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Abstract—This paper proposes a novel learning framework
that merges robotics and musical elements to create an engaging
educational platform. With the increasing importance of robots
in educational systems, designing a system that utilizes music
and robotics as tools for teaching and learning is of high value.
The concept involves a Colorized Music-based Maze (CMM)
that integrates musical notes to create a challenging playground
for robots. Students can instruct their robots to move on this
playground utilizing a musical instrument (e.g., a piano or
a flute). The proposed system offers a multi-faceted learning
approach suitable for a broad spectrum of age groups, fostering
collaborative learning and problem-solving skills in an interactive
and enjoyable manner.

Index Terms—Educational Robotics, Educational Gaming, In-
teractive Robotic Systems, Robotic Programming

I. INTRODUCTION

In recent years, robots have become increasingly important
to the educational systems of many countries. As technology
advances, educational programmable robots are becoming
more advanced and capable of performing complex tasks.
Hence, they are valuable tools in teaching students various
skills and concepts. The goal of this paper is to propose
an educational programmable robotic-musical platform that
can facilitate learning for students of different age groups.
Designed robots will interact with students and help them
understand musical concepts and practice skills in a fun and
engaging way.

In the proposed framework, robots react (e.g., move or
change status) to specific music notes. Hence, students (i.e.,
players) can control them by playing these notes based on
their intentions. Supervisors can define tasks based on the age
and abilities of students. As a simple task, for example, it
can be to play a few musical notes (e.g., with a piano) in
the correct order to control a robot to follow a specific path.
Conversely, an advanced task can be to ask students to program
a robot for the same goal. The proposed platform is designed
to make the learning process more enjoyable by being used
in a challenging multi-player game where individual players
have distinct goals. This is an exciting new way to learn, as it
has elements of fun and competition. In the proposed system,
players can collaborate and compete to learn new topics while

also enjoying the interactive musical aspects of the game. It’s
a unique and exciting way of entertaining and learning and
can be a great way to make education more enjoyable.

The rest of the paper is structured as follows. Section II
examines the existing hardware of available educational robots
and various methods available for programming them. Section
III introduces the proposed framework and a demonstrative im-
plementation, including a hardware proposal for the intended
robot. And finally, Chapter IV concludes the document.

II. RELATED WORK

Educational robots are becoming increasingly popular for
educational purposes, as they provide a unique opportunity to
teach kids about coding, robotics, and problem-solving in a fun
and engaging way [1], [2]. This section examines the existing
hardware for educational robots by providing an overview of
their features and reviews different programming methods that
can be utilized with educational robots.

A. Existing hardware for educational robots

Code & Go Robot Mouse is a stand-alone educational
programmable robot that supports an on-robot and screen-
free programming method. This robot is suitable for 4-year-old
or older kids with no programming experience. Bee-bot is a
similar educational robot to Code & Go Robot Mouse but in a
more attractive shape. This robot was later extended to Pro-bot
with more sensors and abilities.

Pro-bot is an extension to the Bee-bot, including a touch
sensor on its front side, a pen that can draw lines as the robot
moves, LEDs as car lights, and a speaker that can play a horn
sound. The most significant improvement is an LCD screen
that lets programmers see the robot’s program directly on the
robot itself.

Blue-bot is an educational robot that can be programmed in
two different ways. The simple way to program the robot is
by utilizing its onboard command keys, similar to Bee-bot.
Younger kids can use this method. The second method to
program this robot is to use a tactile reader. A tactile reader is
a box where the programmer can place cards (program instruc-
tions) in the desired order and create a program. This method



can be used by older kids who can understand the relationship
between the tactile reader and the robot. Moreover, this robot
can be remotely controlled using smartphones.

Edison is another programmable robot designed to be a
complete teaching resource for coding and robotics education
for students ranging from 4 to 16 years old. The robot can be
programmed in various ways, including reading barcodes and
block-based programming.

Thymio [3]–[5] is an open-source educational robot de-
signed by researchers from the EPFL in collaboration with
ECAL and produced by Mobsya, a nonprofit association
whose mission is to offer comprehensive, engaging STEAM
journeys to learners of all ages. Artie Max is another robot
that translates codes into colorful drawings. The design is for
kids above eight years old. Several models of this robot are
designed with different numbers of pens and prices.

Ozobot Evo [6] is a tiny robot (i.e., approximately 3 cm). It
can be controlled remotely using a smartphone or colored lines
(i.e., color codes), as the robot is equipped with a color sensor
placed underside. The following functionalities and utilities
can be utilized for programming or controlling: movement of
the robot, audio output, proximity sensor, LED lights.

Moreover, this robot can be programmed using OzoBlockly,
a customized version of open-source Blockly [7] software
developed by Google. This flexibility in programming makes
the bot ideal for use in long-term educational programs and
for both young children and experienced students.

Sphero robot is a small, round-shaped robot. It consists
of a plastic shell that encases the robot circuit, consisting of
gyroscopes, motors, speakers, and LEDs. This robot is similar
to the Ozobot Evo and can be controlled remotely. However,
Sphero has no color sensor and can not read color-coded lines.
There is also a customized version of Blockly to program the
robot: the Sphero Edu application. An older version of the
robot featured a type of facial recognition technology that was
removed from the product due to technical problems.

Spiderino [8], [9] is another low-cost robot designed for
swarm robotics and education. Its design considerations make
it an ideal tool for both swarm robotics experiments and
educational settings. Since it is a customizable open-source
robot, various sensors can be attached, making it suitable for
different applications.

B. Programming models for educational robots

Programming methods for educational robots typically in-
clude Hardware-based programming, Visual Programming,
Block-based programming, and Text-based programming. This
subsection briefly describes them.

For hardware-based programming, there are instruction-
input buttons on robots, which programmers (e.g., students)
can press sequentially to create a program. Supporting
instruction-input buttons, play, pause, and stop buttons are
available on the robot to control the flow of the program (e.g.,
Code & Go Robot Mouse and Pro-Bot). The advantage of
Hardware-based programming is that there is no need for an
external programmer (i.e., a laptop). However, the noticeable

disadvantage is the static complexity level, which limits the
reusability of the robot in educational programs.

In visual tagging, programmers (i.e., students) create a list
of chosen instructions from a limited set of commands by
putting them visually in order. A simple example of this
programming method is the usage of a line-following robot.
In this case, students draw lines that robots should follow,
and those lines are programs. A more complex example in
this topic is a programming method for the Ozobot Evo bot.
This robot includes a color sensor that can detect line colors
and follow instructions based on the color of the currently
following line. Another type of this programming method is
used in the Edison bot that scans barcodes to learn a program.

Programming languages are typically designed to be used by
engineers and are not easy to use. Block-based programming
aims to remove the programming complexity and make it
accessible for end-users and non-engineers. To this end, a set
of program blocks is designed that can be used to form various
combinations and create complex programs. There are well-
known block-based programming frameworks like Blockly [7],
Scratch [10], [11], and Snap! [12].

Finally, text-based programming is a classic method for
programming educational robots and requires minimal pro-
gramming experience and knowledge. On the other hand, this
method enables students to develop more complex projects.

Typically, hardware-based and visual programming methods
are well-suited for younger learners due to their intuitive
and hands-on approach. In contrast, block-based programming
offers an accessible entry point for primary school students,
providing a structured and visual environment for grasping
programming concepts. Text-based programming, known for
its more intricate syntax and logic, is better tailored for more
advanced or mature students who possess a higher level of
cognitive and conceptual understanding.

III. THE PROPOSED FRAMEWORK

This section introduces the proposed multi-player educa-
tional framework consisting of a Colorized Music-based Maze
(CMM) based on piano notes and a set of simple robots trying
to solve it. Here, piano is an example and can be replaced with
various musical instruments.

In the designed framework, before the game begins, a
CMM must be created and printed out as the playground.
Sub-section III-A explains this process in detail. Next, robots
must be prepared for the created CMM. Sub-section III-E
describes the required robotic hardware and configurations
based on a CMM. When a CMM is made, and robots are
well configured, players should solve the designed maze by
sending commands to their robots using piano notes. Robots
will move or act appropriately based on the heard musical (i.e.,
received instructions). The workflow is detailed in Sub-section
III-F.

A. Colorized Music-based Maze (CMM)

The generation of a Colorized Music-based Maze (CMM)
is based on a piece of music, or pieces of music in the case of



a multi-player CMM. As a definition, a CMM is a maze that
contains one or more start and end point pairs. Robots start at
the start points and should find their path to related endpoints
by following players’ inputs.

To generate a CMM, first, single-octave music pieces are
required. Each piece is a set of music notes in a specific order
that can be translated into a list of piano keys, keeping the
same order. This list will be assumed as a solution to a part
of the CMM. The choice of single-octave pieces is due to two
reasons: 1. There are a sufficient number of distinct notes in
each octave, and 2. Different players can use different octaves
to play simultaneously and without conflicts. Generally, there
are three challenges in creating a CMM:

1) The number of possible robot movements on a square
grid is limited to four; however, there are more piano
notes in a single-octave music piece.

2) No matter how piano notes are assigned to actions,
there can be cases where sequential notes would result
in opposite actions that could cancel each other. For
example, going forward being immediately followed
by going backward. These notes could be omitted by
players but would ruin the music.

3) By following music notes, there is no guarantee that a
loop will not form. Players could omit the loop entirely,
negatively affecting the music experience.

The rest of this section will address the mentioned challenges.

B. Challenge 1
Generally, in a piano, each octave comprises seven white

keys and five black keys. Yet, in a square grid, there are
only four possible movements for a robot. Therefore, in each
music piece, four notes will be assigned to these movements.
All other extra notes are called color locks. A color lock
is a state for the robot so that the robot is locked and is
waiting for a specific music note to unlock itself. In practical
implementation, color locks can be specified on the CMM by
particular color maze patches or walls. A robot can go into
multiple sequential color locks based on the CMM.

To have a proper assignment of piano keys to instructions
and color locks, firstly, notes translate to piano keys. Figure 1
depicts a music piece that contains this note-to-key translation.

Fig. 1. A sample music piece and its translation to piano keys

Next, a list of all unique music notes in the music piece
must be generated. This list is then required to be sorted

in descending order by the number of appearances of each
piano key in the music piece. Finally, movement instructions
are assigned to the first four most repeated keys, and the
remaining keys are assigned to color locks. Consequently,
the generated CMM comprises minimum color locks and
maximum movements. Table I shows the result of applying
this procedure on the music piece in the example shown in
Figure 1.

TABLE I
CMM INSTRUCTION-SET BASED THE MUSIC PIECE IN FIGURE 1

Note Appearances Assigned Action
D 25 t
A 17 b
G 13 l
C 12 r
B 11 Color Lock 1
E 8 Color Lock 2
F 3 Color Lock 3

C. Challenge 2

All CMM solutions must be parseable with the following
grammar:

• X → T/B/L/R
• T → T/L/R
• B → B/L/R
• L → L/T/B
• R → R/T/B

If a CMM solution fails to be parsed with the above-
mentioned grammar, it has omittable instructions. Yet, music
pieces do not have omittable parts. Figure 2 depicts the state
machine of a robot solving a CMM using this grammar.

Fig. 2. state machine of a robot solving a CMM

To address the challenge of redundant instructions in a
music piece, a supplementary state is added to the state
machine in Figure 2 and is called the reverse state. The updated
state machine is illustrated in Figure 3.

In generating a CMM, when there are two opposite in-
structions, the second instruction will move the robot to the
reverse state. As it is shown in Figure 3, the robot will act



Fig. 3. Updated state machine of a robot solving a CMM

reversely from this state and the opposite instruction are no
longer redundant, as are required to solve the maze.

It should be noted that the color for indicating reverse
states must be different from the ones used for color locks.
In practical implementation, reverse states must be specified
on the CMM to be readable for robots.

D. Challenge 3

When creating a CMM solution based on a music piece,
it is likely to generate routes that include loops. A loop is a
redundant piece of the track from the start point to the endpoint
and can be omitted. In contrast to direct opposite instructions,
loops are too complicated to be solved by modifying the
robots’ state machine. To address this challenge, the following
procedure (Algorithm III-D) is introduced:

1) While there are music notes in the music piece, create
the CMM solution by following music notes until a loop
is detected. If a loop is detected go to 2.

2) When a loop is detected, mark the current patch as a
transition patch and start from an empty nearby patch.
Go back to 1.

3) Connect transition patches.
In this algorithm, finding new start points can be done in

multiple ways. Simple solutions are:
• Choose new start points in one specific direction (e.g.,

always choose a patch in an area right to the last
generated part)

• Choose new start points on an Archimedean spiral (Figure
4).

Then, connecting the transition patches can be done using
any basic path-planning algorithm. The only point is to keep
the order of maze parts. A more complicated approach can be
using a heuristic-based method to connect endpoints to start-
points.

E. Robots’ hardware requirements and configurations

This subsection will introduce the hardware requirements
and features of the robots for solving CMMs. In general, any
robot that has the following abilities can be used to solve
CMMs:

Fig. 4. Archimedean spiral

1) detects music notes.
2) moves appropriately on maze patches while not colliding

with maze walls.
3) detects colors of maze patches or walls.
4) indicates different internal states (i.e., being in the re-

verse state or a color lock)
In an experimental study, as the most challenging part of the

hardware design of CMM solver robots, the following minimal
hardware was used to create a system to detect music notes:

• simple mic (LM358 as an amplifier)
• ATM328PU (Arduino UNO)
To detect different piano notes based on their frequencies,

a Goertzel filter was used [13].
Experimental results showed that using the hardware men-

tioned above, the difference between two neighboring white
piano keys’ frequencies in the first three octaves is not suffi-
cient or a reliable distinction, and they are not distinguishable.
Thus, only octaves 4 to 7 can be utilized. This results in the
fundamental limitation of using only four different robots in
a CMM simultaneously. Otherwise, robots will be confused
about which instructions to follow.

The reported experiment was demonstrative, and the men-
tioned limit can be removed by utilizing more powerful
hardware for robots.

The only necessary configuration that robots need is to give
them a map from colored patches (or walls) in the CMM to
the corresponding color locks or the reverse state. Also, robots
should be aware of automatic movement cells that connect
CMM parts. Using these configurations, robots will be able to
act correctly in the designed CMM.

F. Framework application workflow

This subsection introduces the workflow to use the proposed
system. There are four stages in this system: creating a 1)
CMM map, 2) implementing the real-world version of the
CMM, 3) placing robots, and 4) playing the game. The rest
of this sub-section describes these stages, respectively.

1) Creating a CMM: To produce a CMM, some pieces of
music with the same or similar lengths should be chosen. It
is possible to create a CMM with only one music piece, and
then it will be a single-player CMM. As an example and for
the rest of this chapter, the music piece in Figure 1 is selected.

After selecting the music piece(s), for each piece of music,
the following steps should be done:



• Convert music notes to their corresponding piano
keys. For the selected music, the output is
”DDDGDCBAGDCBAGDCBCADDGDCBAGD-
CBAGDCBCADDEECBAGGABAEFDDEECBAG-
DAADDEECBAGGABAEFDDGFDDCAAGDDD”.

• The number of unique notes should be counted, and then
movement keys and color locks should be assigned to the
notes. Table I shows the output for our example. At this
time, choose colors that can be printed and recognized
by the robot for color-locks. It is recommended that
selected colors be sufficiently distinguishable. If several
color locks are placed in a row, a distinct color should
be considered to represent them all.

• Using Algorithm III-D generate a maze for this piece of
music.

Figure 5 shows a part of the generated CMM with out loops.
Also, Figure 6 shows the connected CMM parts. In this figure,
cells with a gray background are connections between small
CMMs, and robots should follow them automatically (i.e.,
without user instruction).

Fig. 5. a part of the generated CMM with out loops

Fig. 6. the connected CMM parts using a basic method

2) Implementing the real-world version of the CMM: Sev-
eral methods can be used to implement a CMM. A suggested
method is to generate the CMM map utilizing a computer
code and print it directly in the desired size. Another method
is to use colored walls to make the CMM. This method is
particularly suitable for small CMMs since it needs numerous
colored walls.

3) Placing robots: In order to start the game, robots must
be carefully placed at the starting points. Note that the starting
points are different from each other, and each robot must be
placed at its respective starting point. Otherwise, by following
the path to the endpoint, the desired music will not be played.

4) Playing (solving a CMM): To solve a CMM, players
must send movement commands to the robots or unlock robots
in color lock situations with their pianos. It should be noted
that a robot may go to multiple color lock states in the same
CMM patch (e.i., without moving). Another important point is
that in CMMs, there are patches where the robot will behave
in reverse (i.e., reverse states).

IV. CONCLUSION

Compared to the reviewed educational robots, the proposed
system has the significant advantage of providing a fun atmo-
sphere for students to learn programming and music simulta-
neously. For young kids, playing with piano keys to send the
correct instructions and solving the maze is challenging, but
it will help them master the Piano by playing a game. On the
other hand, older kids must improve their reasoning to create
nice CMMs by selecting a suitable music piece and accurately
following the procedure. Also, adjusting robot programs for
solving different CMMs can be challenging in cases with
multiple color-locks. Hence, tutors can use this system for
students of a wide range of ages. Furthermore, since kids
can play the designed games in groups, it is suitable to be
used in a class and privately at home. If played in groups,
the system allows students to collaborate in designing CMMs
and competing to solve them. On the other hand, the required
hardware is simple, so it keeps the final price of the system
in a reasonable range. In conclusion, the proposed system is
a suitable choice both for schools and private use.

REFERENCES

[1] Miller, Robotics for Education. Cham: Springer International Publish-
ing, 2016, pp. 2115–2134.

[2] O. Mubin, C. Stevens, S. Shahid, A. Mahmud, and J.-J. Dong, “A review
of the applicability of robots in education,” Technology for Education
and Learning, vol. 1, 06 2013.

[3] F. Riedo, “Thymio: a holistic approach to designing accessible educa-
tional robots,” Thesis Number 6557, Federated Polytechnic School of
Lausanne, 01 2015.

[4] F. Mondada, M. Bonani, F. Riedo, Briod, P. Retornaz, and S. Magnenat,
“Bringing robotics to formal education: The thymio open-source hard-
ware robot,” IEEE Robotics & Automation Magazine, vol. 24, no. 1, pp.
77–85, 2017.

[5] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada, “Thymio ii,
a robot that grows wiser with children,” in 2013 IEEE Workshop on
Advanced Robotics and its Social Impacts, 2013, pp. 187–193.
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