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Abstract—This tutorial gives an overview about mathemati-
cal modeling methods for complex and self-organizing systems.
Modeling can be used for the analysis and optimization of
existing systems and for the design and engineering of new
systems. In this tutorial we classify modeling methods into
macro-level modeling and micro-level modeling. By using a
micro-level model, the behaviors of all entities of the system
and the interactions between these entities have to be specified.
The state space of such a model is the Cartesian product
of the state spaces of each entity. For a macro level, many
micro-level states are aggregated into a single macro-level
state. The macro level model describes only the behavior of
the variables of interest. Another classification for modeling
methods is the time space: The advance of time can either be
modeled discrete or continuous. This tutorial contains short
introductions to some modeling methods (e.g. Markov chains,
cellular automata, recurrence equations, differential equations,
. . . ) and a discussion about their possibilities for analysis,
optimization, design and engineering of self-organizing systems.
The applicability of the modeling methods are demonstrated
in some use cases.
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I. INTRODUCTION

This tutorial gives an overview about mathematical mod-
eling methods for complex and self-organizing systems.
Observations and measurements in the real system might
be impossible or infeasible because:
• It does not exist (e.g. the system is in the design

process),
• the Hardware of the system is not available to the

modeler,
• it is too expensive to experiment with (e.g. downtimes

for doing measurements result in lack of profit or an
extra system for testing is highly priced),

• it is too dangerous to experiment with directly (e.g.
high-voltage systems, military systems).

For the analysis, evaluation and optimization of a system
a mathematical model is useful. With the model, new poli-
cies, decision rules, information flows, etc. can be explored
without disrupting ongoing operations of the real system.

New hardware architectures, scheduling algorithms, routing
protocols, reconfiguration strategies, etc., can be tested with-
out binding resources for their acquisition or implementa-
tion. The evaluation of systems under a wide variety of
workload and network types or protocols can be carried out
without excessive costs. Models can be used for suggesting
improvements to the real system under investigation based
on knowledge already gained during modeling. Models can
be used to gain insight into which system parameters are
most important and how these parameters interact. But
there is no perfect model apart from the real system. The
modeling process is a complex art. The artists (modelers)
need creativity and experience to fulfill this task.

In this tutorial we distinguish between micro-level mod-
eling and macro-level modeling. While in micro-level mod-
eling the behavior of each entity and their interactions have
to be specified, macro-level modeling uses the concept of
aggregation to reduce the global state space. In macro-
level modeling only the behavior of the variables of interest
have to be specified. Section II presents methods for macro-
level modeling and Section III covers micro-level modeling
methods. Section IV describes evaluation methods for micro-
level models based on quantitative measures. In section V
we apply some of these evaluation methods in an wireless
synchronization example. Section VI concludes this tutorial
paper. The details of the topics covered by this tutorial can
be found in [1], [2], [3], [4] and [5].

II. MACRO-LEVEL MODELING

In macro-level modeling we abstract from the individual
entities of the system and look only on the variables of
interest. We specify some rules for the change of these
variables during the time. Then we can analyze the behavior
of these variables during the whole run of the system. We
distinguish between continuous-time systems and discrete-
time systems.

A dynamical system consists of

• a state space S,
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• a set T ⊆ R of points t ∈ T in time at which a macro-
state change of the system can be observed,

• an evolution law, which describes the change of the
state during the time.

The state space contains all possible states of the sys-
tem. If more than one value is needed to describe the
state, then it can be of higher dimension, e.g. each state
s = (s1, . . . , sn) ∈ S is a tuple.

A. Continuous time macro-level modeling

In a time-continuous dynamic system, the evolution law
is usually described by a system of differential equations.
We can assume, that each differential equation has order
1, because a higher order differential equation y(n) =
f(t, y, ẏ, . . . , y(n−1)) can always be transformed into a
system of differential equations of order 1 by introducing
new variables z0 = y, z1 = ẏ, . . . , zn−1 = y(n−1). As an
example we consider a damped pendulum (see Fig. 1). Let

Figure 1. Damped pendulum

g be the acceleration of gravity and l be the length of the
pendulum. θ is the angle between the pendulum and the
vertical axis. Let a be the friction coefficient. Then the rule
for the change of the system variable θ can be described by
a differential equation of second order:

θ̈ +
g

l
sin θ + 2aθ̇ = 0

We introduce new variables x0 = θ, x1 = θ̇ and get the
system of differential equations of order 1:

ẋ0 = x1

ẋ1 = −g
l

sinx0 − 2ax1

A differential equation of the form

ẏ = Y (y, t)

in which the time variable also occurs on the right side can
be transformed into differential equations of the form

ẋ = X(x)

by introducing x1 = y, x2 = t, which leads to the
differential equation system

ẋ1 = Y (x1, x2)

ẋ2 = 1

Here, the time is stored in the state space.
In the following we assume that the dynamic system has

the form ẋ = X(x) for a vector field X : Rn → Rn and that
the solution φx0

of this system is uniquely determined by the
initial condition x(0) = x0. The solution can be drawn as
an orbit in Rn, i.e. we have the trajectory {φx0

(t) | t ≥ 0}.
A point x∗ ∈ Rn is an equilibrium point of the system

ẋ = X(x), if X(x∗) = 0. Each equilibrium point is a fixed
point of the flow: φx∗(t) = x∗ for all t ≥ 0. The orbit of a
fixed point is the fixed point itself.

Let x∗ be an equilibrium. x∗ is stable, if each trajectory
starting near x∗ will stay near x∗: For all ε > 0 there exists
δ > 0 such that for all x with ||x−x∗|| < δ we get ||φx(t)−
x∗|| < ε for all t > 0. Otherwise the equilibrium is unstable.
x∗ is asymptotically stable, if it is stable and each trajectory
starting near x∗ will converge to x∗: There exists δ > 0 such
that for all x with ||x − x∗|| < δ we get lim

t→∞
φx(t) = x∗.

An equilibrium x∗ is neutrally stable, if it is stable but not
asymptotically stable.

How can we analyze the behavior of a dynamic system?
One possibility is to solve the differential equation. But this
is usually very difficult and in many cases it is impossible.
Often it is not necessary to know the solution for the
analysis. In the following we will see, how the behavior
can be derived directly from the differential equation. For
a dynamical system ẋ = X(x) we consider the Taylor
approximation of first order:

T1(x) = X(a) +DX(a) · (x− a)

where

DX =

 ∂X1

∂x1
. . . ∂X1

∂xn
. . . . . . . . .
∂Xn
∂x1

. . . ∂Xn
∂xn


is the Jacobian Matrix. The Eigenvalues of the Jacobian
matrix provide information about the stability of equilibria.
The nonlinear differential equation ẋ = X(x) can been
transformed into a linear differential equation by Taylor
approximation and substitution y := x−x∗, where x∗ is an
equilibrium of the system: ẏ = DX(x∗) · y. The map x 7→
DX(x∗) ·x is called linear part of X . The equilibrium x∗ is
called hyperbolic, if all (complex) eigenvalues of DX(x∗)
have a nonzero real part. For a hyperbolic equilibrium, the
transformation to the linear differential equation does not
change the stability:
• x∗ is stable for ẋ = X(x) iff 0 is stable for ẏ =
DX(x∗) · y

• x∗ is asymptotically stable for ẋ = X(x) iff 0 is
asymptotically stable for ẏ = DX(x∗) · y

• The hyperbolic equilibrium x∗ is never neutrally stable.
Since the stability of a linear differential equation can be
easily analyzed, these properties yield the characterization
of the stability of hyperbolic equilibria:



• A hyperbolic equilibrium x∗ is (asymptotically) stable
iff all eigenvalues of DX(x∗) have a negative real part.

• A hyperbolic equilibrium x∗ is unstable iff at least one
eigenvalue of DX(x∗) has a positive real part.

Let us now consider some other examples. A population
model describes the changes of the size N of the population
of a species in dependency of the time t. We abstract
from the behavior of each individual and assume, that the
growth of the population only depends on the number of
the individuals and some constant system parameters. One
of the simplest population model is the exponential growth:
Ṅ = r ·N . The system parameter r is the rate of increase
for the population size N . The solution of this differential
equation is N(t) = aert, where a = N(0) is the initial
value. Now we can restrict the growth by a capacity K,
which defines the maximal number of individuals in the
system such that N can not exceed K. This leads to the
logistic model: Ṅ = rN(1− N

K ). The logistic model can be
simplified by normalizing the variables: τ = rt and n = N

K .
We get the dimensionless logistic model dndτ = n(1−n). This
equation does not depend on the properties of the special
system anymore. The solution of this differential equation
is n(τ) = 1

1+ae−τ , where the constant a is determined
by the initial value: a = 1−n(0)

n(0) . The population n(τ) in
dependency of the time is shown in Figure 2.

Figure 2. Dimensionless logistic model: n in dependency of the time τ

Now we consider two species: Predators and preys. We
are interested in the change of the number of preys B during
the time. We use again the logistic model for the growth of
B. The efficiency of predation p(B) depends on the number
of preys. At high prey density, predation usually saturates,
so p(B) should approach an upper limit a > 0, when B
becomes very large. At low prey density, predation is less
effective. If a prey becomes less common, the predators seek
food elsewhere. So p(B) should tend to zero faster than B,
when B tends to zero. We use p(B) = aB2

b2+B2 and get the

dynamical system

dB

dt
= rB(1− B

K
)− p(B) = rB(1− B

K
)− aB2

b2 +B2

where a describes the upper limit of the predation and
b describes the critical density of the prey. The function
p(B) tends to the value a asymptotically for B → ∞ and
p(B) tends to 0 like B2. The differential equation can be
simplified by introducing dimensionless variables:

τ =
t

t0
, x =

B

B0

We have different possibilities to choose t0 and B0 in terms
of r,K, a, b. If we want to analyze the influence of the
predators on the preys, we can normalize the first term
rB(1−B

K ) and use the second term aB2

b2+B2 for the analysis. If
we want to analyze the influence of the environment capacity
on the preys, then we can normalize the second term aB2

b2+B2

and use the first term rB(1− B
K ) for the analysis.

In the first case we use t0 = 1
r and B0 = K to get

the dynamical system dx
dτ = x(1 − x) − αx2

β2+x2 , where α
is a scaled upper limit of the predation and β is a scaled
critical density of preys. The term for the influence of the
environment capacity has been normalized. In the second
case we use t0 = b

a and B0 = b to get the dynamical system
dx
dτ = sx(1− x

k )− x2

1+x2 where s is a scaled increase rate of
preys and k is a scaled capacity of preys. Here, the term for
the predation has been normalized. Note that this system is
self-organizing: There is no central instance controlling the
birth, death or predation and no individuals needs to know
the global state.

Now we consider the population model of Lotka Volterra,
which also models two different types of species (preys and
predators). Let H be the number of preys and P be the
number of predators. A birth rate b for the prays describes
the rate of increase of the variable H . A death rate d for the
predators describes the rate of decrease of the variable P .
Predation leads to an increase of the population of predators
and a decrease of the population of the preys. Let s be
the parameter describing the efficiency of predation. Let e
be the parameter describing the increase of predators after
successful predation. Then we can describe the evolution
law with the following differential equation system:

Ḣ = bH − sHP
Ṗ = −dP + esHP

We can simplify this model by introducing new variables:

h = Hes
d p = Ps

b

τ =
√
bdt ρ =

√
b
d



which leads to
dh

dτ
= ρh(1− p)

dp

dτ
= −1

ρ
pρh(1− h)

This equation system depend only on one parameter: ρ
measures the ratio of the birth of preys to the death of
predators. There are two equilibria: (h∗1, p

∗
1) = (1, 1) is

neutrally stable and (h∗2, p
∗
2) = (0, 0) is instable.

Let us consider again the example of the damped pendu-
lum.

ẋ0 = x1

ẋ1 = −g
l

sinx0 − 2ax1

The equilibria are (nπ, 0) for n ∈ Z. The Jacobian matrix
is

DX(x0, x1) =

(
0 1

− gl cosx0 −2a

)
For even n the Jacobian matrix DX(nπ, 0) has the Eigen-
values λ = −a ±

√
a2 − g

l , so the real part of the
Eigenvalues are negative and the equilibrium (nπ, 0) is
asymptotically stable. For odd n we get the Eigenvalues
λ = −a ±

√
a2 + g

l , so one positive real Eigenvalue and
one negative real Eigenvalue. In this case the equilibrium
(nπ, 0) is unstable.

Another analysis method for the stability of equilibria is
based on Lyapunov functions: Let x∗ be an equilibrium. Let
V be a real function defined on a neighborhood U of x∗

with
• V (x) > V (x∗) for all x ∈ U
• d

dtV (φt(x))|t=0 < 0 for all x ∈ U \ {x∗}
Then V is called strong Lyapunov function for the flow. If
the second condition is only d

dtV (φt(x))|t=0 ≤ 0 then V
is called weak Lyapunov function for the flow. Then the
following properties can be shown:
• If there exists a weak Lyapunov function, then x∗ is

stable.
• If there exists a strong Lyapunov function, then x∗ is

asymptotically stable.
As an example we consider the Van de Pol oscillator,

which is a harmonic oscillator with a nonlinear friction term:
ẍ+ λ(x2 − 1)ẋ+ x = 0. This equation is transformed into
a system of equations first order:

ẋ0 = x1

ẋ1 = −x0 − λ(x20 − 1)x1

The equilibrium is (0, 0). The function V (x0, x1) := 1
2 (x20+

x21) satisfies V̇ (x0, x1) = x0ẋ0 + x1ẋ1 = −λ(x20− 1)x21. In
the neighborhood of the equilibrium (0, 0) we have (x20 −
1)x21 < 0, so V̇ (x) < 0 iff λ < 0. The equilibrium (0, 0) is
asymptotically stable for λ < 0.

The advantages of this method are:
• It can be used for arbitrary differential equations.
• The solution of the differential equation need not be

known.
The disadvantage is that we have to guess the Lyapunov
function. But in many physical systems the energy of the
system is a Lyapunov function. This was also the case in
the example of the van de Pol oscillator.

As a summary, the following algorithm describes how a
complex system can be modeled and analyzed:
• Description of the system by local interaction rules

– Global dynamic parameters can be part of the local
rules in form of a density to describe probabilities
or rates of local events.

– Global constants can be part of the local rules in
form of system parameters.

– Definition of global variables, which are interesting
for analysis.

• From the local rules, the definition of the differential
equations for these global variables can be derived.

• Calculate the equilibria
• Calculate the Jakobi matrix
• If the differential equality is linear, the stability can be

derived from the eigenvalues of the matrix.
• If the differential equality is not linear:

– If the equilibrium is hyperbolic, then the stability
can be derived from the eigenvalues of the matrix.

– Otherwise search for a Lyapunov function

B. Discrete time macro-level modeling

It is also possible to use a discrete time variable for
building the model. The set T of all points in time is a
discrete set, usually T = N0 = {0, 1, 2, . . .}. The rule
for the change of the system variables can not be given
by a differential equation, but by a recurrence equation:
xt+1 = f(xt), where f : J → J for a set J ⊆ Rd. The
orbit of a starting point x ∈ J is {fn(x) | n ∈ N0}. A
point x∗ is an equilibrium point (fixed point) if f(x∗) = x∗.
The orbit of the equilibrium is {x∗}. x is a periodic point
if fk(x) = x for some k > 0 The period length is the size
of orbit {x, f(x), . . . , fk−1(x)}.

Let x∗ be an equilibrium. x∗ is stable, if each trajectory
starting near x∗ will stay near x∗: For all ε > 0 there exists
δ > 0 such that for all x with ||x−x∗|| < δ we get ||f t(x)−
x∗|| < ε for all t > 0. Otherwise the equilibrium is unstable.
x∗ is asymptotically stable, if it is stable and each trajectory
starting near x∗ will converge to x∗: There exists δ > 0 such
that for all x with ||x− x∗|| < δ we get lim

t→∞
f t(x) = x∗

Let J be a closed set and f be a contracting map, i.e.
||f(x)−f(y)|| ≤ c||x−y|| for all x, y ∈ J for some constant
c < 1 Then the following properties hold:
• There exists a unique equilibrium x∗.
• x∗ is asymptotically stable.



• For every starting point x the sequence (f t(x))t≥0
converges exponentially to the equilibrium.

In the following we assume that f : J → J is dif-
ferentiable. Like in the continuous case we consider the
linear part x 7→ Df(x) of the map f . An equilibrium x∗ is
hyperbolic, if the (complex) eigenvalues of Df(x∗) are not
on the unit sphere: |λ| 6= 1. For a hyperbolic equilibrium,
the transformation to the linear part yt+1 = Df(x∗) ·yt with
y = x− x∗ does not change the stability:
• x∗ is stable for xt+1 = f(xt) iff 0 is stable for yt+1 =
Df(x∗) · yt.

• x∗ is asymptotically stable for xt+1 = f(xt) iff 0 is
asymptotically stable for yt+1 = Df(yt) · yt.

As for the continuous case, this allows the analysis of the
stability of hyperbolic equilibria:
• x∗ is asymptotically stable iff |λ| < 1 for all eigenval-

ues λ of Df(x∗).
• x∗ is unstable iff |λ| > 1 for some eigenvalue λ of
Df(x∗).

As an example we consider the discrete version of the
logistic model: Nt+1 = Nt exp(r(1 − Nt

K )), where the
system parameter r > 0 defines the birth rate and K > 0 is
the capacity. We get the normalized model with nt = Nt

K :

nt+1 = nt exp(r(1− nt))

We have two equilibria: x∗ = 0 and x∗ = 1. The derivation
of the map f(n) = n exp(r(1−n)) yields f ′(0) = exp(r) >
1 and f ′(1) = 1 − r. Therefore x∗ = 0 is an unstable
equilibrium and x∗ = 1 is an asymptotic stable equilibrium
for 0 < r < 2.

Every continuous dynamic system can be discretized: The
time-discrete analogue of the continuous system ẋ = X(x)
is xt+1 = xt +X(xt). For f(x) := x+X(x) We have the
following properties:
• x∗ is an equilibrium of the continuous system iff it is

an equilibrium of the discrete system.
• The Jacobian matrix is Df(x∗) = E+DX(x∗), where
E us the unit matrix.

• Each Eigenvalue of Df(x∗) is of the form 1 + λ for
an Eigenvalue λ of DX(x∗).

• If |1 + λ| < 1 then the real part of λ is negative.
• The asymptotic stability in the discrete system implies

the asymptotic stability in the continuous system.
• But an (asymptotic or neutral) stable equilibrium in the

continuous system can become unstable in the discrete
system.

C. Markov processes

Another macro-level modeling method is based on
Markov processes [2].

A Markov process is a stochastic process that fulfills
the Markov property: The next state change (time of state
transition, destination state) depends on the current state

only, not on the state history of the stochastic process. The
time can be chosen either discrete or continuous, and also
the state space can be chosen either discrete or continuous.
A Markov process with discrete state space is also called
Markov chain. A Markov chain with discrete time T = N
can be described by a discrete set S of states and probabili-
ties for the state transitions pij for i, j ∈ S. The probabilities
pij might be independent of the time (homogeneous Markov
chain) or dependent on the time (inhomogeneous Markov
chain). Stable equilibria of discrete-time Markov chains
are absorbing states, which can directly be identified by
observing a diagonal element of value 1 within the transition
probability matrix P = (pij)i,j∈S . If a unique steady-
state probability vector πππ exists, it can be determined by
solving the system of equations πππ = πππP ,

∑
i∈S πi = 1 .

A continuous-time Markov chain can be described by a
discrete set S of states and rates for the state transitions
qij for i, j ∈ S. The rates qij might be independent of
the time (homogeneous Markov chain) or dependent on the
time (inhomogeneous Markov chain). Stable equilibria can
directly be identified by observing a row of zeros within the
CTMC’s transition rate matrix Q. If a unique steady-state
probability vector πππ exists, it can be obtained by solving
0 = πππQ ,

∑
i∈S πi = 1 .

III. MICRO-LEVEL MODELING

While macro-level modeling abstracts from the entities in
the system and looks only at the variables of interest, micro-
level modeling looks inside each entity: The behavior the the
entities and their interactions have to be described. For the
micro level modeling, we use the methods of [4].

A. Graph representation of system

The topology of a system can be modeled by a directed
graph G, where V is the set of vertices and K is the set
of directed edges. Each node v ∈ V represents one entity
of the system and each edge represents a communication
channel between two entities. The behavior of each entity
v ∈ V can be described by a stochastic automaton av:
• The automaton receives local input xw ∈ A from

predecessor nodes w ∈ pred(v).
• At each point of time the automaton has an internal

state s ∈ Sv .
• The automaton decides nondeterministically about the

change of state and about the local output to the
successor nodes. Probability distributions can be used
to describe the outputs and the state transition function
of each stochastic automaton.

The influence of the environment on the system can be
modeled by special vertices (external nodes) in the graph.

As an example consider some cars on a highway, which
have an ambient intelligence (AmI) device. Information
about the current position and the current speed is trans-
mitted by the device to the devices of the other cars. Based



on the information sent by the other cars, the device can
give hints to the driver (e.g. “traffic jam ahead” or “slow
down”). Each node of the graph represents one car. In this
model, the edges of the graph change dynamically: There is
an edge between two cars iff they are close to each other,
such that communication is possible. The internal state of
the automaton contains some information like speed and
position. At each point in time, the edge between two nodes
contains the information sent by the AmI device. While the
behavior of the AmI devices is deterministic, the change of
the state can be modeled stochastic, because the behavior of
a human being is usually not predetermined.

When we consider the global view on the system at
a point of time, then we see a current local state inside
each automaton and a current value on each edge, which is
transmitted from one node to another node. Such a global
view is called configuration. It represents a snapshot of the
system.

To analyze the behavior of a system, we initialize it at
time t0 = 0 by choosing a start configuration c0 ∈ Γ,
where Γ is the set of all possible start configurations (with a
given probability distribution). Then the automata produce a
sequence c0 → c1 → c2 → . . . of configurations during the
run of the system. Since the automata and the initialization
are not deterministic, the sequence c0 → c1 → c2 → . . . is
not uniquely determined by the system, but it depends on
random events. So for each time t ≥ 0, we have a random
variable Conft, which describes, with which probability
P (Conft = c) the system is in a given configuration c at
time t.

Because of the exponential growth of the global state
space with increasing number of entities, an analytical anal-
ysis of the system is usually impossible. Therefore, micro-
level models are often analyzed with computer simulations:
In each simulation run, pseudo random number generators
are used to produce samples for the random variables in
the model. This can be done for specifying the initialization
(the pseudo random number generator produces an initial
configuration) and for the state change in each step in the
automata (the pseudo random number generator produces
the next internal state and the local output to the successor
nodes). Then the behavior of the system is deduced from
the results of the simulation runs.

For the example of traffic with AmI devices, such simula-
tion runs can be done for the analysis of different strategies
(which advice should the AmI device give to the driver?)
to achieve different goals (e.g. low size of traffic jam, high
throughput, high safety, . . . ).

B. Cellular automata

Cellular automata (CA) work on a set of cells. At each
point in time, each cell has an internal state. The (determin-
istic or stochastic) change of the state of a cell depends on
the current state and on the states of its neighbors. For an

infinite cellular automaton of dimension n the set of cells
is C = Zn and for a finite cellular automaton of dimension
n the set of cells is C = ZnL with periodic boundaries (e.g.
cells on a torus). Let Q be the set of all possible states of a
cell.

Let us now consider a one-dimensional CA. For a cell
i ∈ C and a point in time t ≥ 0 the current state
in cell i is denoted by s(i, t). The state transition can
be represented by a (deterministic or stochastic) function
s(i, t+ 1) = f(s(i− rl, t), s(i− rl + 1, t), . . . , s(i+ rr, t)),
where rl and rr are left and right radius of the rules. This
local evolution operator f has n = rl + rr + 1 parameters.
For a stochastic CA, the image of local evolution operator
can be seen as a discrete random variable with values in
Q. The local evolution operator induces a global evolution
operator F on the set QC of all configurations of the
cellular automaton: The next configuration St+1 is the result
of the global evolution operator F applied on the current
configuration St:

St+1 = F (St)

For 2-dimensional CA different lattices and different
neighborhoods possible. For example the lattice can be a
rectangle with a Moore neighborhood or von Neumann
neighborhood (see Fig. 3).

Figure 3. Moore neighborhood (left) and von Neumann neighborhood
(right)

Elementary CA are the easiest form of CA. They have
dimension n = 1 and two states Q = {0, 1}. The state 1
means “active cell” and 0 means “empty cell”. The radius
is rl = rr = 1 = r. The neighborhood of a cell consists
of three cells, so the local evolution operator has the form
f : Q3 → Q. There are 28 = 256 different elementary
local rules. Such a rule can be represented by a table. One
example is given in table I. This table defines for each
combination of three old states the new state. The 8 binary
values can be represented as a decimal value (code of the
rule): 101110002 = 184. Rule 184 can be used as a model
for cars driving from left to right, where an active cell means,
that a car is inside the cell. If the next cell is free, the car
drives to the next cell, otherwise it stays at the same cell.

Starting at time t = 0 with a random initialization
of the cells, the rule is applied in each step to compute



111 110 101 100 011 010 001 000
1 0 1 1 1 0 0 0

Table I
RULE 184

the next valuation of the cells. For the analysis of the
behavior of a cellular automaton we usually are interested
in the properties of the global state for t → ∞. Especially
questions like “Is there a global structure emerging from a
random initialization?” are of main interest. In the case of
the rule 184 it can be shown that for a car density ρ ≤ 1

2 in
the finite lattice ZL all traffic jams will disappear: Every car
is surrounded by two empty cells. For ρ = 1

2 the resulting
structure is an oscillation with period 2: Each cell is active
in one step and empty in the next step. For ρ ≥ 1

2 all empty
spaces are reduced, such that every empty cell is surrounded
by two active cells.

For other rules, where the number of objects in the system
is not constant, other questions might also be interesting.
For example, does the density ρ(t) of the objects converge
for t → ∞? Different analysis methods (e.g. mean field
approximation or local structure theory) can be found in
[1].

Note that a cellular automaton can be seen as a special
case of the model described in Section III-A: The edges
in the graph are the links in the neighborhood and the
communication from one node to another node is just its
internal state.

IV. QUANTITATIVE MEASURES FOR ANALYSIS AND
EVALUATION OF SELF-ORGANIZING SYSTEMS

In the last years, much research has been done in the topic
of self-organizing systems. There is no generally accepted
meaning of self-organization. Some typical features of self-
organization are autonomy, emergence, self-maintenance,
adaptivity, decentralization, and optimization.

The topic of self-organizing systems can be considered
with the following goals:

1) Analysis and evaluation of self-organizing properties
in a given system.
To achieve this goal, the system is analyzed with
respect to the features mentioned above: Is the system
fully autonomous? If not, how much external control
is needed to fulfill the given task? Does a special
structure emerge from the local interactions between
the entities? These and other questions have to be
answered to decide, which self-organizing features the
system has.

2) Optimization of a given system with respect to some
specified self-organizing properties.
There are many possibilities to make changes to a
given system (e.g. change a system parameter or

some local rules, introduce some new components
with additional features, etc.) to achieve this goal. The
impacts of such changes can be measured in the real
system or analyzed in a model (either analytically or
with simulations).

3) Design and engineering of a new self-organizing sys-
tem.
In this task, design criteria have to be specified, such
that the system fulfills the desired self-organizing
features. Here we can use mathematical models to
compare different design decisions with respect to
some specified self-organizing features.

All three goals have the same requirement: We need quan-
titative measures that can be applied to a specified system (or
to a model of a system) and which yield information about
the contained self-organizing properties. Some quantitative
measures have been developed in the recent years:

• Autonomy
How much control data from external entities are
needed to keep the system running?

• Emergence
How many globally coherent patterns are induced by
local interactions?

• Target orientation
Is the high level goal, that the system designer had in
his mind, reached by the system?

• Adaptivity
Is the high level goal still reached after changes in the
environment?

• Resilience
Is the high level goal still reached after unexpected
impacts on the system (e.g. break down of some nodes,
attacks by an intruder)?

• Global state awareness
How much information does a single node have about
the global state (averaged over all nodes)?

Each of these measures yields a value in the interval
[0, 1], where 1 means, that the self-organizing property is
fully satisfied, while 0 means, that it is not satisfied at
all. Some of the quantitative measures are based on fitness
functions, which have to be defined by the system designer
(what is the goal of the system and what are the good/bad
configurations?), other quantitative measures are based on
the statistical entropy H(X), which measures the amount
of information of a given random variable X .

In [3] the level of emergence is defined by measuring
dependencies in the communication. In some systems, it may
happen, that some patterns or properties appear in the system
as a whole, but do not appear in the single components. For
a point in time t ≥ 0 the level of emergence at time t is



defined by

εt = 1− H(Conft |K)∑
k∈K

H(Conft |{k})

In this definition, H(Conft |K) measures the entropy of the
values on the edges (communication between entities) in
the configuration at time t without taking account of the
internal states of the automata. The information of all edges
is compared to the information contained in each single
edge. If at the current point in time t ≥ 0 there are large
dependencies between the values on the single edges (which
can be seen as patterns), the level of emergence is high:
εt ≈ 1. If the values of nearly all edges are independent,
there will be no pattern, so the level of emergence is
low: εt ≈ 0. Therefore the map t 7→ εt measures the
dependencies occurring during the whole run of the system.

Note that in literature the definition of emergence is not
unique. There also exist some work (see e.g. [6]), where
emergence is defined as an unexpected decrease in relative
algorithmic complexity.

V. APPLICATION: SLOT SYNCHRONIZING IN WIRELESS
NETWORKS

In this section we show, how the modeling and evaluation
methods of the sections III and IV can be used for a slot
synchronizing algorithm in wireless networks. Other appli-
cations of the presented micro-level modeling and macro-
level modeling methods can be found in sections II and III-B

In the slot synchronization algorithm [7] we consider
a wireless network, where time is divided into slots for
communication. There is no central clock, which defines
when a slot begins. The nodes try to synchronize the slots
in a decentralized manner. At each point in time, each node
is in one of four different states (see Fig. 4):
• In the transmission state, the node transmits a pulse to

its neighbors to indicate the beginning of a slot.
• In the listening state, the node can receive and decode

pulses from its neighbors and it adjusts its phase
function φ according to these pulses. The listening state
ends, when the threshold φmax = 1 is reached.

• In the waiting state and in the refractory state, the node
does nothing.

The length of an uncoupled cycle is 2T with T > 0.
In the corresponding micro-level model, the graph de-

scribes the topology of the wireless network: V is the set of
wireless nodes and K is the set of edges representing the
communication channels between the nodes. The alphabet
for communication is A = {0, 1}, where 1 is a pulse and
0 is no pulse. The current state s ∈ Sv of a node v ∈ V
contains information about
• the current value of the phase function φ ∈ [0, 1],
• the current position in the cycle γ ∈ [0, 2T ],
• the decoding delays of received pulses.

The graphs of γ and φ in dependency of the time are
shown in Fig. 5 and Fig. 6.

Figure 4. Four states in the slot synchronization algorithm

Figure 5. γ(t) in the slot synchronization algorithm

Figure 6. φ(t) in the slot synchronization algorithm

Each node v stores some information Dw about the
pulse received from a neighbor w ∈ V in its internal
state: When a firing pulse is received at the object v from
another object w in the listening state then the value Dw

is initialized with a constant Tdec. After the transmission of
the pulse is finished, Dw decreases during the time. When
Dw reaches the value 0, then the decoding of the pulse is
finished, and the phase function φ is adjusted by adding
a value ∆φ. Negative values for Dw are used to indicate



that the value is irrelevant, since the phase function has
already been adjusted according to the received pulse of w.
Also in the other intervals (waiting state, transmission state,
refractory state) a negative value is used. The state space of
the automaton av is Sv = [0, 1] × [0, 2T ] × (−1, Tdec]

V .
The output map of the automaton av yields the value 1
during the transmission state and 0 otherwise. The system
is autonomic, because no external control is needed, so the
quantitative measure for autonomy yields αt = 1 for all
points in time. The synchronization of the objects can be
seen as an emergent pattern: it is a global structure in the
system, which is induced by the local interactions. After
the synchronization is finished, the level of emergence εt
is nearly one, where the exact value of εt depends on the
number of nodes in the system: The larger the system,
the more dependencies exist in the communication. The
level of emergence (after completing the synchronization)
in dependency of the number of nodes is shown in Fig. 7.

Figure 7. Level of emergence after synchronization in dependency of the
number of nodes

VI. CONCLUSION

Mathematical modeling can be used for a wide variety
of systems: Technical systems, biological systems, physical
systems, and many more. Quantitative measures can be used
in models for the analysis, evaluation and optimization of
existing systems and for the design and engineering of new
self-organizing systems.
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