
©Springer, 2023. This is the author’s version of the work. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the copyright holder. The definite version is published at
International Conference on Simulation and Modeling Methodologies, Technologies and Applications (pp. 133-155), Lecture Notes in Networks
and Systems (LNNS,volume 780).

Simulation of Swarm Intelligence for Flexible Job-Shop
Scheduling with SwarmFabSim: Case Studies with

Artificial Hormones and an Ant Algorithm

Martina Umlauft1, Melanie Schranz2, and Wilfried Elmenreich3

1 Lakeside Labs GmbH, Klagenfurt, Austria umlauft@lakeside-labs.com
2 Lakeside Labs GmbH, Klagenfurt, Austria schranz@lakeside-labs.com

3 Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt, Austria
wilfried.elmenreich@aau.at

Abstract. This book chapter presents SwarmFabSim, an open-source simula-
tion framework using NetLogo for agent-based simulation of a semiconductor
production plant organized by the job-shop principle. It models the plant as a
self-organizing system using swarm intelligence algorithms for bottom-up opti-
mization. The model is composed of a set of agents, which includes machines,
workcenters, lots, and processes. While the general model is not restricted to a
particular programming language, SwarmFabSim and the presented case studies
are implemented in NetLogo, one of the most widely used agent-based simulation
platforms. SwarmFabSim consists of a structured system of code modules using a
callback architecture, allowing to easily modify or exchange the swarm algorithm
under investigation. Users can configure their fab model and simulations via the
user interface and configuration files. The results are presented to the user via log
files that include detailed results as well as overall key performance indicators:
makespan, average flow factor, and lot tardiness. SwarmFabSim (running on Net-
Logo version 6.1 or later), including sample swarm algorithms and configuration
files is available as an open-source project on GitHub. Additionally to the frame-
work SwarmFabSim, we present a detailed case study of two algorithms for fab
optimization. Together with the algorithms, we describe three different fab setups
in SwarmFabSim and demonstrate how to use the framework for their evaluation.
A detailed comparison of the performance results of the algorithms complements
this chapter.

1 Introduction

The production processes of integrated circuits (ICs) in the semiconductor indus-
try are organized according to the flexible job-shop principle [15]. As an NP-hard
problem [14], such factory-wide process scheduling tasks establish a challenging
problem. In this chapter, we particularly focus on the so-called front-end pro-
cessing, where IC structures are created on silicon wafers. The factory model is
inspired by the actual requirements of the semiconductor manufacturer Infineon
Technologies4.
In such an exemplary fab, it is necessary to coordinate product manufacturing
of over 400 to 1200 different stations. Typically, these fabs manufacture over

4https://www.infineon.com

https://www.infineon.com

2 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

1500 different products in about 300 process steps, including lithography, doping,
oxidation, etching, and measurement [15]. Thus, the great diversity of products
and the historical growth of the industrial plant further increase the complexity.
In addition to logistical boundary conditions, such as equipment tooling, time
coupling, and batch processing, the chain of steps required in the semiconductor
manufacturing process contains loops, making the problem even more difficult to
solve.
An industrial context where traditional optimization methods like linear optimiza-
tion reach their limits due to excessive computation time establishes a new field of
application for swarm intelligence. Swarm algorithms consist of agents following
local rules and interactions and can be simulated via agent-based models. In na-
ture, swarms regularly solve complex problems using relatively simple rules for
their agents. An example is the foraging strategy of ants, which solves the prob-
lem of coordination between exploration, i.e., the search for new, unknown food
sources, and exploitation, i.e., the establishment of transport routes to bring food
to the nest [8]. Other swarming animals solve complex movement coordination in
three dimensions (e.g., flocks of birds, schools of fish) or self-organized building
of complex structures (e.g., , termites), see e.g., [4, 13]. Previous work indicates
that such bio-inspired algorithms can be successfully adapted to technical appli-
cations where a problem needs to be solved in a technical environment of similar
complexity like the natural setting; for a detailed review on such applications,
see e.g., [34]. Swarm-based solutions are of great interest due to their simple
rules and properties of self-organizing systems, such as scalability, robustness,
and adaptability [28]. While swarm algorithms, once implemented, come with a
small computational footprint, finding and defining such a self-organizing algo-
rithm for a given problem is a non-trivial task [11]. Trial and error or heuristic
optimization approaches usually involve extensive evaluations requiring a proper
simulation of the target system [10] . In many cases, the target system contains
dynamic and networked processes that cannot be described by analytical methods.
In addition to technological and logistical boundary conditions, such as equip-
ment tooling, time coupling, need for secondary resources and batch processing,
the chain of necessary process steps in semiconductor manufacturing contains
loops, making the problem even harder to solve. The extreme miniaturization of
these components leads to high demands being put on the production environment
(clean room) and the manufacturing process. Due to computational complexity,
existing dispatching rules and linear optimization methods can only be used on a
subset of the plant. They can only consider part of the system behavior, leaving
room for optimization potential.
In previous work, we have presented an earlier version of SwarmFabSim in [39].
This chapter presents a significant extension of this work with the following con-
tent: Section 2 discusses the related work on agent-based modeling environments
and other job-shop simulation environments. The agent-based modeling and sim-
ulation approach is detailed in Section 3 in the context of the exemplary industrial
setting. In Section 3.1, the usage of the agent-based simulation tool NetLogo is
discussed. Section 3.2 introduces a model consisting of different types of agents,
including workcenters, machines, and lots. The main contribution of this chapter
is the implementation of SwarmFabSim framework using NetLogo (Section 4)
as a system consisting of several structured code modules that interact using a
callback architecture. The user interface, depicted in Section 4.1, and configu-
ration files, explained in Section 4.2, allow the interaction and configuration of

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 3

the SwarmFabSim framework according to the requirements of a particular fab
model. Despite taking inspiration from semiconductor manufacturing, the pre-
sented approach can be also applied to other settings where flexible job-shop
scheduling is used. Thus, adaptation is supported by changing the configuration
files describing the concrete setting. The implementation of the architecture is
reviewed in Section 4.3, followed by a description of the base algorithms in-
cluded in the framework in Section 4.4. Section 4.5 explains the log files with the
implemented key performance indicators (KPIs) used for evaluation. Examples
of specific swarm algorithms implemented in the SwarmFabSim framework are
given in Section 5.1 by an algorithm based on artificial hormones and an algo-
rithm modeled after the foraging behavior of ants. Section 6 summarizes the main
contributions of this chapter and gives a reference to the open-source repository
of SwarmFabSim.

2 Related Work

The Job-Shop Scheduling Problem (JSSP) is one of the most widely studied
optimization problems. It has been investigated for a long time with the first
competitive analysis having been published by Graham in 1966 [18]. The aim of
the problem is to find the optimal schedule that minimizes makespan to produce
all ordered products given a limited machine park where products compete for
machine allocations [42]. The problem is NP-hard [14]. An overview of the
classical techniques used to attack the problem is given by Jain and Meeran [24].
Gromico et al. apply dynamic programming to solving the JSSP optimally [19].
Ghasemi [17] presents a mixed-integer linear programming formulation to deter-
mine product sequence and sublot sizes for lot streaming in multi-stage hybrid
flow shops with non-identical machines for hybrid flow shop scheduling.
Georgiadis [16] provides a comprehensive work of optimal production planning
and mixed batch scheduling. In particular, the work shows the application of mixed
integer linear programming modeling frameworks to optimize high-complexity
production planning and scheduling problems.
Bagheri et al. address the flexible job-shop scheduling problem with an artificial
immune algorithm. The algorithm is implemented in C++ and evaluated with
reference data sets. The flexible job-shop scheduling problem is also part of the
problem described in this chapter but the model used by Bagheri et al. does not
have batch machines, which are typical for semiconductor fabs [2].
In [26], Lee et al. propose a scheduling method for a printed circuit board (PCB)
manufacturing system. The approach uses new dispatching rules that are reported
to perform better than existing dispatching rules and heuristic algorithms for lot
sizing in terms of the total tardiness of orders.
Petrovic et al. [27] use a fuzzy rule-based system to determine the lot sizes in a
job shop-scheduling problem, which was then integrated into a genetic algorithm
for job shop scheduling.
Qin et al. use a two-stage ant colony algorithm for hybrid flow shop scheduling
with lot sizing and calendar constraints in printed circuit board assembly [30].
Unlike in our application, they apply the ant colony algorithm to the solution
space, though, while we implement the ant algorithm from the bottom up.
An extensive overview of scheduling and lot sizing with sequence-dependent
setups can be found in [45].

4 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

In many instances, factory processes are simulated using discrete event process
flow models with simulators specific to the respective application area. For semi-
conductor manufacturing, examples include AutoMod / AutoSched AP5 or D-
Simlab/D-Simcon6. For our research, the level of detail supported in these sim-
ulators is generally too high. Also, because they do not support agent-based
modeling, they are not suitable for modeling swarm algorithms.
GPSS (General Purpose Simulation System) is a discrete-time simulation lan-
guage initially developed by IBM. It is primarily used as a process flow-oriented
simulation language, particularly well-suited to problems such as modeling fac-
tory operations. There exist different GPSS implementations, for example, GPSS
World by Minuteman7 or JGPSS8 by the Polytechnic University of Catalonia. A
ranked list of the most popular discrete simulation software platforms for com-
mercial use is given in [7].
Zhang et al. address how agent-based modeling can be conceptually applied to
job-shop production simulation [44].
Shukla examines multi-agent systems for production planning problems in man-
ufacturing systems. They show how multi-agent systems can offer advantages
over traditional approaches and present a conceptual framework for implementing
production planning systems using multi-agent systems [35].
Pulikottil et al. review the different frameworks and technologies that support the
use of multi-agent systems in manufacturing, the different applications of multi-
agent systems in this area, and the current challenges in developing multi-agent
systems in smart manufacturing [29].
Gwiazda et al. show how NetLogo can be used to model a production process.
The work involves an agent-based modeling simulator and addresses the job-
shop problem in the simulated production system using a multiple ant colony
approach [21].
Zahmani and Atmani apply a genetic algorithm to solve the scheduling in a job-
shop setting. The simulation has been implemented in NetLogo. The genetic
algorithm is applied to discover well-functioning allocation rules [22].
Alves et al. address the job-shop scheduling problem with a hybrid approach,
including optimization and dynamic agent negotiation. The agent-based model
implemented in NetLogo is connected to Matlab to exchange optimized scheduling
solutions [1].
Besides NetLogo, there exist several other ABM simulation platforms which are
suitable for implementing a job-shop production simulation. For a comprehensive
overview, see e.g., CoMSES Net / OpenABM9. The most well-known candidates
are:
Mason is a discrete-event multi-agent simulator core written in Java, allowing

the implementation of custom simulations. MASON was developed as a
joint effort between George Mason University’s Evolutionary Computation
Laboratory and the GMU Center for Social Complexity since 2003. At the
time of writing, MASON is actively supported with regular updates10.

5https://automod.de/autosched-ap/
6http://www.d-simlab.com/
7http://www.minutemansoftware.com/simulation.htm
8https://jgpss.liam.upc.edu/en/about
9https://www.comses.net/resources/modeling-frameworks/
10https://cs.gmu.edu/~eclab/projects/mason/

https://automod.de/autosched-ap/
http://www. d-simlab.com/
http://www.minutemansoftware.com/simulation.htm
https://jgpss.liam.upc.edu/en/about
https://www.comses.net/resources/modeling-frameworks/
https://cs.gmu.edu/~eclab/projects/mason/

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 5

Repast The Repast Suite is a family of advanced, free, and open-source agent-
based modeling toolkits that have been under development for over 15 years.
There are different versions of the toolkit supporting Java, C++, and Python11.

Mesa is an open-source, Python implemented ABM framework. Its goal is to
be the Python 3-based alternative to other tools like NetLogo, Repast, or
MASON. An advantage is the possible integration with Python’s data analysis
tools. The tool is under active development since 201512.

Anylogic is a commercial platform that supports system dynamics, process-
centric discrete event modeling, and agent-based modeling. It is used in
several industrial settings, including manufacturing, supply chain, transporta-
tion, and logistics13.

MARS (Multi-Agent Research and Simulation) is an ABM simulator running
on .NET. It supports models with spatial reference (Grid-based, GPS-based,
Cartesian-based) and without spatial relations (social-based, ordinary nu-
meric). MARS is developed under a research project at the Department of
Computer Science at Hamburg University of Applied Sciences14.

3 Agent-Based Modeling for Flexible Job-Shop
Scheduling

Combinatorial problems, specifically scheduling, are mostly addressed with linear
optimization. Although these methods are studied intensively, they can only cope
with a subset and not with the entire plant. Thus, they do not exploit their full
optimization potential [25]. Consequently, applying linear optimization methods
do not lead to an optimal solution for job-shop scheduling that can be computed
in polynomial time [43].
In this work, we apply swarm intelligence as a novel approach in job-shop schedul-
ing. In swarm intelligence, the behavior of the algorithm is inspired by fish, birds,
or ants’ natural swarm behavior. Therefore, we model the plant as self-organizing
system using agent-based modeling (ABM). Thus, the swarm consists of homo-
geneous or heterogeneous agents. Each agent follows a set of local rules and
makes own decisions due to local information leading to an optimization of the
production plant form the bottom-up. Contrary to linear optimization where we
calculate a global solution for the optimization, this approach has the advantages
of low calculatory overhead, high adaptability, and robustness to local environ-
mental changes [23]. ABM remodels the job-shop scheduling problem from a
global solution to a solution that is generated from the bottom-up in a distributed
fashion.
Using ABM for swarm algorithms is better suited than system-dynamics simu-
lation (stock and flow) or continuous simulation using differential equations. In
ABM, a swarm consists of swarm members that can be modeled as agents. They
follow local rules, interact with the environment, communicate with other agents,
and react on local information.
Wilensky and Rand [41] give the following guidelines when to use ABM:

11https://repast.github.io/
12https://mesa.readthedocs.io/en/latest/
13https://www.anylogic.com/
14https://mars-group.org/

https://repast.github.io/
https://mesa.readthedocs.io/en/latest/
https://www.anylogic.com/
https://mars-group.org/

6 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

– Medium number of agents: several dozen up to about 100000 agents. In our
use case, we model up to several thousand agents, typically products and
machines.

– Heterogeneity: in ABM, agents can be as heterogeneous as necessary. Thus,
in ABM, we can model different product and machine types as agents.

– Local and complex interactions: as used in swarm intelligence can be depicted
in ABM.

– Rich environments with agent-like local rules: This can be used to, e.g.,
model complex machine queue manipulations in our case.

– Time: ABM is a model of process that fits to our job-shop scheduling problem.
– Adaptation: almost no other method can model adaptivity of individual enti-

ties well. In ABM, agents’ actions and decisions depend on past actions and
current information, i.e., agents can learn. This fits the swarm model very
well.

3.1 NetLogo for ABM Simulation

One of the most widely used free ABM simulation platforms is NetLogo [40]. It
has a good documentation, a mature code base that is actively maintained, and
thus, many extensions appear on a regular basis. NetLogo is very well known in
the education of ABM and complex systems. Besides education, NetLogo has also
been shown to be a sophisticated platform that can perform simulations involving
several thousand of agents in feasible computation time [31, 32]. For our own
performance results, see Section 4 below. The NetLogo homepage lists more than
3000 research publications from the last 10 years that have used NetLogo as an
ABM simulation platform.
NetLogo offers an interactive user interface including an easy possibility for
visualization to allow rapid prototyping. To perform mass simulations, it comes
with the so-called BehaviorSpace, an easily configurable batch mode to configure
any desired number of simulation runs with multiple parameter settings. The
simulation results are logged to files and can then be post-processed with a
tool of choice (R, Excel, etc.) for statistical evaluation. Additionally, NetLogo
supports co-simulation offering interfaces to other programming languages such
as Python [20] or R [37].
NetLogo uses a discrete scale for simulation time called ticks. Using so-called
breeds NetLogo allows to implement different types of agents. They can interact
either directly (based on proximity or their connection via a network topology),
or indirectly (based on stigmergic information in the environment).

3.2 Modeling Job-Shop Scheduling

From the exemplary fab described in Section 1, we derived different possibilities
for agents, e.g., machines, workcenters, lots, processes, and, recipes. For more
details on the process of identifying agents and the corresponding challenges we
refer the reader to Schranz et al. [33].
In general, the semiconductor factory can be represented with a directed graph
𝐺 = (𝑉, 𝐸), where the nodes𝑉 consist of all machines 𝑀𝑚

𝑖
, with𝑚 as the machine

type. The edges 𝐸 are defined as a connection between two machines 𝑀𝑚
𝑖

and
𝑀

𝑝

𝑗
if there exists a lot 𝑙𝑡𝑛 of type 𝑡 that uses a recipe 𝑅𝑡 that must be executed

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 7

first at machine 𝑀𝑚
𝑖

with process 𝑃𝑚 and second at machine 𝑀
𝑝

𝑗
with process

𝑃𝑝 . Consequently, the edges 𝐸 define the neighborhood of each machine 𝑀𝑖 .
Furthermore, the machines 𝑀𝑚

𝑖
can be of two different types: single-lot-oriented

which process one lot after the other, or batch-oriented which process several lots
at once, e.g., such as a furnace. Each machine knows which process or processes
they can perform and are aware of their current utilization. Furthermore, they can
make local decisions, e.g., re-ordering their queues.
A workcenter 𝑊 ⊂ 𝑀 defines a set of machines that can run the same or
similar processes 𝑃. The exemplary fab model contains several workcenters𝑊𝑚 =

{𝑀𝑚
1 , 𝑀𝑚

2 , . . . }.
The standard unit in the semiconductor industry in production is defined as a lot
consisting of 25 wafers. Each lot is equipped with a transponder that includes a
unique identifier. Therefore, in our model we also do not consider single wafers15.
The product type 𝑡 is defined by the recipe 𝑅𝑡 . The recipe contains the set of
ordered processing steps that are necessary in order to manufacture the product.
As there are typically multiple machines that can perform a processes, a lot 𝑙𝑡𝑛
chooses one out of the suitable machines 𝑀𝑚

𝑖
for the current process step 𝑃𝑚.

In semiconductor manufacturing, historically dispatching rules assign lots to ma-
chines. In dispatching, there is one queue 𝑄𝑚 for all the lots that need a certain
process step 𝑃𝑚 performed by machines 𝑀𝑚

𝑥 of the same type. The lots are as-
signed to machines dependent on their priority levels that allow them to change
their position in the queue. Thus, the next machine available will take the lot with
the highest urgency.
In modern fabs, producers switch from dispatching to scheduling, where each
machine 𝑀𝑚

𝑖
uses its own queue𝑄𝑚

𝑖
. Additionally, schedulers are used to optimize

the assignments of lots to queues typically for a whole workcenter. Priority levels
are still a widely used concept: lots typically still get priority levels assigned which
can cause them to change their position in the queue.
In our model each lot is produced step by step according to the process steps in
its recipe. Therefore, we need to make two decisions at each step:

1. The position of the lot in the queue. In our implementation of SwarmFabSim,
every time a machine is free and wants to take a lot from the queue, the queue
can be re-ordered.

2. The model can be run in one of two modes, dispatching or scheduling mode.
If in scheduling mode, the lot that needs to move to the next machine, chooses
the respective queue 𝑄𝑚

𝑖
of machine 𝑀𝑚

𝑖
from all machines 𝑀𝑚

𝑥 that can
perform the next process step 𝑃𝑚.

These two decisions are reflected in the callback API (application programming
interface) in our simulator implementation, see Section 4.3) for more details.

4 Simulation of an ABM for a Smart Factory

The SwarmFabSim simulation framework is an implementation in NetLogo, com-
patible from version 6.1 up. Our framework supports single-lot-oriented and batch
machines, in either, dispatching or scheduling mode (all machines in the fab have

15For other domains, different industry-specific units of production need to be used in the fab
model.

8 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

to use the same mode). The number of machines, lots, machine types and lot types
are only limited by the available memory and CPU power.
For prototyping and demonstrations, SwarmFabSim can be started from the user
interface (see Section 4.1). The actual scenario to be simulated is defined in a set of
configuration files (Section 4.2). To run mass simulations for simulation studies,
users can either use the built-in BehaviorSpace configuration tool or the so-called
headless mode. BehaviorSpace is suitable for smaller simulation studies where a
number of runs are to be performed for not too many different scenarios. It lets
users set up multiple parameter settings and the desired number of replications
easily via a dialog window. Headless mode is suitable when a simulation study
with a very large number of different scenarios has to be performed. In this mode,
NetLogo is started from the command line and runs without the user interface.
Simulation configurations can be either set up beforehand in BehaviorSpace or
provided by text files. The latter case lends itself to automation where multiple
simulations controlled by script-generated configuration files are executed by a
command line script. For details, refer to NetLogo’s BehaviourSpace guide16. The
results are output to log files (Section 4.5) which can then be post-processed and
statistically analyzed with any tool of choice, like R or Excel.
Unlike earlier versions, NetLogo shows adequate performance to simulate quite
large systems. We tested our SwarmFabSim implementation with a configuration
of 10 000 lots on a Windows 11 system with an AMD Ryzen Threadripper 3960X
24-Core Processor with 128 GB RAM running NetLogo 6.2.0. This configuration
took 24 hours and 52 minutes to compute 30 simulation runs of the baseline
algorithm (described in Section 4.4) in scheduling mode.
The NetLogo source code of SwarmFabSim plus several configuration files are
available as open-source in our GitHub repository at: https://swarmfabsim.
github.io.

4.1 The User Interface

SwarmFabSim simulations can be run in interactive mode controlled via the user
interface shown in Figure 1. The user must first choose several settings (described
below), before starting the simulation by first pressing “Setup” and then either
running the simulation with “Go” or single-stepping through the simulation with
the “Step” button. The following settings exist:
swarm_algorithm which algorithm the machines in the fab use. All machines use

the same algorithm. The framework provides several algorithms as baseline
and demo for algorithm implementers (see Section 4.4).

allocation_strategy whether to use dispatching or scheduling queuing mode. All
machines use the same mode.

Config_File? whether a configuration file should be used (default: TRUE). The
user interface also offers a manual setup where the constraints for the number
of machine types, the total number of machines, production time, number
of product types, recipe length, maximum number of lots, etc. can be set,
and these are then created randomly. Since this is non-repeatable, the use of
configuration files is strongly encouraged.

config_fname the name of the META configuration file (see Section 4.2 below).

16https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html

https://swarmfabsim.github.io
https://swarmfabsim.github.io
https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 9

Fig. 1: SwarmFabSim User Interface. Figure reproduced from [39].

DEBUG? whether debug messages should be printed to the console (default:
TRUE).

VIS? whether the machines and lot movements should be visualized (default:
TRUE).

plotmode which mode to use for plotting. The plot window can show one of the
following:
1 Overall Queuestats the average, max, and min length of all queues in the

system plotted over time.
2 Algorithm a freely definable plot generated by the algorithm. The pro-

vided demo algorithm shows an example of how to plot machine oc-
cupancy (how many machines in the fab are occupied at any point in
time).

3 Separate Queues the current length of each queue in the system. This
setting only makes sense in dispatching mode (where machines of the
same type share a queue) with a moderate number of queues.

10 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

The simulated fab model on the right side of Figure 1 visualizes the lots as
they move through the machines of the fab. Squares indicate single-lot-oriented
machines, while the symbols consisting of four smaller squares indicate batch
machines. Small red dots indicate the lots, the accompanying number indicates
the lot’s product type. Lines indicate each lot’s last movement at every tick.

4.2 Configuration Files

The simulation scenario is defined via a set of plain text configuration files:

META this file bundles the associated configuration files and contains the file
names of the MFILE, RFILE, and LFILE configuration files. The name of
the META configuration file is set via the “config_fname” input field on the
UI or via BehaviorSpace settings.

MFILE contains the machine definitions. For each machine type 𝑚, it defines the
following parameters: a) the process id of the process 𝑃𝑚 the machine can
perform, b) the number of machines of this type, c) the processing time, d) the
batch size (where a batch size of one defines a single-lot-oriented machine),
and e) a maximum waiting time 𝑊𝑇 that a batch machine will wait for a
batch to fill up before it starts processing (for single-lot-oriented machines,
this parameter is ignored).

RFILE contains all recipes 𝑅𝑡 used for production of each lot type 𝑡. The recipes
are simple lists of the necessary process steps 𝑃𝑚 in the required order.

LFILE defines how many lots should be produced for each respective recipe 𝑅𝑡

(for each lot type 𝑡).

4.3 Architecture and Implementation Details

Figure 2 shows the general architecture of our simulation framework. The code
entry point and main simulation loop are contained in the file SwarmFab-
Simulation.nlogo. Besides that, this file also contains general declarations, the
UI description, the Info tab (for documentation) and the BehaviorSpace settings.
Auxiliary framework code is contained in the following .nls files:
config-reader.nls the configuration file parser.
lots+products.nls initialization code for the lots to be produced.
machines.nls initialization code for the machines in the fab.
vizualizations.nls helper code for vizualizations.
We use a callback architecture and define the API for this in the file hooks.nls.
Whenever an algorithm can possibly take an action, the main code calls a hook
function contained in hooks.nls from which the respective algorithm function is
then called. In this way we decouple the algorithm code from the main framework
code so that an algorithm implementer never has to touch or even read the actual
framework code.
To implement an algorithm, a file with the name algorithm-name.nls that contains
the algorithm code has to be provided. The algorithm must conform to the API de-
fined in hooks.nls. Then, the algorithm has to be added to the chooser “algorithm”
on the UI and calls to the algorithm functions have to be added to the respective
API functions in hooks.nls. The hook API contains the following functions:

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 11

Fig. 2: Simulation Framework Architecture.

init called upon startup (mandatory).
choose-queue(lot) is only called when the simulation is in scheduling mode. In

dispatching mode this function is not called, and the lot is automatically put
into the common queue that serves all machines capable of the necessary next
process step prescribed by the recipe. In scheduling mode, a choice has to be
made by the algorithm to which queue of the set of possible next machines
the lot is to be assigned. Therefore, this callback is mandatory for algorithms
that support scheduling mode.

take-from-queue(machine) after a machine has finished processing a lot and
has become free again, it needs to take a new lot from its queue. This
callback provides the algorithm a chance to re-prioritize lots in the queue and
potentially choose a lot further down the queue for processing instead of the
first lot in the queue. This callback is mandatory for all algorithms even if
they do not manipulate the queue.

move-out this function is called when processing has finished and a lot is about
to leave a machine. At this point, an algorithm can collect data or update data
at the machine. This callback is mandatory but can be empty.

tick-start, tick-end are called at the start and end of every tick respectively. This
callback can be used to update data, such as evaporating pheromones. These
callbacks are mandatory but can be empty.

do-plotting allows the algorithm to update the plot window on the UI. This
callback is optional.

To facilitate easy algorithm development, we provide the file helper-api.nls which
contains 16 commonly used convenience functions that provide, e.g., easy access
to the next step in the recipe of the current lot, or to the contents of a machine’s

12 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

queue. We also provide example code for Demo and Basic algorithms and code
to establish a performance Baseline described below (Section 4.4).

4.4 Example Code

The framework provides the following three algorithms as example code for
algorithm implementers and as a baseline for performance comparisons.
Demo, Basic these algorithms are provided mainly as demonstration for algo-

rithm implementers. They showcase different approaches to selecting a queue
(shortest queue, random), taking lots from the queue, how to make algorithm
data persistent between callbacks, and how to use the plot window from an
algorithm.

Baseline is a memoryless/stateless algorithm provided as a reference for perfor-
mance comparisons. The main idea of Baseline is to optimize lot assignment
at batch machines with a simple heuristic that only takes the current workcen-
ter of batch machines into account. As batches can only consist of lots of the
same product type 𝑡, allocation of lots to batches is extremely important, es-
pecially as batch machines will wait up to the maximum waiting time𝑊𝑇 for
batches in their queue to fill up. Therefore, machines with semi-filled batches
in their queue would incur a lot of idle time. Therefore, for the choose-queue
callback, when a lot of a certain product type 𝑡 arrives at the workcenter,
Baseline looks for the queue where the least amount of lots of this type is
missing to fill an already waiting, semi-filled batch. If there are no partially
filled batches of this type in any of the potential queues, it chooses the queue
with the least overall queue length (considering all batches of all other lot
types) to start a new batch of the current type. For single-lot-oriented ma-
chines, it uses a simple shortest queue approach. When a batch has to be
chosen from the queue during the take-from-queue callback if a full batch is
available, that batch is chosen. In case several full batches exist, one is chosen
at random. If there are only semi-filled batches, the machine waits up to the
maximum waiting time 𝑊𝑇 (as specified in the MFILE configuration file,
see Section 4.2). After the 𝑊𝑇 timeout, the largest batch is chosen (if there
are several of the same size, one of them is chosen at random). If a batch fills
up during 𝑊𝑇 , it is chosen immediately. For single-lot-oriented machines, a
simple FIFO approach is used.

4.5 Log File Output

We have configured the included BehaviorSpace experiments (to run multiple
simulations for a simulation study) to produce two types of result log files: a
*-kpi.csv file and a *-table.csv file. Both files use a plain text, comma-separated
value format which can be post-processed with any tool of choice for handling
tabular data, such as R or Excel. Further values of interest can be logged by adding
them to the settings in BehaviorSpace. The KPI (Key Performance Indicators)
file contains the average flow factor, average lot tardiness, and average machine
utilization calculated at the end of each run. It contains a line with result values
for every run. The table file is a standard NetLogo log file. It traces the following
values for every step of every run of the simulation:

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 13

run number the number of the run this line refers to.
swarm-algorithm which algorithm was used.
allocation-strategy whether dispatching or scheduling mode was used.
Config_File? whether a configuration file (default: TRUE) or UI settings were

used to define the fab and product parameters.
config_fname the file name of the META configuration file
DEBUG? whether debug messages should be printed to the console (default:

FALSE).
VIS? whether the fab should be visualized on the UI (default: FALSE).
step the current time tick value in the simulation.
avg_queue_length the mean queue length calculated over all machines at this

time tick.
max_queue_length the maximum queue length calculated over all machines at

this time tick.
min_queue_length the minimum queue length calculated over all machines at

this time tick.

5 Case Study: Hormone and Ant Algorithms for Fab
Optimization

In the following, we describe a case study using two algorithms - a hormone
algorithm (Section 5.1) and an ant algorithm (Section 5.2) on our simulated
fab. Section 5.3 describes the details of the three different fab setups used and
Section 5.4 shows the performance results of these algorithms in comparison with
the baseline algorithm.

5.1 The Hormone Algorithm

Artificial hormone algorithms are inspired by the biological endocrine system
in our bodies that adjust the metabolism of tissue cells [36, 38]. The hormone
algorithm is designed to work in dispatching mode where all machines of the
same type share a queue. It uses artificial hormones to express how urgently
machines need lots and as a mechanism to attract them to the relevant machines.
The algorithm is controlled by the following seven rules and the five parameters
given in Table 1.

Hormone model: every process 𝑃𝑥 is associated with a type of hormone ℎ𝑥 .
Hormones evaporate over time; at each simulation tick hormones are de-
graded according to Equation 1.

hormone_amount = hormone_amount · (1 − 𝛼) (1)

Hormones can be at any machine, and different hormone types can be at the
same machine.

Machines produce hormone to attract lots. Each machine 𝑀 𝑥 produces hor-
mone ℎ𝑥 of the type associated with the process 𝑃𝑥 it can perform. Machines
have the goal of minimizing their idle time and try to attract the lots they need

14 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

to their queue. The amount of hormone produced by a machine is calculated
by Equation 2.

hormone_output =
1

lots_in_queue + 𝛽
(2)

Machines are linked by the recipes of the lots in the system. The recipes impose
a network of links between machines. Every transition from process step
𝑃𝑜 → 𝑃𝑝 in a recipe implies a link with strength 1 between machines
𝑀𝑜 → 𝑀 𝑝 .

Hormone diffuses upstream along the recipes in the system (iow. in the opposite
direction than the recipe is processed) according to Equations 3 and 4:

upstream_hormone = hormone_amount · 𝛾 (3)

hormone_amount = hormone_amount − upstream_hormone (4)

For each upstream machine a proportional part of the upstream hormone is
added according to Equation 5:

added_hormone = upstream_hormone
link_strength∑
link_strengths

(5)

Incoming lots diffuse hormone. Apart from natural diffusion, incoming lots
also cause hormone to diffuse; this is calculated according to Equations 6
and 7:

upstream_hormone = hormone_amount · 𝛿 (6)

hormone_amount = hormone_amount − upstream_hormone (7)

The machine where the lot came from receives the upstream hormone; this
way a flow of lots can self-stabilize (Equation 8).

added_hormone = upstream_hormone (8)

Lots are prioritized by their timing. We assume a planned cycle time (PCT)
for each lot based on its raw processing time (RPT). A lot’s base priority is
then calculated according to Equation 9.

base_priority = remaining_RPT/remaining_PCT (9)

Lots are attracted by hormone. Lots are reordered in the queue according to
their priority. The priority of a lot is calculated from its base priority and the
attraction of the hormones present at the current machine (Equation 10):

priority = base_priority · attraction (10)

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 15

where attraction is calculated according to Equation 11:

attraction =
∑︁
𝑖=0

ℎ𝑖 · 𝜀𝑖 , (11)

where ℎ𝑖 is the hormone of the process that is 𝑖 steps ahead in the lot’s recipe.
Therefore, ℎ0 is the hormone of the current process. 𝜀 is a factor indicating
the strength of a hormone’s influence. Lots are then processed based on their
priority. On batch machines, when one lot of a certain product type becomes
eligible for processing, the batch is filled with as many lots of the same
product type as will fit in the batch size and are available in the machine’s
queue.

Table 1: Parameter settings for the artificial hormone algorithm [12].
Parameter Value
Evaporation 𝛼 .3
Pull factor smoothing 𝛽 1.0
Upstream diffusion 𝛾 .5
Downstream diffusion 𝛿 .2
Attraction 𝜀 .8

A more detailed description of the algorithm and its parameters can be found in
Elmenreich et al. [12].

5.2 The Ant Algorithm

Ant algorithms are inspired by the foraging behavior of certain species of ants,
e.g., the Black Garden ant (Lasius niger) that lay pheromone trails on the ground
to mark paths and recruit other ants to the exploitation of a food source [3].
Even though single ants are not very intelligent, overall, an intelligent solution
with a near-optimal path emerges when the whole swarm works together. This
behavior has been adapted to create technical solutions to the Travelling Salesman
problem and network routing problems [5, 9].
Ant algorithms can be calculated centrally (e.g., when a logistics company calcu-
lates the best routes for its fleet of trucks for the next day) or distributed (e.g., in
packet network routing, where the algorithm runs independently at each node in
the network). In our fab simulation, we use a distributed version of ant algorithm
where we map lots to ants and calculate local decisions whenever a lot needs to
choose a machine at the next workcenter. The algorithm is designed to work in
scheduling mode and chooses the queue of a machine to use at each workcenter.
The order of lots in the queue is not changed. The ant algorithm uses a FIFO regime
to process the queues of single-lot-oriented machines. For batch machines, queue
management is slightly more sophisticated: if a full batch exists, it is immediately
processed (if several full batches exist, one of these is chosen at random). If no
full batch exists, the machine waits for the timer𝑊𝑇 to expire, after which it takes
the fullest available batch in the queue.

16 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

As lots / ants traverse each workcenter 𝑊𝑚 of machines, they need to choose one
of the available machines {𝑀𝑚

1 , 𝑀𝑚
2 , . . . }. To make this decision, they facilitate

the pheromones stored by previous ants / lots.
To determine the amount of pheromone to deposit, lots measure the total time
spent at a machine (Equation 12):

Δ𝑡 = 𝑡𝑞 + 𝑡𝑝 (12)

where 𝑡𝑞 is the queueing time and 𝑡𝑝 is the production time a lot takes at a machine.
Based on this, the pheromone level 𝜏 at the respective machine is updated when
the lot leaves the machine (during the move-out callback). The value is calculated
according to Equation 13 as follows:

𝜏 := 𝜏 + 𝑟 · (1 − Δ𝑡/wlist) (13)

where wlist is a sliding window list of the last three Δ𝑡 values.
Unlike ant algorithms used in packet routing networks (see e.g., [5,6]), where the
pheromones at all routers along the path are updated only after an ant packet has
reached its intended final destination node by sending a so-called backward ant
packet, in our case, we update the pheromone levels immediately when a lot / ant
leaves the current machine at the current workcenter. This is due to the fact that
the complete production of a lot typically takes so much time that updating the
pheromone levels only after production is finished would not give a meaningful
result as the information about machine status would already be outdated.
Subsequent lots then use the pheromones stored at machines to choose the best
machine out of the set of machines capable of performing the next required process
step in their recipe as follows:

– with a probability of 𝜙 = 5%, a random machine is chosen (this is the so-
called exploration rate, which is necessary to discover better machines when
the load situation changes).

– with (1 − 𝜙) = 95% probability, the machine with the highest score value
is chosen (or, if several machines with the exact same highest value exist, a
random machine amongst these). The score value is determined by a weighted
sum of the current pheromone value and the current queue length according
to Equation 14:

𝜏 + 𝛼 · (1/qlen) (14)
Pheromones evaporate over time at every simulation tick according to Equation 15:

𝜏 = 𝜏 · 𝜌 (15)

where 𝜌 is the evaporation factor.
In the current implementation, we use the following values for the parameter
settings as given in Table 2.

5.3 Fab Scenario Setup

We used three scenarios which are modeled after a typical semiconductor fab to
evaluate our algorithms: SFAB, MFAB, and LFAB, with SFAB being the smallest
and LFAB being the largest setup in terms of machines. The LFAB scenario also
contains a higher number of product types and lots per type than the SFAB and
MFAB scenarios. The parameters for the three scenarios are shown in Table 3.

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 17

Table 2: Parameter settings for the ant algorithm.
Parameter Value
Exploration factor 𝜙 5%
Weight for local heuristic 𝛼 .3
Evaporation factor 𝜌 .9

Table 3: Parameters used to create the three evaluation scenarios. Table from [39].
Parameter SFAB MFAB LFAB
Number of machine types 25 50 100
Number of machines per type 𝑈 (2, 5) 𝑈 (2, 10) 𝑈 (2, 10)
Number of products 50 50 100
Recipe length 𝑈 (90, 110) 𝑈 (90, 110) 𝑈 (90, 110)
Number of lots per type 𝑈 (1, 10) 𝑈 (1, 10) 𝑈 (2, 10)

Table 4 shows the parameters used to create the machine types for all simulations,
where 𝑁 (𝜇,𝜎2) denotes the Normal Distribution and 𝑈 (𝑎, 𝑏) the uniform distri-
bution. Negative values from the normal distribution were capped for parameters
that cannot be negative, like process time.

Table 4: Machine parameters used in the simulation. Table from [39].
Machine Parameter Value
Raw process time 𝑁 (𝜇,𝜎2) with 𝜇 =

1.16, 𝜎2 = 0.32
Probability batch machine 50%
Batch size batch machines 𝑈 (2, 8)
Waiting time batch machines 𝑈 (1, 2)

5.4 Performance Results

Each scenario setting (SFAB, MFAB, LFAB) was run 30 times for each algorithm,
and the KPI values (flow factor, tardiness, and uptime utilization) were averaged
for comparison to the performance of the baseline algorithm. Flow factor describes
the relation between actual and minimum production time: 𝑡prod/𝑡min.
Tardiness describes how much additional time (due to lots waiting in a queue) has
been accumulated until production of the lot: 𝑡prod − 𝑡min.
Uptime utilization represents how much time a machine has been in operation on
average.
Tables 5, 6, and 7 compare the performance of the reference algorithm Base-
line with the artificial hormone and ant algorithms for the SFAB, MFAB, and
LFAB scenarios respectively. For the hormone algorithm, all three scenarios show
promising improvements for the key performance indicators average flow factor,

18 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

Table 5: Evaluation of Artificial Hormone and Ant Algorithms in Small Scenario
(SFAB). KPIs on average, changes in %, positive values denote improvement over
Baseline.

Baseline Hormone Change Ant Change
Flow factor 6.51 5.84 10.12% 6.67 -2.31%
Tardiness 6971.1 6077.2 12.56% 7157.6 -2.68%
Uptime Utilization 35.90 34.49 4.40% 36.114 -0.59%

Table 6: Evaluation of Artificial Hormone and Ant Algorithms in Medium Scenario
(MFAB). KPIs on average, changes in %, positive values denote improvement over
Baseline.

Baseline Hormone Change Ant Change

Flow factor 3.21 2.87 9.64% 3.55 -10.56%
Tardiness 2481.8 2081.4 14.52% 2862.3 -15.33%
Uptime utilization 23.87 23.53 1.60% 21.62 9.43%

Table 7: Evaluation of Artificial Hormone and Ant Algorithms in Large Scenario
(LFAB). KPIs on average, changes in %, positive values denote improvement over
Baseline.

Baseline Hormone Change Ant Change
Flow factor 3.47 3.03 12.29% 3.68 -5.98%
Tardiness 3126.8 2566.4 17.05% 3391.0 -8.45%
Uptime utilization 22.71 21.91 3.28% 24.48 -7.81%

average tardiness, and average uptime utilization, while the ant algorithm performs
slightly worse than the baseline algorithm. Unlike the hormone algorithm, where
information in the form of hormone levels travels upstream several workcenters,
in the presented version of the ant algorithm, the information horizon is limited
to only the respective current workcenter.
To measure simulation time, we used a Windows 11 system with an AMD Ryzen
Threadripper 3960X 24-Core Processor with 128 GB RAM running NetLogo
6.2.0 processing 30 runs of each algorithm for the scenarios SFAB and LFAB to
measure simulation performance and got the following results:
Baseline algorithm simulation takes approx. 1.75 mins for the SFAB scenario

and 2.75 mins for the LFAB scenario.
Hormone algorithm simulation takes 0.35 hours for the SFAB scenario and 424

hours for the LFAB scenario.
Ant algorithm simulation takes approx. 1.75 mins for the SFAB scenario and

2.75 mins for the LFAB scenario (indistinguishable from Baseline).
As can be seen, the better performing hormone algorithm takes significantly
more simulation time due to the higher computational complexity of dispersing
the artificial hormones to previous machines according to the lots’ recipes. We
assume that a performance improvement could be achieved by limiting the distance
hormones will be propagated to a smaller neighborhood of machines.

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 19

6 Conclusion

This chapter has depicted the use of NetLogo to model and simulate a fab produc-
ing according to the job-shop manufacturing principle. We introduced SwarmFab-
Sim, a simulation framework implemented in NetLogo that can perform agent-
based simulation of a fab modeled as self-organizing system. The fab model was
adopted from the semiconductor manufacturer Infineon Technologies. Their great
product diversity, the historical growth of the fab together with a broad set of
technological and logistical boundary conditions lead to a complex optimization
problem where swarm intelligence can be of big advantage. As swarms consist of
agents that follow local rules and can be simulated as agent-based models, these
methods can optimize the fab model from the bottom-up. Their optimization po-
tential and effectiveness was evaluated in the framework by comparing an artificial
hormone algorithm and an ant algorithm to a baseline algorithm that works ac-
cording to simple heuristics, like FIFO queueing and filling the least empty batch
first. The evaluation was based on three KPIs (flow factor, tardiness, and uptime
utilization) using three different types of fab scenarios in terms of number of
machines. For all three scenarios, the simulations show promising results for the
hormone algorithm over the baseline algorithm. Unlike the hormon algorithm, the
ant algorithm implementation performs slighty worse than the baseline algorithm.
We assume that this is a limit on the performance of the algorithm, therefore, future
versions will track time and update pheromone values across a (small) number
of machines. Additionally to performance, we evaluated the simulation time for
the scenarios of the algorithms. From this output we can see that the hormone
algorithm takes significantly longer than the baseline and the ant algorithm. For
a future version, we will reduce the radius to neighboring machines where the
hormones are propagated to. The implementation of SwarmFabSim together with
various configuration files and exemplary code is published as open-source in
our GitHub repository at https://swarmfabsim.github.io. Adhering to the
open-source concept, readers are welcome to collaborate, offering their ideas,
feedback, and contributions to further enhance this free software project.

Acknowledgements This work was performed in the course of the project
ML&Swarms supported by KWF-React EU under contract number KWF-
20214|34789|50819, and SwarmIn supported by FFG under contract number
894072.

References

1. Alves, F., Varela, M.L.R., Rocha, A.M.A., Pereira, A.I., Barbosa, J., Leitão, P.:
Hybrid system for simultaneous job shop scheduling and layout optimization
based on multi-agents and genetic algorithm. In: International Conference on
Hybrid Intelligent Systems. pp. 387–397. Springer (2018)

2. Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M.: An artificial immune
algorithm for the flexible job-shop scheduling problem. Future Generation
Computer Systems 26(4), 533–541 (2010)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence – From Natural
to Artificial Systems. Oxford University Press (1999)

https://swarmfabsim.github.io

20 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

4. Brabazon, A., O’Neill, M., McGarraghy, S.: Natural computing algorithms,
vol. 554. Springer (2015)

5. Caro, G.D., Dorigo, M.: Antnet: Distributed stigmergy control for communi-
cations networks. Artificial Intelligence Research 9, 317–365 (1998)

6. Di Caro, G., Ducatelle, F., Gambardella, L.M.: Anthocnet: An adaptive
nature-inspired algorithm for routing in mobile ad hoc networks. European
Transactions on Telecommunications 16(5), 443–455 (2005)

7. Dias, L.M., Vieira, A.A., Pereira, G.A., Oliveira, J.A.: Discrete simulation
software ranking—a top list of the worldwide most popular and used tools.
In: 2016 Winter Simulation Conference. pp. 1060–1071. IEEE (2016)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. A Bradford Book, The
MIT Press (2004)

9. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolu-
tionary Computation 16(5), 53–66 (1997)

10. Elmenreich, W., D’Souza, R., Bettstetter, C., de Meer, H.: A survey of models
and design methods for self-organizing networked systems. In: Proceedings
of the Fourth International Workshop on Self-Organizing Systems. vol. LNCS
5918, pp. 37–49. Springer Verlag (2009)

11. Elmenreich, W., de Meer, H.: Self-organizing networked systems for technical
applications: A discussion on open issues. In: K.A. Hummel, J.S. (ed.) Pro-
ceedings of the Third International Workshop on Self-Organizing Systems.
pp. 1–9. Springer Verlag (2008)

12. Elmenreich, W., Schnabl, A., Schranz, M.: An artificial hormone-based
algorithm for production scheduling from the bottom-up. In: Proceedings
of the 13th International Conference on Agents and Artificial Intelligence.
SciTePress (2021)

13. Floreano, D., Mattiussi, C.: Bio-inspired artificial intelligence: theories,
methods, and technologies. MIT press (2008)

14. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and job-
shop scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

15. Geng, H. (ed.): Semiconductor Manufacturing Handbook. McGraw-Hill Ed-
ucation (2018)

16. Georgiadis, G.P.: Optimal Production Planning and Scheduling of Mixed
Batch and Continuous Industrial Processes. Ph.D. thesis, Aristotle University
of Thessaloniki (2021)

17. Ghasemi, M.: Lot streaming in hybrid flow shop scheduling. Tech. rep.,
Concordia University Spectrum Research Repository (2008)

18. Graham, R.L.: Bounds for certain multiprocessing anomalies. The Bell Sys-
tem Technical Journal 45(9), 1563–1581 (1966). https://doi.org/10.
1002/j.1538-7305.1966.tb01709.x

19. Gromicho, J.A., van Hoorn, J.J., da Gama, F.S., Timmer, G.T.: Solving the
job-shop scheduling problem optimally by dynamic programming. Comput-
ers & Operations Research 39(12), 2968–2977 (2012). https://doi.org/
https://doi.org/10.1016/j.cor.2012.02.024

20. Gunaratne, C., Garibay, I.: NL4Py: Agent-based modeling in Python with
parallelizable NetLogo workspaces. SoftwareX 16, 100801 (2021)

21. Gwiazda, A., Banaś, W., Sękala, A., Topolska, S., Hryniewicz, P.: Modelling
of production process using multiple ant colony approach. International Jour-
nal of Modern Manufacturing Technologies XII(1), 201–213 (2020)

https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/https://doi.org/10.1016/j.cor.2012.02.024
https://doi.org/https://doi.org/10.1016/j.cor.2012.02.024
https://doi.org/https://doi.org/10.1016/j.cor.2012.02.024
https://doi.org/https://doi.org/10.1016/j.cor.2012.02.024

Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling... 21

22. Habib Zahmani, M., Atmani, B.: Multiple dispatching rules allocation in
real time using data mining, genetic algorithms, and simulation. Journal of
Scheduling 24(2), 175–196 (2021)

23. Heylighen, F.: The science of self-organization and adaptivity. The Encyclo-
pedia of Life Support Systems 5(3), 253–280 (2001)

24. Jain, A., Meeran, S.: Deterministic job-shop scheduling: Past,
present and future. European Journal of Operational Research
113(2), 390–434 (1999). https://doi.org/https://doi.org/10.
1016/S0377-2217(98)00113-1

25. Lawler, E.L., Lenstra, J.K., Kan, A.H.R., Shmoys, D.B.: Sequencing and
scheduling: Algorithms and complexity. Handbooks in Operations Research
and Management Science 4, 445–522 (1993)

26. Lee, G.C., Kim, Y.D., Kim, J.G., Choi, S.H.: A dispatching rule-based ap-
proach to production scheduling in a printed circuit board manufacturing sys-
tem. Journal of the Operational Research Society 54, 1038–1049 (10 2003).
https://doi.org/10.1057/palgrave.jors.2601601, https://www.
tandfonline.com/doi/full/10.1057/palgrave.jors.2601601

27. Petrovic, S., Fayad, C., Petrovic, D., Burke, E., Kendall, G.: Fuzzy job shop
scheduling with lot-sizing. Ann Oper Res 159, 275–292 (2008). https:
//doi.org/10.1007/s10479-007-0287-9

28. Prehofer, C., Bettstetter, C.: Self-organization in communication networks:
Principles and design paradigms. IEEE Communications Magazine pp. 78–85
(Jul 2005)

29. Pulikottil, T., Estrada-Jimenez, L.A., Rehman, H.U., Barata, J., Nikghadam-
Hojjati, S., Zarzycki, L.: Multi-agent based manufacturing: current trends
and challenges. In: 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). pp. 1–7. IEEE (2021)

30. Qin, W., Zhuang, Z., Liu, Y., Tang, O.: A two-stage ant colony algorithm
for hybrid flow shop scheduling with lot sizing and calendar constraints
in printed circuit board assembly. Computers & Industrial Engineering 138,
106115 (2019). https://doi.org/https://doi.org/10.1016/j.cie.
2019.106115

31. Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C.,
Thiele, J.C.: Improving execution speed of models implemented in netlogo.
Journal of Artificial Societies and Social Simulation (2017)

32. Railsback, S.F., Grimm, V.: Agent-based and individual-based modeling: a
practical introduction. Princeton university press, "2nd" edn. (2019)

33. Schranz, M., Umlauft, M., Elmenreich, W.: Bottom-up job shop scheduling
with swarm intelligence in large production plants. In: Proceedings of the
11th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications. pp. 327–334 (2021)

34. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behav-
iors and current applications. Frontiers in Robotics and AI 7, 36 (2020)

35. Shukla, O.J.: Agent Based Production Scheduling in Job Shop Manufacturing
System. Ph.D. thesis, MNIT Jaipur (2018)

36. Sobe, A., Elmenreich, W., Szkaliczki, T., Böszörmenyi, L.: SEAHORSE:
Generalizing an artificial hormone system algorithm to a middleware for
search and delivery of information units. Computer Networks 80, 124–142
(2015)

37. Thiele, J.C.: R marries NetLogo: introduction to the RNetLogo package.
Journal of Statistical Software 58, 1–41 (2014)

https://doi.org/https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/10.1057/palgrave.jors.2601601
https://doi.org/10.1057/palgrave.jors.2601601
https://www.tandfonline.com/doi/full/10.1057/palgrave.jors.2601601
https://www.tandfonline.com/doi/full/10.1057/palgrave.jors.2601601
https://doi.org/10.1007/s10479-007-0287-9
https://doi.org/10.1007/s10479-007-0287-9
https://doi.org/10.1007/s10479-007-0287-9
https://doi.org/10.1007/s10479-007-0287-9
https://doi.org/https://doi.org/10.1016/j.cie.2019.106115
https://doi.org/https://doi.org/10.1016/j.cie.2019.106115
https://doi.org/https://doi.org/10.1016/j.cie.2019.106115
https://doi.org/https://doi.org/10.1016/j.cie.2019.106115

22 Martina Umlauft, Melanie Schranz, and Wilfried Elmenreich

38. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences 237(641),
37–72 (1952)

39. Umlauft, M., Schranz, M., Elmenreich, W.: SwarmFabSim: A simulation
framework for bottom-up optimization in flexible job-shop scheduling us-
ing netlogo. In: Proceedings of the 12th International Conference on Sim-
ulation and Modeling Methodologies, Technologies and Applications - SI-
MULTECH. p. 271–279. SciTePress (Jul 2022). https://doi.org/doi:
10.5220/0011274700003274

40. Wilensky, U.: Netlogo (1999), http://ccl.northwestern.edu/
netlogo/

41. Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling: Model-
ing Natural, Social, and Engineered Complex Systems with NetLogo. MIT
Press (2015)

42. Yamada, T., Nakano, R.: Job shop scheduling. IEE control Engineering series
pp. 134–134 (1997)

43. Zhang, G., Shao, X., Li, P., Gao, L.: An effective hybrid particle swarm opti-
mization algorithm for multi-objective flexible job-shop scheduling problem.
Computers & Industrial Engineering 56(4), 1309–1318 (2009)

44. Zhang, T., Xie, S., Rose, O.: Agent-based simulation of job shop production.
Simul. Notes Eur. 29(3), 141–148 (2019)

45. Zhu, X., Wilhelm, W.E.: Scheduling and lot sizing with sequence-dependent
setup: A literature review. IIE Transactions 38, 987–1007 (11 2006). https:
//doi.org/10.1080/07408170600559706

https://doi.org/doi:10.5220/0011274700003274
https://doi.org/doi:10.5220/0011274700003274
https://doi.org/doi:10.5220/0011274700003274
https://doi.org/doi:10.5220/0011274700003274
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.1080/07408170600559706
https://doi.org/10.1080/07408170600559706
https://doi.org/10.1080/07408170600559706
https://doi.org/10.1080/07408170600559706

	Simulation of Swarm Intelligence for Flexible Job-Shop Scheduling with SwarmFabSim: Case Studies with Artificial Hormones and an Ant Algorithm

