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Example Project: EcoGrid EU EcoGrid*

www.eu-ecogrid.net

= New energy market design and
implementation

= Model-predictive load shed/shift
= Interoperability of equipment

= Information security

= System integration

= PowerMatcher, DEMS, grid plausibility,
market platform, CellControler, etc.

= OpenADR

= Fine grained distribution grid model
parameters

= Intelligent demand side «

DEMS: Decentralized Energy Management System (Siemens)
OpenADR: Open Automated Demand Response
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An intelligent demand side

= GRID: Frequency/Voltage support via
= Reactive power in DG
= Fair generation shed
= Cooperative loads

= MARKET:
= Reduce consumption peaks / end user costs
= Increase renewable generation
= Demand elasticity

DG: Distributed Generation
09.07.2012 3
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Example: elastic demand

A Price ,Strategic’ withdrawal
of supply capacities
P:
<
Supply curve
More elastic demand curve
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Example: Voltage Support
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EcoGrid EU Markets EcoGrid*

Quantity Market-based
operation Direct
i control

09.07.2012
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DSM Time Scales

Spinning
— Reserve
Daily & B (fast) DR
Peak Real-Time
Load
Managed

Daily
Energy
Efficiency

Service Levels Time of Use Service Levels
Optimized Optimized Temporarily Reduced

DSM: Demand Side Management
09.07.2012 DR: Demand Response 7



AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

Types of Demand Response

= Price Response:
= Triggered by wholesale market prices (e.g. Real-time Pricing)
= Goal: Peak load reduction
= Measure of Success: CO2 / Utility bill savings

= Reliability Response:
= Triggered by the conditions of the grid
= Goal: Peak load reduction upon request from Utilities or DSO/TSO

= Measure of success: Financial incentive based on how much electric
load (kW) is reduced

DSO/TSO: Distribution/Transmission System Operator
09.07.2012
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Automated Demand Response: OpenADR

Uti
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| and settlement
system
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~i
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CLIENT
Etc.
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Interval | '
09.07.2012 Meter . ADR: Automated Demand Response 9

HVAC: Heating Ventilation, Air Conditioning

DRAS: Demand Response Automation Server
EMCS: Energy Management Control System




OpenADR Bidding Example

DRAS
Ul'Web Semver

Program Operator Web Client

Utility
Information
System
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Refrigerators as regulation power providers

= 2-point controllers

= Setpoint adjustment

= Frequency-dependent

= Fairness via central registry

09.07.2012
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Distributed Grid Control Examples

=  “GridFriendly” (PNNL)
= KNIVES (Japan)
= Aggregators

= Site Controls,

= Constellation,...
= California

The Grid Fh'emﬂy"controller nses data from the power grid to balance energy supply and demand.

= ORB
= Smart AC
= PCT

= “50.2 Hz problem”
with 10 GW PV inverters
in Germany 20117

PNNL: Pacific Northwest National Laboratory
AC: Air Conditioning
PCT: Programmable Communicating Thermostat
09.07.2012 PV: Photovoltaics 12
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Modern energy (load) management

= Limitations of classical demand side management
=  Complex commissioning
= No planning (pre-cooling, etc.)
= No load- or process model — brutal shedding
= No plug-and-participate, security, scalability, etc.

=  Missing
= Dynamic priorities (depend on situation,...) — Algorithm
= Process model (how full are “virtual storages™?) — Model -

= Devices register and interoperate autonomously
with system — Self Organization

09.07.2012 13



Model Predictive Controls (MPC)

= Classic Controls (PID etc.)

r—@

MASTER
CONTROLLER

AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

€ | SUBMASTER

CONTROLLER

SYSTEM

=  Predictive Controls

09.07.2012

Has forecast
Has model
Has time...

MPC controller

Dynamic
optimizer
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model
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Example Model Predictive Controls

NS

<«,0/‘
O

lrhsol
HEAT

EXCHANGER

DEC System

09.07.2012 DEC: Desiccant Evaporative Cooling 15
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MPC - Detalls
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MPC - Results
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MPC - Detalls
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Modeling future energy systems

= Heat exchanger white/grey-box model
= Energy system: black box

= Four fundamental types of elements
= Continuous: energy technology, infrastructure, physics
= Discrete: ICT, software, controls, communication
= Game Theory: markets, market players, roles, agents
= Stochastic: weather, people, aggregated/not-modeled behavior, statistics

= Multiscale
= Size from microgrids to interconnected grids
= Time from harmonics to demographics

09.07.2012 19
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Use Case 1: el. heating < Consumpion . Thermal Fiow
SUM: g nformation o
= Thermal Domain —*1 Hihouse] [
= Agents/Market > 12 house] -
= Stochastic Events Market - .
T Price 2

-F'

Hn [house] h—

= Describe via bond graph

= Analyze interplay of
continuous domain and Price Tset

asynchronous events
L Controller
= Scalability of platforms
=} Thermal Mass Tin
+

= Physical parts isolated

pu I

Environment

Heater p

Energy Counter

T
Out0 + outl
Vent Schedule

conductl conduct2

09.07.2012
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Use Case 2: el. power station

= Physical parts not isolated
» Plus: Electrical domain

= |deal grid

= Non-ideal power station
* Plus: Mechanical domain

= Further use cases
= 3: Thermal grid
= 4: Non-trivial market
= 5: Communication network
= 6. EV-charging

09.07.2012 EV: electric vehicle
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Results up to now

= First fundamental question: Physical domain + asynchronous events
l.e. continuous and discrete

=  Two types of modeling paradigms / simulation philosophies
= Agent-oriented
« Autonomous modules
« Components determine synchronization points
« Examples: GridLAB-D, Omnet++
= Monolithic
» Equation-based model of physics -> ODE-> code
« Solver integrates and tries to find zero crossings
« Examples: Modelica, Simscape

ODE: Ordinary Differential Equations
09.07.2012
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Agent-based Modeling
» E.g.: GridLAB-D (PNNL)

= PRO
= High Performance
= Plugin-system
= Hierarchies
= Communication utilities

= CON

= No higher-level simulation
(integrators etc.)

= Written in (legacy) C

09.07.2012

AI I AUSTRIAN INSTITUTE
I-M'D B

pre-sync pass sync pass

post-sync pass

object rank
(iterate)

1y

.
]
1 | child #1
|
child #2

child #3

—@

: [ohaer]
>
Yo @ e
+ + + - + + e
Lt t, t, ot t,
t @
/A
t } + i } =
Lt t, t, ot t,
23

PNNL: Pacific Northwest National Laboratory
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Monolithic Modeling

= E.g.: Simscape, Modelica Energy E +E +E =0 / External World of \
: o Component A
= PRO Potential Pa—Pb—PC
- *s Eb
= Convenient p, | B

~

= Multi-domain physics A E i/
P o
= Strong syntax :
= Good docu \\E C \ /

= CON
= Low Performance

= Closed platforms? . .
flattening Flat sortlngI Sorted
Madel > Model Equations
Index l
reduction
Executable [«¢=——— ODE [ @—— Index Rgduced
Equations

09.07.2012 24



Scalability Test

M: monolithic
A: Agent based
Various solvers tested
GridLAB-D top scorer
= UC 1 analytically solved
= Unfair comparison

Massive problems with
asynchronous events

Simscape worst

Tradeoff between comfort
and performance

New candidate: Ptolemy I1?

09.07.2012
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Ptolemy Il
= Origin: embedded

SyStemS Continuous Director Econsamad
= Actors/Directors
= Hierarchies T.‘;“" TimedPloter
= Heterogeneous e’

Models: continuous

and discrete mixed
= Open source, UCB Rt
= Execute sub-models e “‘“““‘:‘J

. . . b - r
within threads -> multi -
core!
Tset ArrayToEIe nts

» D—)

UCB: University of California, Berkeley
09.07.2012 26
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The future: parallel, heterogeneous co-simulation

= Commercial model libraries (PowerFactory, TRNSYS & Co.): 100s of
person-years -> use them

=  Flexible new tools: no limits -> use them

= Standardized Interfaces a’'la FMI (Dymola!), HLA
= [ntegration via Ptolemy Il
= Parallel Computation
= Clouds/Clusters: Globus, xCAT & Co
= Model decomposition recipes
= E.g. power line length vs. inter-node simulation latency

XCAT: Extreme Cloud Administration Toolkit
FMI: Funtional Mockup Interface
HLA: High Level Architecture

09.07.2012 27
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Conclusion

= [ntelligent Load Side?
= -> Knowledge
* Process models
« Communication (prices, schedules,...)
= -> Decisions
« MPC Algorithms
« Communication (negotiations,...)

= [T is part of the solution and the problem
= Research needs in modeling systems of systems

MPC: model-predictive controls
IT: information technology

09.07.2012 28
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Thank you

Peter Palensky

Principal Scientist

Complex Energy Systems

AIT Austrian Institute of Technology
Energy Department
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Example: IEC 61850 Protocol Family

SMV GOOSE ACSI
(Sampled Measuring (Generic Obj. Orient. GSSE TimeSync (Abstract Comm.
Value) Substation Event) Services Interface)
A A A A
stream ams
Latency
MMS
(Manuf. Mess. Spec)
. UDP TCP
GSSE T-Profile (User Datagram P) (Transmiss. Control P)
(Generic Subst. Status
Event) IP
\ 4 \ 4 (Internet Protocol)

Ethernet (ISO/OSI Layers 1 & 2)

09.07.2012 Real-Time Non-Real-Time 30
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= |EC 61850 Standard i
= Transport, data types, profiles
= Zigbee Smart Energy Profile

= Shedding, metering, time-of-use prices,
display, PCT... ]

= BACnet Load Control Object |
= Shed duration, shed level (%), ... |
= Hierarchy of objects ‘
= Others: OpenADR, eBIX, etc.

R econfigure
Pending

1ganbaypay ganeoay
Cancel s hed

Shed Request
Pending

- _

Shed Non-
Compliant

Image: ASHRAE

ADR: Automated Demand Response
09.07.2012 PCT: Programmable Communication Thermostat
eBIX: energy Business Information Exchange
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Ptolemy Il Example: Simple Use Case

DE Director

Tamt

PhysicalModel Register Scale

ThermalResistor

e \V:200.0 e rho: 1.2041

readout

@ Pheat: 1500.0 e Cth: 430.587

guard: heaterOn

set: heat.Tin0 = Tin;
heat.coeffA = 1.0/(tho*V*Cth);
heat.coeffB = Pheat/(tho*V*Cth)

Continuous Director

heaterOn

Econsumed
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OF TECHNOLOGY

o coeffA: 9.643763118674969E-6

e coeffB: 0.014465644678

B guard: Tamb, |resent 88 Rin_iresent e @ Tin0: 17.9999493063549 Tin
» o S L b R
Tamb
Theat
Econsumed Tin Tcool Theat
heaterOn S N -
Tecool
. . Integrator]
= Example: Software agent Tamb Expressior
. Loiy. coeffA*(Tamb-Tin)/Rth + coeffB J-
for price-dependent jE
ope rations
Rtk

= Variable structure dynamics
= Physics via integrator

09.07.2012
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Classical Maximum Demand Monitor consumers

= Traditional architecture
= Shed limitations

= Max twice daily,

= max 30min,

= not 8am-10am,...

= Desired load profile 0
= Pmax, schedule,... o
= 1 Energy meter o

= Priorities

E-Ctr | Central « rules

Energy

09.07.2012 33



Simple rule base

= Billing based on
energy within
measurement period

p

= Energy trajectory
within tp

= Static priorities

= P1>P2>P3

= New goal every tp
(15min)

09.07.2012

allowed
device

classes af
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