models

Planning motions

• At a coarse level (itinerary)
notion of traversability

(geometry terrain nature)(geometry, terrain nature)



Decision and environment models

Planning motions

• At a coarse level (itinerary)
notion of traversability

(geometry terrain nature)(geometry, terrain nature)

At a fine level• At a fine level
geometry, terrain nature 

(Digital Terrain Map)

Decision and environment models

Planning observations

• Need to predict visibilities
geometry (2.5D or 3D)

Decision and environment models

Planning observations

• Need to predict visibilities
geometry (2.5D or 3D)

Planning communications

• Need to predict radio 
visibilities

geometry, physicalg y, p y
properties

Decision and environment models

Planning localization

• GPS coverage
• INS / Odometry: terrain nature
• Exteroceptive sensors: landmarks• Exteroceptive sensors: landmarks
or other models (geometry, 
appearance models, …)



Decision and environment models

Planning localization

• GPS coverage
• INS / Odometry: terrain nature
• Exteroceptive sensors: landmarks• Exteroceptive sensors: landmarks
or other models (geometry, 
appearance models, …)

Planning environment 
perception & modeling

• Need to predict the informationNeed to predict the information
gain

amount of information in the 
environment modelsenvironment models
(uncertainty, entropy…)

A database of environment models

Orthoimage

DTM

Models for�localization

Orthoimage

Traversability

DTM

Motion�servoing supports

3D�model

Building envt. models: information flow

Exhaustive
i t Exteroceptive Environment environment

description

p
sensor data models

Geometry

Lighting
Semantics

Images n
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Temperature, 
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…
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Action
models

Initial models 
(GIS)

Building a digital terrain model
With a rover, using point clouds (here stereovision)

Resampling data to obtain a z=f(x,y) representation on a 
regular Cartesian grid



Building a digital terrain model
With a rover, using point clouds (here Velodyne Lidar)

Resampling data to obtain a z=f(x,y) representation on a 
regular Cartesian grid

Building a digital terrain model
With a UAV, using a Lidar

Resampling data to obtain a z=f(x,y) representation on a 
regular Cartesian grid

[Paul Chavent @ Onera Toulouse]

Building a traversability model
With a rover, using point clouds (here stereo)

Probabilistic labeling (Bayesian supervised learning)

Possibility to introduce luminance / texture attributes
Much more up-to-date classification / learning processes existMuch more up to date classification / learning processes exist

Building a traversability model
With a drone, using vision

im
g1

im
g2



Building a traversability model
With a drone, using vision

im
g1

im
g2

Building a traversability model
With a drone, using vision

im
g1

im
g2

Building a traversability model
With a drone, using vision

“True”�
orthoimages

Terrain models: data structures
“Raster” models: 
regular Cartesian grids

“Raster” models: hierarchical Cartesian grids

Graph structures easily derivedGraph structures easily derived



Terrain models: data structures
Triangular irregular meshes

Terrain models: data structures
Volumetric representations: octrees
[octomap]

Allows 3D visibility computationsAllows 3D visibility computations

Merging air/ground models?

Traversability 
modelsmodels

Digital terrain 
models

Inter-robot spatial consistency required

Terrain models: key points
1. Whatever the encoded information (terrain class, elevation, 

traversability, ...), it is essential maintain its “quality” (confidence, 
precision, certainty…):

• To fuse the various sources of information 
• initial model 
• models built by other robots
• sensor datasensor data

• To drive the decision processes

2 Spatial consistency is crucial2. Spatial consistency is crucial



Localization: a classic problemLocalization: a classic problem

On the importance of localization

Localization is required to:Localization is required to:

• Ensure the spatial consistency of the built models

• Ensure the achievement of the missions, most often defined 
in localization tems (“goto [goal]”, “explore / monitor 
[area]”, …)

• Ensure the lowest level (locomotion) controls( )

• Ensure the proper execution of paths / trajectories

Localization solutions

Huge corpus of technological / algorithmic solutions

• Motion / accelerations sensors (dead reckoning):
Inherently drifts over time and distances

• Absolute localization means (e.g. radioed beacons)
Hardly reliable, often too coarse

Develop solutions relying on the robot exteroceptive sensors 

On the importance of localization

OrthoimageOrthoimage

DTM

Models for�localization

DTM

Models for�localization

3D�model

Traversability

3D�model

Traversability

Motion�servoing supportsMotion�servoing supports



But… what localization?
Essential questions to answer:

1. With which precision ?

2. In which frame ? 

From cm to meters

Absolute vs. local

3. At which frequency? From kHz to “sometimes”

• Ensure the lowest level (locomotion) controls
cm accuracy,

• Ensure the proper execution of paths / trajectories

• Ensure the spatial consistency of the built models

cm accuracy,
@ > 100 Hz,
local frame

Ensure the spatial consistency of the built models

• Ensure the achievement of the missions, most often defined 
in localization tems (“goto [goal]” “explore / monitor

~m accuracy, 
“sometimes” in localization tems ( goto [goal] , explore / monitor

[area]”, …)
sometimes ,

global frame

Localization precision required for a DTM

DTM resolution ~ 10cm, height precision ~ 3cm

• Velodyne lidar provides chunks of 64 points @ 3.5 kHz:
1° error on pitch yields a 17cm elevation error @ 10m

2m/s GPS RTK @ 20Hz2m/s, GPS RTK @ 20Hz
+ Xsens AHRS @ 100Hz

+ FOG gyro @ 50Hz

Localization precision required for a DTM

• DTM built by an UAV with a Lidar
2m/s, GPS RTK @ 20Hz

+ INS @ x Hz
+ dynamic model+ dynamic model
+ compass x Hz

Localization precision required for a DTM

• DTM built by an UAV with a Lidar
2m/s, GPS RTK @ 20Hz

+ INS @ x Hz
+ dynamic model+ dynamic model
+ compass x Hz

During a calm day With a 10 km/h wind



Visual odometry: principle

1. Stereovision

2 Pixels selection3 Pixels tracking 4. Motion
2. Pixels selection3. Pixels tracking estimation

Stereovision

Visual odometry on a MAV (+ 3D modelling)

“Simultaneous Localization and Mapping”

• Dead reckoning
– Monotonic�increase�of�the�

position uncertaintyposition�uncertainty

• SLAM
– “memory effect”�of�the�

mapping
– Loop�closures:�position�

uncertainty�decrase

Vision-based SLAM

Illustration: 100 Hz vision / low cost INS SLAM



Vision-based SLAM

Illustration: 100 Hz vision / low cost INS SLAM

Localization precision required for a DTM

DTM resolution ~ 10cm, height precision ~ 3cm

• Velodyne lidar provides chunks of 64 points @ 3.5 kHz:
1° error on pitch yields a 17cm elevation error @ 10m

2m/s GPS RTK @ 20Hz2m/s, GPS RTK @ 20Hz
+ Xsens AHRS @ 50Hz

+ FOG gyro @ 50Hz

2m/s, RT-SLAM @ 100Hz

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

2m/s, GPS RTK @ 20Hz + INS @ x
Hz + dynamic model + compass x Hz

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

With�positions�obtained�after�a�global�
BA�(could�have�been�RT�SLAM)



SLAM issues

• SLAM processes complexity grows with the number of landmarks

The map size can’t scale up

• The convergence of Kalman filter based solutions can’t be guaranteed

The map size can’t scale up, loop closures may lead p p p y
inconsistencies

Multi-map hierarchical SLAM 

Hierarchical�SLAM [Tardos�2005],�a�graph�of�“submaps”:
Local�maps�(EKF)�of�current�vehicle�pose�and�landmarks�pose�
( d )(nodes)
Global�map�of�relative�transformations�(edges)

Local maps:

• Fully�correlated maps�(robot�and�
landmark�states)

f h d b l l• No�information�shared between�local�
maps

• Each map is initialized with no• Each�map�is�initialized�with�no�
uncertainty

Multi-map hierarchical SLAM 

Hierarchical�SLAM [Tardos�2005],�a�graph�of�“submaps”:
Local�maps�(EKF)�of�current�vehicle�pose�and�landmarks�pose�
( d )(nodes)
Global�map�of�relative�transformations�(edges)

Global�graph�of�maps:

• Robot’s�pose

• The�state�is�the�relative�transformation
between local mapsbetween�local�maps

• Block�diagonal covariance�before�loop�
closure

Multi-map hierarchical SLAM 

Hierarchical�SLAM [Tardos�2005],�a�graph�of�“submaps”:
Local�maps�(EKF)�of�current�vehicle�pose�and�landmarks�pose�
( d )(nodes)
Global�map�of�relative�transformations�(edges)

Loop�closures�in�the�global�
graphgraph:

Loop�constraint

Minimisation subject to theMinimisation�subject�to�the�
loop�constraint



Multi-map hierarchical SLAM 

Hierarchical�SLAM [Tardos�2005],�a�graph�of�“submaps”:
Local�maps�(EKF)�of�current�vehicle�pose�and�landmarks�pose�
( d )(nodes)
Global�map�of�relative�transformations�(edges)

Loop�closures�in�the�global�
graphgraph:

Loop�constraint

Minimisation subject to theMinimisation�subject�to�the�
loop�constraint

A distributed multi-robots multi-map approach

• Straightforward�extension�to�hierarchical�SLAM

Local�level A�set�of�fully�
correlated�
submaps

Global�level

A�graph�of�
map posesmap�poses

A distributed multi-robots multi-map approach

Various loop�closing events

“Rendez�vous”:�inter�robot
pose estimation

Absol te locali ation

pose�estimation

Absolute�localization�
(GPS�fix�/�localization�
wrt.�an�initial�map)

Inter�robot�landmark�
(or�map)�matches

Detecting loop closures between air/ground 
robots

Visual point landmarks can’t be exploited

Geometry is the key
Need to focus on the M of SLAM



Points vs. lines in vision

Preliminary multi-robot SLAM results

Research perspectives on envt. models
Focus on geometric (3d, vectorized) representations

ExhaustiveExhaustive
environment
description

Geometry

Semantics

Exteroceptive
sensor data

Environment
models

n

Integrate existing data (GIS)

y

Physical 
properties

Chemical 
properties

Lighting 
conditions

Thermal
properties

Temperature …

Images

Point clouds

Radar echoes
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Temperature,
humidity…

Initial models 
(GIS)

Action
models

Distributed models 
Management

Humans in the loop: information sharing (spatial ontologies ?) 

Outline

Notion of AutonomyNotion of Autonomy

M lti l UAV i th kMultiple UAVs in the sky
Monitoring a set of locations
Fly a flock of drones amidst threats

Multiple UAV/UGV systemsp y
Illustrations: need for environments models
Illustration of environment model building processes
Importance of localizationImportance of localization

Current projects



The ARCAS project

www.arcas-project.eu/ : “development and experimental 
validation of cooperative UAV systems for assembly andvalidation of cooperative UAV systems for assembly and

structure construction”

The SkyScanner project

Adaptive synchronous 
sampling of clouds with p g

a fleet of UAVs

(energy harvesting)(energy harvesting)

The SkyScanner project

Adaptive synchronous 
sampling of clouds with p g

a fleet of UAVs

(energy harvesting)(energy harvesting)

At each At time t

1. Collect infos. 
where ?

2. Who flies
h ?where ?

The SkyScanner project

Adaptive synchronous 
sampling of clouds with p g

a fleet of UAVs

(energy harvesting)(energy harvesting)

?

À un instant t

1. Collect infos. 

?

where ?

2. Who flies
h ?where ?



Take home messages

• Autonomy calls for specific decisional processes

• Good representations are the foundations of goodp g
decisions, and hence of good cooperations

• A variety of representations is requiredA variety of representations is required

• Geometry is certainly the most important information to 
represent (but not only)represent (but not only)

• Maintaining the quality of information is essential


