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Abstract—Topologies are usually characterized in terms of
their network graph; usually by investigating their degree fre-
quency, rank/degree, or hop/count distributions. Wireless net-
work simulation, on the other hand, typically does not use
network graphs. Instead, in most wireless simulations, nodes
are first positioned on the terrain based on some positioning
algorithm and then a radio propagation model is used to
determine connectivity dynamically at simulation run-time. For
this use-case, methods to characterize network topology based
solely on the spacial positions of the nodes on the terrain are
necessary. We propose several metrics and show how they can be
used to evaluate position-based topologies: the nearest neighbor
distance distribution, a threshold and a probabilistic node degree
measure, and the application of an inhomogeneity measure for
spatial distributions.

I. INTRODUCTION

Computer networks are usually characterized by their graph
properties, thus, a network consists of vertices representing
network nodes and directed or undirected edges representing
connectivity. Such networks can be characterized by density,
average degree, diameter, and clustering coefficient. These
measures have been successfully applied to describe mostly
static, wirebound networks, such as generated random net-
works with Internet-like characteristics [1]. Borschbach and
Lippe presented a model of homogeneity based on a graph
theoretical model for ad-hoc networks [2].

However, wireless network simulations typically compute a
network by first using a spatial model to place the nodes,
followed by calculating the connection probability with a
radio propagation model [3], [4]. The connectivity of two
nodes depends on the signal to noise ratio at the receiving
node, which is a function of path loss, shadowing and fading
models, and the current transmission power of nearby nodes.
Connectivity models often are probabilistic, thus yielding an
expected reception probability for any given link. Over time
the connections in a network are typically dynamic.

Additionally, for real-world wireless networks, a graph-
based model is often unavailable or hard to obtain unlike
node positions and their transmission properties. Thus, there
is a need to assess network properties from node positions
in order to characterize and compare real-world networks to
artificial network models generated by topology generators

such as [5]–[7] or the map-based generator MAGANET [8]
or the approach using a random topology generator based on
an Erdos-Renyi model and a topology generator based on a
SNAP (Stanford Network Analysis Project) network dataset
proposed by Nandi [9] for Software Defined Network testing.

To characterize wireless networks, we suggest an alternative
approach to using graph-theoretical network properties alone.
This paper investigates different approaches to characterize
network topologies based on the spatial distribution of nodes.
In Section II, different metrics for this purpose are identified,
which are applied to characterize four real-world distributions
of urban rooftop networks and compared with an artificially
generated topology model in Section III. The effectiveness of
the approach is discussed in the conclusion in Section IV.

II. METRICS

In the following, we introduce four useful metrics for the
characterization of position-based topologies, namely: nearest
neighbor distance distribution, a probabilistic and a threshold
node degree measure based on the propagation model used
in the simulation, and the application of an inhomogeneity
measure for spatial distributions.

A. Nearest Neighbor Distance Distribution

To be connected, every node in the network has to be
connected to at least one neighbor and there has to be a
path between any pair of nodes. Based on the first property,
each node ni must have at least one neighbor nb where the
distance d between them is within the communications range:
d(ni, nb) ≤ dcomm

Assuming a propagation model based on node distance
(which is what is typically used in wireless simulation mod-
els), it therefore makes sense to investigate the distance
distribution of the nearest neighbors (NNB).

Nearest neighbor distances shorter than the communica-
tions range are a necessary (but in real-world networks not
sufficient) criterion for connectivity in the network. If the
distance between two nodes is larger than the communications
range then communication between these two nodes in a
radio network is unlikely. Therefore, a network in which a
significant fraction of the nearest neighbor distances are above



the communications range has a high probability of being
disconnected.

B. Propagation Model Based Node Degrees

Network generators based on the degree distribution follow
the implicit assumption that matching a certain local property
like the degree distribution produces a network resembling the
original structure. Tangmunarunkit et al. have shown that such
an approach can accurately capture the large-scale structure of
measured topologies [10].

Before a node degree can be calculated, a propagation model
has to be applied to the position-based topology to transform
the distance matrix into a connection probability (CP) matrix.
Once the CP matrix has been calculated, there are two ways
to interpret these probabilities as a node degree:

1) “threshold” degree For this, a connection probability
threshold is chosen that is deemed “good enough” for
the intended higher layer protocol(s) and traffic. All links
with a connection probability higher than or equal to the
threshold are counted towards the degree of the node
while all links with a connection probability lower than
the threshold are ignored. This results in integer values
for the node degrees.

2) “probabilistic” degree The degree of a node is calcu-
lated as the sum of the connection probabilities of all
its links: degp =

∑
i CP(li) eg. a node with two links

l1, l2 with connection probabilities of CP(l1) = 0.95
and CP(l2) = 0.90 would have a probabilistic degree
of degp = 1.85.

C. Inhomogeneity Factor

A different way to look at the distribution properties of
wireless network nodes is to look at node density and the
inhomogeneity of the node distribution in the spatial domain.
The node density in node per area unit is straightforward to
calculate. To measure inhomogeneity, we are aiming at an
objective quantitative measure of inhomogeneity. Schilcher et
al. define three properties for such a measure: (i) provide
values in a defined range between 0 and 1, (ii) being inde-
pendent of network scale, and (iii) being unaffected by linear
operations such as shifting, mirroring or rotating [11], [12].
They propose an algorithm for calculating an inhomogeneity
measure, which fulfils these requirements. We use this metric
as one way of characterizing position-based wireless networks.
The algorithm involves a recursive segmentation of the area,
where the recursion depth depends mainly on the number of
involved nodes. The result, called h is near zero for regularly
spaced node deployments and approaches a value of one for
highly inhomogeneous networks. Thus, a high value indicates
a strongly clustered network.

III. APPLICATION TO REAL-WORLD EXAMPLES

We consider rooftop-to-rooftop wireless mesh networks
using commercial off-the-shelf WiFi technology as our real-
world examples, but the metrics can be applied to other
wireless mesh networks such as sensor networks as well.
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Fig. 1. Real-World Node Positions: MIT Rooftop network (scale in meters).
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Fig. 2. Real-World Node Positions: Leipzig (scale in meters).

Figures 1, 2, 3, and 4 show the node positions of real-world
wireless mesh networks from the MIT Rooftop network [13],
Leipzig [14], Vienna [15], and Berlin [16]. For each of these
networks we got the node positions from street maps on the
respective project homepages.

As can be seen, these topologies exhibit obvious clustering
and are not uniformly distributed on the terrain. While there
exists work using random geometric graphs as models for
wireless multi-hop networks such as [17], these results rely
on the property of random geometric graphs that the nodes be
distributed uniformly. Since this is clearly not the case for our
real-world examples, we therefore investigate these networks
experimentally using the metrics proposed above.

The most interesting application of such metrics, though, is
to judge whether any artificially created topologies that are
used in a simulation actually resemble the features of the
real-world networks they are supposed to model. Consider
the following example: assume we want to do network sim-
ulations on a network “similar” to the Berlin network and
create artificial topologies with a topology generator. In many
simulations, a simple uniform generator is used, i.o.w. the
nodes are distributed uniformly on the terrain. For the case
of the Berlin network a generator might produce an artificial
topology such as the one shown in Figure 5, using the same
number of nodes and area as the real-world Berlin network.

A. Nearest Neighbor Distance Distribution

Table I summarizes the network characteristics: as can be
seen, the level of spatial clustering influences the average
nearest neighbor (NNB) distance in relation to the average
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Fig. 3. Real-World Node Positions: Vienna (scale in meters).
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Fig. 4. Real-World Node Positions: Berlin (scale in meters).
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Fig. 5. Artificial topology using the same area and number of nodes as the
Berlin network but with uniform distribution (scale in meters).

node distance. E.g., the Vienna and Berlin networks have
quite similar average node distances, but due to the higher
clustering the average NNB distances are much lower in
the Berlin network. While investigating NNB distance w.r.t.
communications range gives an indication of the probability
that a network will be connected when using a certain radio
technology, considering NNB distance alone is not enough.
For a comparison of networks, NNB distance should always
be considered in combination with the average node distance
and density. E.g., the Leipzig and MIT Rooftop networks don’t
differ much in their average NNB distance but taking their size
differences into account – the MIT Rooftop network covers
an area only about 16% the size of the Leipzig network – it
becomes apparent that the Leipzig network must be a lot more
clustered. When evaluating the artificially created topology,
we can see that in the real-world Berlin network the average

TABLE I
NETWORK PROPERTIES.

MIT Leipzig Vienna Berlin Artificial
Number of nodes 81 425 145 339 339

Size [km2] 7.01 43.37 186.23 132.55 132.55
Density [nodes/km2] 11.56 9.799 0.779 2.558 2.558

avg. Node Dist. [m] 1022 2333 5424 4742 6036
avg. NNB Dist. [m] 104 78 438 198 336
avg. ND/avg. NNB 9.83 29.91 12.38 23.95 17.96

Inhomo. Factor h 0.58 0.656 0.448 0.454 0.115

NNB distance is a lot shorter, implying higher clustering. Such
a mismatch should prompt the use of a different topology
generator; e.g. [7].

B. Propagation Model Based Node Degrees
To calculate node degrees from a position-based topology,

a propagation model has to be applied. With the propagation
model, the distance matrix can be converted to a connection
probability (CP) matrix. Without restriction of generality, we
choose the following example:

• a Rayleigh fading model which is suitable for modelling
radio propagation in urban environments. We calculate
the expected reception power at the receiver as

E [Pr] = Ptgtgr

(
c

4πf

)2(
d

d0

)−α

, (1)

where Pt is the transmission power at the sender, gt, gr
the antenna gains at sender and receiver respectively, d the
distance between sending and receiving node, d0 = 1m
the reference distance, and α the path loss exponent [18],

• a path loss coefficient of α = 2.5 (assuming that due
to building codes that restrict building height in Euro-
pean cities there is mostly line-of-sight between rooftop-
mounted mesh routers),

• commercially available wireless routers [19] with an
assumed receiver threshold of θ = −97dBm and sending
power Pt = 26dBm, and

• high-gain antennas [20] with an antenna gain of gr =
gt = 5dBi.

We can now calculate node degrees as described in Sec-
tion II-B. Figures 6 and 7 show comparisons of the 95%-
threshold degree and the probabilistic degree for our four
networks and the “artificial Berlin” example topology from
above. As can be seen, due to the longer NNB distances the
artificial topology also exhibits much lower degrees for a given
threshold than the clustered real-world topology.

C. Inhomogeneity Factor
We calculate the inhomogeneity factor h developed in [11]

(as described in Section II-C above). The results are given
in the last line of Table I. As can be seen, our example
artificial topology again shows a much lower inhomogeneity
factor – meaning its nodes are a lot more homogeneously
distributed – than the real-world topology of Berlin. Therefore,
this artificially created topology is not a good model for the
Berlin network.
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Fig. 6. Threshold Degree Comparison

0 100 200 300 400

0
20

40
60

80
10

0

probabilistic degree

E
C

D
F

 [%
]

Artificial Berlin Leipzig MIT Vienna

Fig. 7. Probabilistic Degree Comparison

IV. CONCLUSION

In wireless network simulation topologies are typically not
defined as graphs but as the combination of spatial node
positions and a propagation model. Therefore, it is important
to be able to characterize such position-based topologies, esp.
to judge the validity of artificially created models.

We proposed four metrics for this use case – nearest
neighbor distribution, threshold degree, probabilistic degree,
and inhomogeneity factor – and demonstrated their application
using four real-world networks and an artificially created
topology as examples.

Our examples show that real-world topologies are much
more spatially clustered than a uniform distribution of nodes
on the same terrain would be. The nearest neighbor metric
and inhomogeneity factor can be used to directly assess the
amount of clustering in such topologies while the threshold
and probabilistic degree will give an indication of what to
expect in terms of the resulting graph once the propagation
model is applied. Consequently, we recommend to employ all
four metrics in order to describe a topology with respect to its
network properties and assess its validity for use in simulation.
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