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Abstract—We investigate the area coverage and connectivity of
an autonomous, unmanned aerial vehicle (UAV) network, whose
goal is to monitor and sense a given area of interest in an
efficient manner. To this end, we propose a connectivity-based
mobility model that aims to sustain connectivity between the
UAVs and the ground station. We compare coverage and con-
nectivity performance of the proposed scheme with a coverage-
based mobility scheme in several scenarios. Results illustrate the
trade-off between achieving good spatial coverage and staying
connected.

Index Terms—UAV networks, wireless sensor networks, mobil-
ity, coverage, connectivity

I. INTRODUCTION

Unmanned ground and aerial vehicle networks have initially

been utilized in military applications, where the network is

envisioned to provide battlefield assistance, surveillance, target

detection and tracking capabilities in possibly hostile envi-

ronments. Recently, use of unmanned aerial vehicles (UAVs)

in civil applications has been considered with increasing

interest, especially to monitor areas that are inaccessible by

or dangerous for humans and to deliver information to and

from areas with no infrastructure.

In this work, we consider a set of networked small UAVs

equipped with sensors (e.g., cameras). The aim of this network

is to monitor a certain area and provide an overview image.

It is likely that the area the vehicle network operates in is not

known a priori or changes dynamically.

Two of the main challenges of interest of such networks are

achieving spatial coverage in an efficient manner (i.e., area

coverage) and establishing and maintaining communication

links between UAVs and/or between UAVs and the ground

station due to mobility (i.e., connectivity). Intuitively, there

is a trade-off between area coverage and connectivity. For

a given number of UAVs, an area of interest can be sensed

(covered) faster if the sensing overlap between the UAVs is

minimized. On the other hand, the UAVs might need to fly

closer to each other to stay connected and to be able to deliver

the sensed data, e.g., to the ground station. In this work, we

propose a probabilistic mobility model for a network of UAVs,

where each UAV autonomously decides its path, taking into

account only communication requirements. More specifically,

with the connectivity-based mobility model, the UAVs adapt

their direction such that they maintain a communication link

to the ground station and/or their neighbors.

To illustrate the trade-off between area coverage and con-

nectivity, we compare the performance of the new model

with a previously proposed coverage-based mobility model

[1], which takes into account area coverage constraints only.

We numerically investigate several scenarios, for a single-hop

network as well as a multi-hop network. We also provide

results for a UAV network used in a campus scenario, where

the objective is to take snapshots of a given area and deliver

the data to the ground station. Our results show that especially

for sparse networks (i.e., with small number of UAVs or UAVs

with short transmission ranges) the trade-off is significant.

This indicates that both connectivity and area coverage re-

quirements need to be taken into account while planning the

paths of UAV networks. Our current focus is on integrating

the constraints from both objectives into our path design.

The remainder of the paper is organized as follows. In

Section II background on mobility models and coverage prob-

lem in wireless networks and robotics is summarized. The

proposed connectivity-based mobility model is presented in

Section III. Results are given in Section IV and the paper is

concluded in Section V.

II. RELATED WORK

A. Coverage and Connectivity in Wireless Sensor Networks

and Robotics

Coverage problem in wireless sensor networks is of great

importance and has been investigated by several researchers. In

static wireless sensor networks, in general, coverage problem

is treated as a node-activation and scheduling problem [2], [3].

More specifically, algorithms are proposed to determine which

sensor nodes should be active such that an optimization crite-

rion is satisfied. The criterion can for instance be achieving a

certain detection probability, or covering each point in the area

by at least k sensors. In addition, there are studies that take

into account not only the event (or network) coverage, but

the connectivity of the wireless network as well [2]. While

deciding which sensor nodes should be active at a given point

in time, coverage and connectivity requirements are met.

Recently, it has been shown that mobility, while complicat-

ing the design of higher layer algorithms, can improve network

performance, for instance, in terms of capacity and coverage

[4], [5]. Optimum mobility patterns for certain applications

are proposed, such as mobile target tracking and chemical

detection using both ground and aerial vehicles. Mobile robots

with swarming capability operate cooperatively and aim to

achieve a global goal have also been considered [6], [7].

In robotics, several mobility models have also been de-

veloped. In many of these models, robots which are too

close repel each other to avoid collisions, but to maintain



communication they attract each other when they are separated

more than a certain distance. Gas expansion model [8], for

example, mimics the way gas particles are spread to vacuum

when they are allowed to expand. This model, again, uses

attraction and repulsion forces between robots to maximize

the dispersion while maintaining the communication. Similar

models have also been proposed using an artificial force or

potential fields for the robots to cooperatively move [9], [10].

In addition, there are several planning strategies proposed

for ground robots [11], [10], delivery systems, autonomous

high-speed, fixed-wing UAV networks with less strict energy

requirements [12], or mobile sensor networks [6] with different

objectives and constraints. Applications range from snow

removal, lawn mowing, floor cleaning, to surveillance, mobile

target tracking, chemical or hazardous material detection and

containment, or to any combination of localization and navi-

gation problems (see [7], [13], [14]). While some algorithms

use prior information and have exact or partial decomposition

of the areas, some use sensor-based information in unknown

environments to make navigation decisions. Algorithms exist

that try to minimize the path traveled or time or energy

required to achieve a goal.

Moreover, an increasing number of path planning and

swarming algorithms for UAVs have recently been proposed,

whose success relies on the availability of communication

links between UAVs [15]–[18].

B. Coverage-based Mobility Model

In this section, we provide a brief overview of the coverage-

based mobility model proposed in [1]. Coverage-based mobil-

ity model makes use of the local physical topology informa-

tion. The objective is to achieve coverage of a geographical

area using a mobile sensor network; e.g., a UAV network.

Since the objective is to achieve coverage, it is desirable to re-

duce the overlap between the covered areas by different UAVs

and use the limited number of UAVs efficiently (especially, if

the UAV network will be used for a time-critical application.).

In the model, we assume that there is a force between

UAVs that causes them to repel each other. The forces at the

time of decision are illustrated in Fig. 1, where UAV 1 is

moving toward right. The magnitude of the force that each

UAV applies to others is inversely proportional to the distance

between the UAVs, i.e., the closer the UAVs get the stronger

they push each other. We also assume that each UAV knows

its current direction (e.g., from an on-board GPS module).

As a rule, a force with a magnitude inversely proportional to

the UAV’s sensing range is applied to it in the direction of

movement to avoid retracing the already covered areas by the

UAV (see ~F11 in Fig. 1). Each UAV computes the resultant

force acting on them and update their direction accordingly

(see ~R1 =
∑

j
~Fj1 in Fig. 1).

III. CONNECTIVITY-BASED MOBILITY

We propose a mobility model that takes communication

requirements into account. The algorithm is self-organizing in

the sense that the UAVs use only local information, they can

be heterogeneous with different capabilities, they can enter

and leave the system at will. The area of interest can also
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Fig. 1. Illustration of forces on UAV 1, where the dashed circle is the sensing
range of UAV 1, which is moving toward right.

Algorithm 1 Connectivity-based Mobility

Input: Area of interest, sensing period (ts), transmission range

(r), sink location, current direction (~θc)
Output: Next direction of UAV i: θ(i)

1) If i is connected to the sink (via single or multi-hop link),
compute the location of i and its neighbors after ts.

• If still connected, return θ(i) = θc(i).
• If not connected:

– If next hop is the sink, θ(i) is randomly chosen toward
the coverage area of the sink (see Fig. 2(a)).

– If not, update θ(i) such that i is within the range of
the next hop (see Fig. 2(b)).

2) If i is not connected to the sink, check if it has any neighbors.

• If at least one neighbor exists, compute locations after ts.

– If i still has at least one neighbor, return θ(i) = θc(i).
– If not, update θ(i) such that i moves toward its neigh-

bor with longest estimated connection duration (see
Fig. 2(c)).

• If no neighbors, return θ(i) = θc(i).

be dynamic and the proposed algorithm can adapt to it. The

goal of the UAV network is to sense a given area, while

the UAVs maintain connectivity to the sink (i.e., the ground

station) and/or their neighbors. Due to the probabilistic nature

of the algorithm, disconnections from the sink can occur, but

likelihood of isolated UAVs is low. The method is summarized

in Algorithm 1. The parameters used in the algorithm running

at each UAV are defined in Table I. Each UAV senses its

neighbors every ts seconds; it computes its location at the end

of next sensing period given its current heading; and decides

if it needs to change direction. The information exchanged

between UAVs consists of current location and direction. We

denote the UAV of interest as UAV i.

Every ts seconds, UAV i first checks whether it is within

the transmission range of the sink (i.e., whether the sink is a

neighbor). If yes, it checks whether it would still be within

range after ts seconds given its current direction θc(i). If it

determines that it would not leave the sink coverage, it does

not change its direction. Otherwise, it changes its direction

randomly toward the transmission range of the sink (illustrated

in Fig. 2(a) for UAV i, where θ(i) is the next direction).

If the sink is not a neighbor, UAV i checks if it has a

multi-hop route to the sink. If yes, it computes next location

of itself and its neighbors and determines whether it would

still be connected to the sink. If a route still exists, it keeps



TABLE I
ALGORITHM PARAMETERS

Parameter Definition

ts sensing period

r transmission range

θc(i) current direction of UAV i

θ(i) next direction of UAV i

icur current location of UAV i

inext(j) location where UAV i loses connection to UAV j
~V vector from icur to xnext(i), where

x =















next hop UAV in route i connected to sink
from UAV i to sink,

UAV that stays connected otherwise
the longest to UAV i,

its direction. Note that UAV i knows only the location of its

own neighbors. Hence, it can only rely on local information

to determine the existence of a route at the next sensing time.

If it detects that it will not have a connection at the next step,

it changes its direction such that it stays connected to the

next hop UAV (UAV j in Fig. 2(b)). To this end, it computes

the vector ~V from its current location (icur) to the point

UAV j would leave its transmission range (jnext(i)). UAV

i then computes the resultant vector by adding a unit vector

in direction θc(i) to unit vector
~V

‖~V ‖
(see Fig. 2(b)). The angle

of the resultant vector is the next direction of UAV i, θ(i). The

motivation is to extend connection time, while changing the

direction gracefully (since turning requires energy).

Finally, if UAV i does not have a route to the sink, it tries to

stay connected to a neighbor to avoid isolation. First, it checks

whether if it would be connected to at least one neighbor

UAV at the end of ts seconds at the current headings. If

yes, it does not change its direction. If not, it computes the

duration it would be connected to each of its neighbors, and

determines the neighbor that would stay connected the longest

if they would keep their current heading. Then, it follows the

procedure of the previous case to determine its new direction

(see Fig. 2(c)). In Fig. 2(c), UAV i has j and k as its neighbors,

whose current locations are icur, jcur, and kcur, respectively.

From their current directions, i determines that it would leave

the transmission range of both UAVs at the end of ts seconds

and that k would stay longer in its transmission range (i.e.,

‖icur − inext(k)‖ > ‖icur − inext(j)‖).Then, it computes its next

direction θ(i) as the angle of the resultant vector calculated

by adding the unit vector in direction θc(i) and
~V

‖~V ‖
, where

~V is from icur to knext(i).
If a UAV becomes isolated (i.e., because ts is too long,

the transmission range of the sink is too short, or the UAV

speed is too high), it does not change its direction until it

reaches the boundary or it meets another UAV. The behavior

at the boundary is such that each UAV changes its direction

randomly toward the area of interest. The sensing period ts is a

design parameter and can be optimized to avoid disconnections

for a given application and UAV network.

IV. RESULTS AND DISCUSSION

In this section, we compare the spatial area coverage and

connectivity performance of the proposed mobility models via

Monte Carlo simulations. The spatial coverage is defined as
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Fig. 2. Direction change illustration of UAV i. The solid and dotted circles
are the current and next transmission ranges of the UAVs, respectively.

the percentage of the area of interest that is sensed in a given

amount of time. Connectivity is defined as the percentage time

the UAVs are connected to the sink averaged for all UAVs.

First, we use a square area with side length 4000 m without

obstacles. The travel time of the UAVs is assumed to be 1000 s,

and their velocity is fixed to 5 m/s. The sensing range of the

UAVs is set to 500 m and the sensing period for direction

change is 2 s. The performance is computed for different

number of UAVs (n) and transmission ranges (r). The UAVs

start their mobility path above the ground location, which is

placed either at the corner or center of the observation area.

The location of the ground station is expected to influence the

coverage of the connectivity-based scheme and connectivity

of the coverage-based scheme.

We study two systems: single-hop and multi-hop. The

single-hop system allows only direct links between the UAVs

and the ground station. In the multi-hop system, the UAVs are

connected to the ground station via a shortest-hop route. While

a single-hop system might be considered too simple or unre-

alistic, analysis of such a system carries value in determining

the impact of available information on the performance.

Figure 3 shows coverage and connectivity of the single-

hop system versus n, when the ground station is located in

the corner ((a)-(b)) and in the center ((c)-(d)), respectively.

The location of the ground station affects the coverage for

the connectivity based scheme by a scaling factor only. Since

the sensing range is fixed, spatial coverage of the coverage-

based model is not affected by the transmission range. For

connectivity-based mobility, spatial coverage gets better as



the transmission range increases. This is because the UAVs

can better spread out and the overlap between their sensing

coverage decreases (Fig. 3(a),(c)). Spatial coverage of the

connectivity-based model can be approximated by 1

4

πr2

40002
and

πr2

40002
for the case the ground station is in the corner and center,

respectively. Coverage-based mobility spreads better as the

number of UAVs increase, whereas connectivity-based mobil-

ity is not significantly influenced by the number of UAVs. This

is expected since the UAVs only consider their position and

multi-hop links do not exist. In terms of connectivity, we see a

reversal of performance (see Fig. 3(b),(d)). The connectivity-

based model is not affected by the transmission range as

opposed to the coverage-based model. Connectivity of the

latter improves with increasing transmission range and is not

influenced by the number of UAVs. These results imply that

collaboration in terms of coverage is fruitful and collaboration

in terms of connectivity can improve performance. To illustrate

this, we next investigate a multi-hop system.
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Fig. 3. Single-hop system: Spatial coverage and connectivity over number of
UAVs, when ground station is (a)-(b) in the corner and (c)-(d) in the center.

Figure 4 shows the spatial coverage and connectivity per-

formance of the two schemes for a sink located at the

corner ((a)-(b)) and at the center ((c)-(d)). The spatial cov-

erage of coverage-based scheme and the connectivity of the

connectivity-based scheme is not influenced by the multi-hop

capability. On the other hand, we observe significant improve-

ment in terms of spatial coverage of the connectivity-based

scheme due to the improved spreading. Similarly, the connec-

tivity of the coverage-based scheme improves approximately

linearly with the number of UAVs when the transmission

range is sufficiently large. The connectivity of this scheme

is still dependent on the sink location. Allowing multi-hop

communication brings the performance of the two schemes

closer to each other. Our current focus is on determining the

optimum spatial density that maximizes coverage, such that

the connectivity is sustained throughout flight.

Next, we study the performance of the multi-hop system in
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Fig. 4. Multi-hop system: Spatial coverage and connectivity over number of
UAVs, when ground station is (a)-(b) in the corner and (c)-(d) in the center.

a campus scenario. Figure 5 illustrates the system under study.

The green polygon represents the area of interest and the red

polygons are forbidden areas (i.e., no flight zones). We set the

simulation parameters based on received signal strength mea-

surements collected during a flight over campus (see Fig. 6(a)).

The test setup consists of an access point located at the start-

point (lower-right corner of the observation area) and a single

quadrotor UAV, both equipped with 802.11a wireless interfaces

and two dipole antennas (for details of the tests the reader is

referred to [19]). Based on the measurements, we compute the

best-fit path loss coefficient to be α = 2.6. Using this path-loss

coefficient, we can also compute the theoretical path loss map

over the campus (see Fig. 6(b)). The yellow rings on the figure

correspond to the maximum range for different data rates

(i.e., inner to outer circle: 54 Mbps, 36 Mbps, 24 Mbps, and

6 Mbps). The corresponding maximum transmission ranges

are 67 m, 126 m, 164 m, and 278 m, respectively. For both

schemes, the UAVs follow the boundary rule when they are

close to the forbidden areas.

Fig. 5. System under investigation

Figure 7 shows the spatial coverage and connectivity per-

formance of the two schemes for the campus scenario. The

highest transmission range corresponds to the lowest data rate.



(a) Received signal strength measurements over
campus
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Fig. 6. Experimental and theoretical path loss over a campus area
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Fig. 7. Multi-hop system: Spatial coverage and connectivity over number of
UAVs

At this rate, the coverage-based scheme would not result in

disconnections when the number of UAVs is higher than 6.

With this number of UAVs, a high coverage can also be

achieved. The observed trends are similar to the no obstacle

case. The linear relation is not preserved due to the direction

changes around the obstacles.

V. CONCLUSIONS

We proposed a novel connectivity-based mobility model

for a UAV network monitoring and sensing a given area of

interest. The main objective of the model is to sustain con-

nectivity to the ground station during flight. To illustrate the

trade-off between achievable area coverage and connectivity,

we compared the performance of the proposed scheme with

a coverage-based mobility scheme for several scenarios. Our

results showed that to achieve good spatial coverage, while

staying connected; a certain spatial density is required. If not

enough UAVs are available, a combination of the connectivity

and coverage-based schemes is expected to be more beneficial.

Our current focus is on determining the optimum spatial

density and investigating combining methods for the two

schemes utilizing their advantages.
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