

Open source software tools: www.openrobots.org

Decisional issues in multi-UAV systems

Simon Lacroix Laboratoire d'Analyse et d'Architecture des Systèmes CNRS, Toulouse

On autonomy

au-ton-o-mous |otanamas|

adjective

(of a country or region) having self-government, at least to a significant degree : the federation included sixteen autonomous republics.

· acting independently or having the freedom to do so : an autonomous committee of the school board / autonomous underwater vehicles.

· (in Kantian moral philosophy) acting in accordance with one's moral duty rather than one's desires.

DERIVATIVES au-ton-o-mous-ly adverb

ORIGIN early 19th cent .: from Greek autonomos 'having its own laws' + -ous .

Where do I come from?

Robotics at LAAS/CNRS, Toulouse, France

- Research topics
 - Perception, planning and decision-making, control
 - Plus: control architecture, interactions, ambient intelligence systems, learning
- Research domains
 - Cognitive and interactive Robotics
 - Aerial and Terrestrial Field Robotics
 - . Human and anthropomorphic motion
 - Bio-informatics, Molecular motion
- Considered applications: Planetary exploration, Service and personal robotics, virtual worlds and animation, biochemistry, embedded systems, transport, driver assistance, defense, civil safety

- A keyword: autonomy
- - 12 full time researchers 10 university researchers
 - 4 visitors
 - 50 PhD students 10 post-docs

- 3 research groups :

Autonomy

E.g. for a drone:

- Regulate heading / speed / altitude
- Follow a list ordered waypoints
- Follow a geometric trajectory
- Action Percepti

- Follow a target

- Follow a road

- Survey an area while avoiding threats and obstacles

> "Decision": notion of deliberation, planning, prediction and evaluation of the outcomes of an action

On the importance of *models* for

Autonomy

Planning = Simulation + Search

• Simulation of the effects of an action with a predictive model

· Search over possible organizations of possible actions to meet a goal or to optimize a criteria

Illustration: autonomous rover navigation

Simple instance of a perception / decision / action loop:

- Gather data on the environment, structure it into a model
- Plan the trajectory to find the "optimal" one
- Execute the trajectory

- → Notion of *dependence*
 - Dependance on the humans
 - Command
 - Skilled operators
 - Lambda users
 - Dependence on the infrastructure
 - Abandonned sensors
 - Localisation
 - Communication
 - Databases (géographic, semantic, ...)
 - Dependence on the other robots
 - Autonomies :
 - Power autonomy
 - Execution control autonomy (rather "automatic control")
 - Navigation autonomy
 - Decisional autonomy

From automatic control to autonomous control

- Automatic control:
 - Well defined task ("regulate variable", "follow trajectory"...)
 - "Direct" link between perception and action
 - Environment well modeled
- Autonomous control :
 - More general task ("reach position", "monitor area "...)
 - Environment mostly "unknown", variable...
 - Calls for decisional processes
 - \Rightarrow "perception / <u>Decision</u> / Action" loop
- Plus :
 - Processes integration
 - Learning
 - Interaction with humans
 - Interactions with other robots
 - ...

Perception Action

On autonomy

Outline

Notion of Autonomy

Multiple UAVs in the sky

Multiple UAV/UGV systems

Current projects

On the importance of *models* for Autonomy

Planning = Simulation + Search

- Simulation of the effects of an action with a predictive model
- Search over possible organizations of possible actions to
- meet a goal or to optimize a criteria

Illustration: autonomous rover navigation

Simulation = convolution of action and environment models

- Environment models:
 - at the heart of autonomy
 - at the heart of cooperation

Multiple UAVs in the sky

Environment model ? an empty space !

(possibly with a non uniform atmospheric flow field)

Allows for "easy" development at the core of decision

Example 1: "Monitoring a set of locations" mission

➡ For a fleet of UAVs, mainly a *task allocation* problem: which UAV will observe which location?

Multiple robots call for more autonomy

Main drivers for autonomy

- Dirty, Dull, Dangerous tasks
- Operations in remote areas
- Allows the deployment of complex systems
- Money savings !

Multiple robotics systems

- Are inherently more complex
- Call for new specific processes :
 - Cooperation
 - Task allocation
 - Task coordination
- Implies new decisional architectures

Market based task allocation

Illustration 1: the Multiple travelling salesman problem

- White dot = auction token
- Simple task insertion
- The cost includes an "equity" constraint
- All tasks are allocated before moving
- All robots must fly back home

The task allocation problem

The "canonical" task allocation problem:

- Given:
 - A set of robots {*R*}
 - A set of tasks $\{T\}$
 - A cost function $c: \{R \times T\} \to \mathfrak{R}^+ \cup \{+\infty\}$

• Find the allocation A^* that minimizes the cost sum (or the max. of individual costs, or the individual cost repartition, or...)

A well-known and well-posed problem (also name "optimal allocation problem) – but highly combinatorial

Main approaches:

- Centralized : optimization (MILP), genetic algorithm, simulated annealing
- Distributed :
 - DCOP, distributed protocols
 - Negotiation-based approaches: market-based approaches

Market based task allocation

Main features of market-based approaches

- A simple protocol, applicable to a wide variety of complex problems
- Can be distributed (can bear with communication constraints)
- Can handle dynamic events:
 - Robot failures
 - Unexpected events
 - New tasks

• No guarantee on any optimality

Market based task allocation

Auctions (tasks) are published, robots bid, the "best" bidder gets the task

Basic functions required

- · Ability to bid: task insertion cost evaluation
- Auctioning strategies: who places auctions ?
- Overall objective function to minimize

Many possibilities for each function, e.g.:

- Task insertion
 - From a simple cost addition...
 - ... to a (complex) plan update
 - Mix costs, risks, utilities...
- Auctioning strategies
 - Centralized vs. bidders can emit auctions
 - When to close the market ?
 - Auctions can concern a set of tasks...
- Objective function
 - Sum of individual costs, dispersion of individual costs, max of individual costs...

Multiple UAVs in the sky

Environment model ? an empty space !

(possibly with a non uniform atmospheric flow field)

Allows for "easy" development at the core of decision

Example 2: "Fly a flock of drones amidst threats"

➡ For a fleet of UAVs, again mainly a *task allocation* problem: which UAV will jam a threat / protect others?

Satisfying communication constraints

• One single "survey" task (= square pattern)

• The constraint satisfaction yields new tasks ("com relay")

Fly a flock of drones amidst threats

Given:

• A convoy mission planned on a map of known threats (EW radars) – there are unknown threats (TF radars)

• A fleet of heterogeneous UAVs

- Some are equipped with EW jammers
- Some are equipped with defence against TF jammers

Geometry of EW jammers

Satisfying communication constraints

Illustration: multi TSP + several constrained "survey" tasks

- 4 robots
- 5 survey tasks
- 18 places to visit

Fly a flock of drones amidst threats

Fly safely the fleet ("Formation-less formation flight") though the route

- Define the optimal configuration ("formation") of UAVs
- Manage configuration transitions

Fly a flock of drones amidst threats

Given:

• A convoy mission planned on a map of known threats (EW radars) – there are unknown threats (TF radars)

- A fleet of heterogeneous UAVs
 - Some are equipped with EW jammers
 - Some are equipped with defence against TF jammers

Geometry of TF jammers

Fly a flock of drones amidst threats

Illustration

Fly a flock of drones amidst threats

Given:

• A convoy mission planned on a map of known threats (EW

radars) – there are unknown threats (TF radars)

- A fleet of *heterogeneous* UAVs
 - Some are equipped with EW jammers
 - Some are equipped with defence against TF jammers

Fly safely the fleet ("Formation-less formation flight") though the route

- Define the optimal configuration ("formation") of UAVs
- Manage configuration transitions

Where and what for?

Outline

Dozens of *heterogeneous* robots *cooperate* to achieve *long-lasting* missions in *large* environments

Considered missions:

- observations, scene analyses, situation assessments
- interventions in the environment

In various application contexts:

- Environment monitoring (pollutions, science, ...)
- Search and rescue
- Defense applications, Civil security

Notion of Autonomy

Multiple UAVs in the sky Monitoring a set of locations Fly a flock of drones amidst threats

Multiple UAV/UGV systems

Current projects

Where and what for?

Dozens of *heterogeneous* robots *cooperate* to achieve *long-lasting* missions in *large* environments

Large scale (*km*³) implies:

- Faster robots, longer missions ("lifelong autonomy")
- Communication constraints
- Large (mutli-scale) environment models

Context: teams of AGVs/UGVs

1. Planning a surveillance mission

The overall mission is not necessarily expressed as a set of elementary tasks: it has to be decomposed/refined

complex tasks decompose allocate decompose decompose

Decompose then allocate

Allocate then decompose

1. Planning a surveillance mission

Given:

A team of robots

• An environment to monitor

• A set of constraints to satisfy (e.g. communications)

Find the (optimal) trajectories to observe the whole environment

1. Planning a surveillance mission

Decomposition made according to a Hierarchical Task Network scheme (HTN)

- Breaks down the planning complexity
- Allows auctions on variable complexity structures

1. Planning a surveillance mission

Given:

- A team of robots
- An environment to monitor
- A set of constraints to satisfy (e.g. communications)

Actions to plan:

- Observation tasks (hence motion tasks)
- Communications

Approach:

• A task allocation process (distributed market-based approach)

• Large scale: necessity to interleave allocation and decomposition processes

2. Navigating a rover in an unknown environment

Given:

- A team of robots
- An unknown environment
- A set of constraints to satisfy (e.g. communications)

Actions to plan:

- Environment modelling tasks
- Rover Motions
- Communications

Approach:

- The UAV serves the UGV, by providing *traversability maps*
- Find the areas to perceive relevant for the mission

2. Navigating a rover in an unknown environment

1. Planning a surveillance mission

2. Navigating a rover in an unknown environment

Given:

• A team of robots

• An unknown environment

• A set of constraints to satisfy (e.g. communications)

Find the (optimal) trajectory for the rover to reach a given goal

(simulation with http://morse.openrobots.org)

Decision and environment models

Planning = Simulation + Search

- Simulation of the effects of an action with a predictive model
 → by "convolving" action models with environment
 - models

What are the actions to plan / decide?

- Motions
- Environment observations (payload)
- Communications (within robots, with the control station)
- Localization
- Environment perception and modeling

Decision and environment models

Planning = Simulation + Search

- Simulation of the effects of an action with a predictive model
- Search over possible organizations of possible actions to meet a goal or to optimize a criteria

Decision and environment models

Planning motions

 At a coarse level (itinerary)
 → notion of traversability (geometry, terrain nature)

Decision and environment models

Planning = Simulation + Search

• Simulation of the effects of an action with a predictive model

 Search over possible organizations of possible actions to meet a goal or to optimize a criteria

Decision and environment models

Planning observations

Need to predict visibilities
 → geometry (2.5D or 3D)

Planning communications

• Need to predict radio visibilities

→ geometry, physical properties

Decision and environment models

Planning motions

- At a coarse level (itinerary)
 → notion of traversability (geometry, terrain nature)
- At a fine level
 → geometry, terrain nature (Digital Terrain Map)

Decision and environment models

Planning localization

- GPS coverage
- INS / Odometry: terrain nature

• Exteroceptive sensors: landmarks or other models (geometry, appearance models, ...)

Decision and environment models

Planning observations

Need to predict visibilities
 → geometry (2.5D or 3D)

Building envt. models: information flow

Decision and environment models

Planning localization

GPS coverage

INS / Odometry: terrain nature
Exteroceptive sensors: landmarks

or other models (geometry, appearance models, ...)

Planning environment perception & modeling

• Need to predict the *information* gain

→ amount of information in the environment models (uncertainty, entropy...)

Building a digital terrain model

With a rover, using point clouds (here stereovision) Resampling data to obtain a z=f(x,y) representation on a regular Cartesian grid

A database of environment models

Building a traversability model

With a rover, using point clouds (here stereo) Probabilistic labeling (Bayesian supervised learning)

Possibility to introduce luminance / texture attributes Much more up-to-date classification / learning processes exist

Building a digital terrain model

With a rover, using point clouds (here Velodyne Lidar)

Resampling data to obtain a z=f(x,y) representation on a regular Cartesian grid

Building a traversability model

With a drone, using vision

img2

Building a digital terrain model

With a UAV, using a Lidar Resampling data to obtain a z=f(x,y) representation on a regular Cartesian grid

[Paul Chavent @ Onera Toulouse]

Building a traversability model

Building a traversability model

With a drone, using vision

With a drone, using vision

Terrain models: data structures

Building a traversability model

With a drone, using vision

Merging air/ground models?

Terrain models: data structures

Triangular irregular meshes

Digital terrain models

Traversability models

Inter-robot spatial consistency required

Terrain models: key points

- 1. Whatever the encoded information (terrain class, elevation, traversability, ...), it is *essential* maintain its "quality" (confidence, precision, certainty...):
 - To fuse the various sources of information
 - initial model
 - models built by other robots
 - sensor data
 - To drive the decision processes
- 2. Spatial consistency is crucial

•

Terrain models: data structures

Localization solutions

Huge corpus of technological / algorithmic solutions

- Motion / accelerations sensors (dead reckoning): Inherently drifts over time and distances
- Absolute localization means (*e.g.* radioed beacons) Hardly reliable, often too coarse

Develop solutions relying on the robot exteroceptive sensors

On the importance of localization

On the importance of localization

Localization is required to:

- Ensure the spatial consistency of the built models
- Ensure the achievement of the missions, most often defined in localization tems ("goto [goal]", "explore / monitor [area]", ...)
- Ensure the lowest level (locomotion) controls
- Ensure the proper execution of paths / trajectories

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

But... what localization?

From *cm* to *meters*

Essential questions to answer:

2.

- 1. With which precision ?
 - In which frame ? Absolute vs. local
- 3. At which frequency? From kHz to "sometimes"

<i>cm</i> accuracy, @ > 100 <i>Hz</i> , ⊣ local frame	Ensure the lowest level (locomotion) controls
	 Ensure the proper execution of paths / trajectories
	 Ensure the spatial consistency of the built models
~ <i>m</i> accuracy, "sometimes", – global frame	• Ensure the achievement of the missions, most often defined in localization tems ("goto [goal]", "explore / monitor [area]",)

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

+ INS @ x Hz + dynamic model + compass x Hz

During a calm day

With a 10 km/h wind

Localization precision required for a DTM

- DTM resolution ~ 10cm, height precision ~ 3cm
- Velodyne lidar provides chunks of 64 points @ 3.5 kHz: 1° error on pitch yields a 17cm elevation error @ 10m

2m/s, GPS RTK @ 20Hz + Xsens AHRS @ 100Hz + FOG gyro @ 50Hz

"Simultaneous Localization and Mapping"

Visual odometry: principle

Dead reckoning

- Monotonic increase of the position uncertainty
- "memory effect" of the
- Loop closures: position uncertainty decrase

Vision-based SLAM

Illustration: 100 Hz vision / low cost INS SLAM

Visual odometry on a MAV (+ 3D modelling)

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

2m/s, GPS RTK @ 20Hz + INS @ xHz + dynamic model + compass x Hz

Illustration: 100 Hz vision / low cost INS SLAM

Localization precision required for a DTM

• DTM built by an UAV with a Lidar

With positions obtained after a global BA (could have been RT-SLAM)

Localization precision required for a DTM

- DTM resolution ~ 10cm, height precision ~ 3cm
- Velodyne lidar provides chunks of 64 points @ 3.5 *kHz:* 1° error on pitch yields a 17*cm* elevation error @ 10*m*

2*m/s*, GPS RTK @ 20*Hz* + Xsens AHRS @ 50*Hz* + FOG gyro @ 50*Hz*

2*m*/s, RT-SLAM @ 100*Hz*

Hierarchical SLAM [Tardos-2005], a graph of "submaps":

Local maps (EKF) of current vehicle pose and landmarks pose (nodes)

Global map of relative transformations (edges)

Global graph of maps:

- Robot's pose
- The state is the relative transformation between local maps
- Block diagonal covariance before loop closure

- SLAM processes complexity grows with the number of landmarks
- The map size can't scale up
- The convergence of Kalman filter based solutions can't be guaranteed
- The map size can't scale up, loop closures may lead inconsistencies

Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of "submaps":

Local maps (EKF) of current vehicle pose and landmarks pose (nodes)

Global map of relative transformations (edges)

Loop closures in the global

graph:

Loop constraint

```
\mathbf{h}(\mathbf{x}) = \hat{\mathbf{x}}_1 \oplus \hat{\mathbf{x}}_2 \cdots \oplus \hat{\mathbf{x}}_{n-1} \oplus \hat{\mathbf{x}}_n = \mathbf{0}
```

Minimisation subject to the loop constraint $(a_1, a_2)^T \mathbf{p} = 1$

$$\begin{split} \min_{\mathbf{x}} f(\mathbf{x}) &= \min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}}_u)^T \mathbf{P}_u^{-1} (\mathbf{x} - \hat{\mathbf{x}}_u) \\ \mathbf{h}(\mathbf{x}) &= \mathbf{0} \end{split}$$

Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of "submaps":

Local maps (EKF) of current vehicle pose and landmarks pose (nodes)

Global map of relative transformations (edges)

Local maps:

- Fully correlated maps (robot and landmark states)
- No information shared between local maps
- Each map is initialized with no uncertainty

A distributed multi-robots multi-map approach

Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of "submaps":

Local maps (EKF) of current vehicle pose and landmarks pose (nodes)

Global map of relative transformations (edges)

A distributed multi-robots multi-map approach

Detecting loop closures between air/ground robots

Visual point landmarks can't be exploited

Need to focus on the M of SLAM Geometry is the key

Research perspectives on envt. models

Focus on geometric (3d, vectorized) representations

Humans in the loop: information sharing (spatial ontologies ?)

Outline

Notion of Autonomy

Multiple UAVs in the sky Monitoring a set of locations Fly a flock of drones amidst threats

Multiple UAV/UGV systems Illustrations: need for environments models Illustration of environment model building processes Importance of localization

Current projects

Preliminary multi-robot SLAM results

Points vs. lines in vision

LANDING CARACTERISTICS IN COLOR DOCUMENTS

The SkyScanner project

The ARCAS project

www.arcas-project.eu/ : "development and experimental validation of cooperative UAV systems for assembly and structure construction"

The SkyScanner project

(energy harvesting)

a fleet of UAVs (energy harvesting)

Adaptive synchronous

sampling of clouds with

The SkyScanner project

Adaptive synchronous sampling of clouds with a fleet of UAVs

(energy harvesting)

À un instant t

1. Collect infos. where ?

2. Who flies where ?

Take home messages

- Autonomy calls for specific decisional processes
- Good representations are the foundations of good decisions, and hence of good cooperations
- A variety of representations is required
- Geometry is certainly the most important information to represent (but not only)
- Maintaining the quality of information is essential