Self-organizing Synchronization in Wireless Networks

Christian Bettstetter

Networked and Embedded Systems University of Klagenfurt Lakeside Labs GmbH

> Talk at Lakeside Research Days July 15, 2009

People

Lead

Christian Bettstetter

Professor

Administration

Kornelia Lienbacher

Office

Post Docs

Dr. Wilfried Elmenreich

Senior Researcher

Dominik Egarter

System Administrator

Dr. Evsen Yanmaz Senior Researcher

People: 9 PhD Candidates

Helmut Adam

Researcher

Günther Brandner

Researcher

Sérgio Crisóstomo

Scholar

lstván Fehérvári

Researcher

Michael Gyarmati

Researcher

Johannes Klinglmayr

Researcher

Nikolaj Marchenko

Researcher

Udo Schilcher

Researcher

Alexander Tyrrell

Scholar

3

Research Portfolio

Networked Communication Systems					Paradigms
Alexalder			Focus on		Self-organization
and Protocols	Theory	4>	Mobile & Wireless Networking	≁ ►	Multihop relaying
Modeling and	Modeling and System and Protocol Simulation Architectures		j		Cooperation
Simulation					Mobility

- Cooperative relaying in wireless networks
- Self-organizing synchronization in wireless networks
- Flooding in complex networks
- Collaborative microdrones
- Modeling sparse wireless networks
- Real-time communication for modular robot systems
- Methods for the design of self-organizing networks
- Middleware for network eccentric and mobile applications (MiNEMA)

orange

FШF

Lakeside Labs

dŏcomo

DOCOMO Euro-Labs

U.PORT(

- Cooperative relaying in wireless networks
- Self-organizing synchronization in wireless networks
- Flooding in complex networks
- Collaborative microdrones
- Modeling sparse wireless networks
- Real-time communication for modular robot systems
- Methods for the design of self-organizing networks
- Middleware for network eccentric and mobile applications (MiNEMA)

Joint work with Alexander Tyrrell and Gunther Auer

7

Lakeside Labs

docomo

DOCOMO Euro-Labs

Time Synchronization of Fireflies in South-East Asia

"I could hardly believe my eyes. I saw .. a synchronal .. flashing of fireflies." (P. Laurent, *Science*, 1917)

Modeling One Firefly: Integrate-and-Fire Oscillator

Modeling Two Fireflies: Coupled Integrate-and-Fire Oscillators

Several Coupled Integrate-and-Fire Oscillators

Mathematically proven to lead to synchronization

Problem statement: Can we apply this distributed algorithm to achieve slot synchronization in ad hoc networks?

Why is this algorithm appealing?

- Simple local behavior leads to synchronization of the entire network
- Algorithm is scalable and adaptive to changes in the topology
- Nodes do not need to distinguish between transmitters

Why do we need slot synchronization?

 Essential building block for functions in communications and control e.g. for medium access, distributed sensing, scheduling of sleep phases, and cooperative diversity

Can Firefly Synchronization be Applied to Wireless Systems?

Original Firefly algorithm assumes:

- No delay in transmitting and decoding pulses
- Synchronization pulses are infinitely short
- Nodes listen and transmit at the same time
- All nodes form a fully meshed network

Removing one or more of these assumptions causes severe problems

Meshed Emergent Firefly Synchronization (MEMFIS)

- Solution taking into account the technological constraints of wireless systems while maintaining nice properties of firefly sync.
- A synchronization word that is common to all nodes is embedded into each payload packet.
- This synchronization word is detected at the receiver using a correlation receiver detecting the synchronization word.
- Synchronization emerges as nodes exchange payload packets randomly, hence avoiding a dedicated synchronization phase.

Meshed Emergent Firefly Synchronization (MEMFIS)

Meshed Emergent Firefly Synchronization (MEMFIS)

A. Tyrrell, G. Auer, C. Bettstetter. Emergent Slot Synchronization in Wireless Networks. Under minor revision at *IEEE Transactions on Mobile Computing*.

Research Issue

 Robustness of self-organizing synchronization against faulty and malicious nodes

Implementation

- Demo applications with light and audio signals
- Prototyping on programmable radio platform

