
Executable Test Definition for a State Machine
Driven Embedded Test Controller Module

Benjamin Steinwender∗†, Michael Glavanovics†, Wilfried Elmenreich∗
∗Smart Grids Group/Lakeside Labs, Alpen-Adria-Universität Klagenfurt, Austria

†KAI Kompetenzzentrum Automobil- und Industrie-Elektronik GmbH, Villach, Austria

E-mail: benjamin.steinwender@k-ai.at

Abstract—Microcontroller modules are introduced to a life test
system to apply stimuli and stress patterns to the unit under test.
The firmware must evaluate the status or operational function
of the tested device for a multitude of different applications. A
finite-state machine design for the microcontroller is presented
that is configurable via a communication bus. The controller acts
according to the given test plan description. Various sources can
trigger events to cause a transition in the state machine. Custom
Lua script code is executed in each state in order to control and
communicate with the test hardware.

Keywords: microcontroller, Lua, embedded scripting, finite-
state machine, life testing

I. INTRODUCTION

Life testing of devices and applications for reliability

assessment purposes requires a large number of units to be

tested in a harsh environment, i.e. temperature ranges up to

125 ◦C or repetitive short circuit testing [1]. The devices and

their application are usually put into a climate chamber, while

the stress test hardware is left outside because it will not sustain

the high temperatures. Traditional systems come with a control

system outside the climate chamber, which requires a large

number of analog signal wires and limits the flexibility of

the test setup. In [2] we proposed a paradigm shift towards a

system of distributed control and test nodes which are located

close to the unit under test (UUT) to enable:

• closed loop control,

• in-situ data acquisition and analysis,

• real-time failure diagnosis, and

• high speed interfaces to the UUT.

A new generation of life test systems for power semicon-

ductor devices and applications is currently developed at the

KAI center of competence. It provides an array of controller

and application modules, linked by a communication bus to

a central host computer [2]. The microcontroller modules are

used to apply stress patterns and monitor the devices on the

application modules. Several of these microcontroller hardware

targets are used to obtain statistical data about multiple tests.

To provide a further advantage, i.e., higher flexibility towards

different test setups, an appropriate configuration approach

for the test software is required. The test procedures can be

defined on the host computer at run-time and transferred to

the microcontroller to be executed there.

During product development and subsequent reliability life

testing, the test requirements change as soon as problems are

identified or superseded by other problems. Thus, not only the

execution of tests takes a significant amount of time, but the

test setup also takes considerable effort. Typically, different

instruments like power supplies, electronic loads, as well

as pattern and waveform generators are used simultaneously.

During tests the engineer needs to change the wiring of the

test setup as well as to modify the test software. By reducing

this setup time, more tests can be performed, providing more

data about the long-term behavior of products and minimizing

their time to market.

To reduce complexity, we propose a modular software

architecture which can be adjusted to the respective hardware

and required test. The modular approach is beneficial, because

it provides several advantages over the previous generations of

monolithic test systems [3], [1]:

• Separate test development from hardware and software

design

• Simplify development, debugging and replacement of

individual hardware modules

• Enable a smaller development team to tackle one problem

at a time while using proven modules for their main code.

The purpose of this paper is to describe and evaluate a

software framework that is able to handle a variety of different

modular hardware setup scenarios. The proposed framework

builds upon the concept of finite state machines and Lua scripts

for executing test routines. The use of the script language

Lua is expected to reduce the cognitive complexity of a test

routine. The finite state machine (FSM) allows for a modular

composition and extension of existing test sequences.

On the hardware side, there are currently only few controllers

that are powerful enough to drive such tests and able to sustain

the required temperatures. The described work is based on

the XMC4500 microcontroller [4] featuring an ARM Cortex-

M4F core running at 120MHz with 1MiB program flash and

160KiB RAM. The controller was selected due to the required

automotive temperature operating range of −40 ◦C to 125 ◦C
and outstanding analog performance.

In the next sections, we describe related concepts from

literature and previous work followed by a description of

our test definition model. The overall system is sketched in

Section IV. Finally, first experiences with the approach are

discussed in Section V and we give an outlook to future work.

Textfeld
© IEEE, 2015. This is the author's version of the work. Personal use of this material is permitted. Permission to reprint/republish this material or to reuse any copyrighted component of this work in other works must be obtained from the copyright holder. The definite version is published as B. Steinwender, M. Glavanovics, W. Elmenreich. Executable Test Definition for a State Machine Driven Embedded Test Controller Module. In Proc. 13th International Conference on Industrial Informatics, pages 168-173, 2015. (doi:10.1109/INDIN.2015.7281729)

II. RELATED & PREVIOUS WORK

In order to find and fix bugs faster and to reduce the effort

of setting up and redoing a test suite after a code modification,

automated unit testing has been in use in the context of

software development for the past two decades [5]. The idea

has been extended to firmware [6], digital and analog hardware.

Hardware tests - often built upon Built-in self-test (BIST), i.e.,

test generation, test application, and response verification - are

usually accomplished by built-in hardware [7]. However, in

case of a power stress test, the test system must be physically

separated from the UUT in order to avoid failures of the test

system caused by the extreme conditions during the test, such

as the dissipated heat power, high current or voltage.

In such a modular power stress test system, a variety of

different applications should be addressed without the need to

change the basic firmware of a given microcontroller target.

Therefore, it is not sufficient to only change the parameters of

the test program (e.g. timing values, output voltage levels), but

it is usually required to also change the behavior and sequence

of certain actions. The requesters of these application tests

are typically company internal hardware designers and product

engineers. They prefer directly configuring a test sequence

rather than low-level programming of microcontrollers. Thus, a

dedicated firmware concept with a simple on-line configuration

approach is required.

Over the last years, networked boot-loaders have emerged

that allow transferring executable code during power up of

the controller via serial data buses such as UART, CAN

or Ethernet [8], [9]. Using these mechanisms, updating the

controller firmware can be simplified substantially, since it

is not required to plug the flash tool into each controller

individually. However, this does not solve the problem that for

each different task a new firmware image needs to be created.

Improved concepts implement a base firmware that supports

the execution of script commands. Several projects have

already investigated approaches to provide embedded virtual

machines for Lua (eLua [10]) or Python (p14p “Python-on-

a-chip” [11], the Owl Embedded Python System [12] and

MicroPython [13]) which allow the execution of user provided

code on a microcontroller.

Barr [12] describes a sophisticated software framework

based on the Python virtual machine that removes the hitherto

required compile-flash cycle of microcontroller programming.

This approach features an interactive Python interpreter on

a microcontroller. The original Python virtual machine is

modified and only a subset of Python commands is made

available. The Python program however needs to be compiled

into bytecode on a desktop machine and is transferred to the

microcontroller via a serial data bus for execution. Additionally,

the bytecode can also be stored on the controller.

In contrast, the MicroPython project features a reimplementa-

tion of the Python language on a microcontroller. It contains all

language features as well as an on-line interpreter. Furthermore,

a read-eval-print loop can be accessed via its serial connection

and programs can be stored in the embedded device’s flash

memory.

In the same line of thought, the eLua-project runs a full

Lua interpreter on the microcontroller. Thus, the script can

be compiled on-line and all language features are available.

eLua also provides an interactive command access for simple

debugging. Additionally, Lua supports the loading of pre-

compiled bytecode in addition to raw source files.

Both script projects provide a powerful C-API for the

incorporation of custom C-functions, enabling simple access to

the controller’s hardware periphery. In addition, they provide

means for a standalone program execution. However, they fall

short in terms of distributing the program code to multiple

controllers at the same time. Distribution is essential if

numerous controllers are situated in the same test system.

III. TEST DEFINITION MODEL

Before deploying test descriptions onto the controller target,

a generic test model has to be found. By investigating typical

power electronics test scenarios, it became evident that the test

program on the controller has to take care of:

• Applying configuration, digital and analog stress test

patterns.

• Reading system responses and measurement values.

• Receiving and executing messages from the governing

test handler on the host (i.e. “host messages”, especially

START and STOP messages) in order to proceed to the

test sequence where dependencies on external hardware

are defined.

• Handling trigger signals generated by the application or

microcontroller periphery (i.e. interrupt events)

• Evaluating internal states (i.e. measured analog signals,

return values from digital interfaces)

• Running background routines for sending and receiving

messages and transferring measured data to the host.

A. State machine

These bullets can be summarized and generalized as “actions”

and “events”. An “action” is the sequence of instructions which

is to be carried out by the controller in order to perform a

specific task and evaluate the result. An “event” is triggered by

internal modules in the controller or externally through the test

application and requires the controller to perform an “action”.

Given these two basic terms, the non real-time behavior of a

test procedure can be modeled with an FSM [14].

The reaction to an “event” can be described by a transition

in the state diagram. While the controller is in a certain FSM

state, it will continuously execute the associated “action”. This

implicit behavior can be modeled by the unconditional @else-
event, forming a transition from each state to itself in a loop.

In order to execute a state only once and immediately move to

the next state, the loop needs to be cut. This can be achieved

by manually pointing the @else-event to a different state.

The information whether an event has occurred is stored in

a fixed-size, pre-allocated table indexed by the event number.

Thus, the interrupt service routines (ISRs) and the main loop

may modify the table, since no dynamic memory allocation -

as found in a queue-based system - is required. Furthermore,

locking of this global table is not required, as event occurrences

are set (by hardware ISR or software) and cleared (by the FSM

handler described below) by independent instances.

EVENT

TASK

INIT

IDLEstart

CLEAN

TEST

stop

@else

@else

@else

@timer0

start

@eru3

@else

Figure 1. Simple controller state machine

A simple example of a state machine structure for such a

test sequence is given in Figure 1. Once it has finished booting,

the controller waits for the reception of a new state machine

description via the serial communication interface. It parses the

contents and builds up a directed graph. Finally, the controller

starts executing the state machine in the IDLE state. While

in the IDLE state, no user definable actions can be carried

out and only background routines are being processed. These

background routines are required to transfer the configuration

to the controller and convert it into the state machine. The

IDLE-state is also the final state and the controller can be

stopped or the FSM structure may be changed.
Upon reception of the start event through the host, the FSM

will propagate into the INIT state, perform the one-time setup

procedures given by the test description and automatically

change into the TEST state indicated via the @else event. In

the example TEST state, the automaton listens for the hardware-

events @timer0 (periodic time-triggered work load) and @eru3
(external events - e.g. button pressed) and the software-event

stop (for stopping the test).
Such a state diagram can easily be converted into C-

code, compiled and transferred to the controller for execution.

However, alteration of the procedure (e.g. adding another

event and its corresponding action to the TEST state or

synchronization with the host or other controllers) requires

a skilled programmer who is capable of implementing these

changes as well as perform recompilation and finally flashing

the firmware. This solution is thus not favorable for practical

use in the test laboratory.
An improved version allows reconfiguring the states and

transitions in order to execute arbitrary sequences. Therefore,

the controller may receive a state transition table as given in

Table I. The table is constructed by enumerating all transitions

between states, which allows full reconstruction of the state

current state event next state

1 IDLE start INIT
2 INIT @else TEST
3 TEST stop CLEANUP
4 CLEANUP @else IDLE
5 TEST @timer0 TASK
6 TASK @else TEST
7 TEST @eru3 EVENT
8 EVENT @else TEST

Table I
STATE TRANSITION TABLE

machine diagram. To simplify the diagram and to reduce the

table size, the implicit loop transitions via the @else event are

not stored.

The transition table is constructed on the host computer

where the test plan is created and converted into a serial form

in order to be transferred via the communication interface.

Each state and each event are converted into numerical IDs

and then collected as a triple, which represents a transition.

The controller receives the list of triples and reconstructs the

table in its internal RAM.

According to this procedure, states can be traversed in a

simple way as presented in Algorithm 1. If the event matches

none of the events listed in the transition table, the current

state is kept (Line 1). While iterating through the table, only

transitions that originate from the current state are considered.

This behavior is improved by storing the outgoing transitions

from each state in a tree-like data structure which is indexed

by the state. If the current state contains a transition using the

@else event, it is saved and the search algorithm continues

querying the table in order to match a possible triggered event

(Line 4). If the current state contains a transition event that has

actually been triggered, the result state is immediately assigned

and the search is complete.

B. Hardware interaction

The main reason to use microcontrollers is justified by the

possibility to interact with the integrated on-chip hardware

modules like analog converters, timers and digital interfaces.

Since the interaction should be included in the previously

mentioned state machine, a set of commands is desired which

can be executed during each state.

Of course, one could build a simple parser for reading

commands and parameters. However, since low-level program-

ming of microcontrollers is difficult, this task is error-prone

and a very large amount of commands must be implemented.

Furthermore, such a design is rather inflexible and poses many

risks to introduce bugs. The favored solution is to use an

interpreted language which also supports features such as loops,

conditions and even functions (see Section II).

Lua has been chosen for the implementation, because it is

small, utilizes a minimum of RAM while still being powerful.

The real benefit comes with the highly sophisticated C-API that

allows an implementation of custom modules and hardware

access routines. The interface between the Lua virtual machine

and C-functions is defined with a modifiable virtual stack. Thus,

Data: transitionTable, currentState
Result: nextState

1 nextState ← currentState;

2 foreach transition in transitionTable do
3 if transition.origin == currentState then
4 if transition.event == ELSE then

/* save the @else state, it
will be used if no other
event occurred */

5 nextState ← transition.nextState;

6 continue;

7 end
8 if eventOccurred(transition.event) then

/* event occurred, update
nextState and exit */

9 nextState ← transition.nextState;

10 clearEvent(transition.event);

11 break;

12 end
13 end
14 end

Algorithm 1: State machine handler

the C-code may receive parameters from Lua function calls

and can provide results back to the Lua virtual machine.

Listing 1. Accessing a GPIO module instance

p12 = gpio.init("p12") -- get GPIO object
p12:setOutput()
p12:write(1)

To simplify the user experience, the modules are provided

in an object oriented way as given by Listing 1. The user

script first needs to obtain a general purpose input output

(GPIO) object by calling the single public function init from

the gpio-table. The invoked C-function then takes care of

setting up the periphery access and returns a Lua object p12.
A Lua metatable is used to protect the Lua object instance

from incorrect usage [15]. Consecutively, the user script may

configure the pin as output and write a value to it. According to

this simple example, we have implemented modules for most

of the periphery units available on-chip, i.e. analog input &

output (IO), digital IO, delta-sigma demodulator, event request

unit (external interrupts, ERU), PWM, SPI and timer functions.

As executing Lua scripts may cause the interpreter to fail

for erroneous scripts, an additional event @error is introduced.

When running the current FSM’s script fails, this special event

is triggered and allows the test program to transit into a safe

state.

C. Real-time & background routines

In addition, real-time functions need to be carried out by

the controller such as closed loop PI control, PWM generation

and analog waveform acquisition. Modern microcontrollers

already provide powerful hardware modules that can do most

of the required work independently in parallel to the software

code. Therefore, the implemented Lua modules described

above are used to configure these hardware units through the

microcontroller registers.

Some hardware periphery modules will return data, e.g. the

ADC or serial interfaces. In order to avoid race conditions and

deadlocks when writing data to the memory, the following two

options are provided:

Non-blocking: Within the FSM INIT-state, the user code

must allocate a memory region for the specific module by

stating how many samples need to be stored. The result data is

then written by the direct memory access (DMA) controllers.

The data can be accessed later, upon completion of the DMA

transfer. Additionally, the host can also request data from an

allocated memory region via the communication interface.

Blocking: The user code may read the requested hardware

resource, but the command will not return a result until the

value is available. Due to this blocking nature, further script

commands as well as the FSM handler are delayed.

For the PI-controller, input and output signals as well as

the control loop parameters are configured via Lua script

commands, so that the invoked ISR function could be written

in a purely functional style. This gives a large performance

benefit compared to functions executed in Lua.

IV. SYSTEM INTEGRATION

The microcontrollers are placed close to the units under

test. Therefore, they can easily apply patterns and monitor the

application. However, a typical power stress test also involves

external instruments, such as power supplies and active loads as

displayed in Figure 2. These devices are usually shared between

several test instances. Furthermore, the microcontroller may not

be powerful enough to perform advanced analysis procedures or

store results to a centralized data location. Thus, a hierarchical

approach is required to control the overall test routines.

���������	

����
����	�
��

�����	�
��
�	�����
����

������ �	��

�	
��	��������
����
������	�
���	����	��
���

�

�

���

����� ��� ��		
����	�

������
���������	��������
��!

���

����

��!

Figure 2. Typical DCDC converter application test

Figure 3 shows the software architecture of the host program.

It has been designed according to a general actor model and

deals with the communication between the microcontroller

targets and the test control. Each physical target has a virtual

representative (the Node Actor) in the host software to manage

the communication and test execution. Additionally, it can

display the status of the controller and the UUT depending on

the test definition. For each test definition loaded into the host

Figure 3. Software architecture

software, a test manager (the Test Actor) is created. It checks

if the the requested hardware targets are available and assigns

these to the test. Subsequently, the communication interface

is used to transfer the configuration to the microcontrollers,

where it is used to update the state machine table.

As can be seen in Figure 3, the FSM concept is present on

all three hierarchy levels: The hardware targets use the state

machine handler and the Lua interpreter to access the on-chip

hardware periphery. Each Test and Node Actor can create a

dedicated FSM Actor for custom data analysis and storage, for

communication with the next lower or higher hierarchy level

(sending events and transition notifications) or for the purpose

of instrument control (Test Actor only).

By sending events via the communication interface, state

machines from different hierarchy levels can be synchronized.

Once the test definition is loaded, the host program can send

events to the hardware targets in order to start the test execution

or to notify that an external instrument has been configured

properly. Therefore, two independent state machines are created,

one for the host and one for the microcontroller. Figure 4

demonstrates a minimum example of such test definition:

1) In the Host FSM, the start event is triggered (e.g. by

pressing the “Start test” button on the GUI).

2) The FSM proceeds to the START state and executes the

associated Lua script code: First, the voltage of the power

supply is set. Afterwards, a separate start event is

Host FSM Node FSMLua code

psu:setV(14)
sendEvent(“start”)

pwm0 = pwm.init(“pwm0”)
a0 = ai.init(“sync0”)
a0:setF(100000)
a0:start()

Figure 4. Host to node FSM synchronization

sent to the microcontroller target via the communication

interface.

3) The Host FSM transits to the RUNNING state and waits

for test completion (indicated by the stop event).

4) The microcontroller receives the start event and can

now move to the INIT state where it executes the assigned

Lua function.

All function calls visible in this picture are custom module

implementations on top of the Lua standard libraries. In

addition, the Host-FSM supports reading measurement values

from the microcontroller. According to the evaluation of the

response, the Lua-based user script may invoke a transition in

the FSM.

This layered structure allows the test operator to describe

the test in a simple, understandable way. A graphical tool,

called the “Testplan Builder”, is provided to ease the creation

of such tests. Using this tool, the state machines can be created

graphically, Lua code can be entered into the states and the

test sequence can be stepped through.

The tool also provides consistency checking, thus preventing

most of the possible erroneous configurations from being

created. The execution of a mis-configured test is further

prevented by the host software. It verifies the requested Lua

application programming interface (API) functions against

the available features of the selected microcontroller-target.

Therefore, a test program will only be transferred to and

executed on the microcontroller, if all used Lua API function

calls are considered valid.

V. DISCUSSION & CONCLUSION

This paper presents a simple but powerful paradigm for

embedded test control, allowing an efficient implementation

in the microcontroller while enabling online definition of

the test sequence. The addition of the Lua interpreter to

the microcontroller provides a highly flexible system while

reducing the initial setup effort for test engineers. Further, an

extensible software architecture is presented. Using Lua scripts

and custom FSMs, it is possible to create hierarchical and

concurrent software programs, thus enabling highly flexible

test sequences. Incorporating instruments on the host level is

very simple, as is the control of digital and analog signals on the

microcontroller. With the help of a graphical test-plan creation

tool, the product test engineers can describe a test program

flow and add Lua scripts for accessing hardware resources.

A power conversion application life test with four distinct

converters according to Figure 2 has been set up using a

microcontroller-target for each converter. Each microcontroller

successfully runs a closed loop PI control to regulate the con-

verter current. Voltage and temperature measurement values are

monitored live on the host system. The power supply and active

load are shared among the units. Thus, all microcontrollers are

connected to the same host and supervised by one single test

state machine.

The lab engineer is able to autonomously create the proper

ramp-up and turn-off sequences after a short introduction into

the system and explanation of the Lua API, appreciating that

he does not need to change the microcontroller-firmware in

order to modify the test program.

Further work will focus on the scalability of the host system

in order to implement high numbers of microcontrollers and

test applications running in parallel. The system has not been

pushed to its full limits yet, however a significant number of

16 controllers can be handled smoothly so far.

ACKNOWLEDGMENT

The authors would like to thank their colleagues at the KAI

center of competence, Infineon Technologies Austria and the

Klagenfurt University for fruitful discussions.

This work was jointly funded by the Austrian Research

Promotion Agency (FFG, Project No. 846579) and the

Carinthian Economic Promotion Fund (KWF, contract KWF-

1521/26876/38867).

REFERENCES

[1] M. Glavanovics, R. Sleik, and C. Schreiber, “A compact high current
system for short circuit testing of smart power switches according to
AEC standard Q100-012,” in Proc. IEEE Power Electronics Specialists
Conf. PESC 2008, 2008, pp. 1828–1832.

[2] B. Steinwender, S. Einspieler, M. Glavanovics, and W. Elmenreich,
“Distributed power semiconductor stress test & measurement architecture,”
in INDIN’13, 2013.

[3] M. Glavanovics, H. Köck, V. Košel, and T. Smorodin, “Flexible
active cycle stress testing of smart power switches,” Microelectronics
Reliability, vol. 47, no. 9-11, pp. 1790–1794, Sep. 2007. http:
//linkinghub.elsevier.com/retrieve/pii/S0026271407003216

[4] 32-Bit Industrial Microcontroller based on ARM R© CortexTM-M.
Infineon Technologies. Accessed 2015-02. http://www.infineon.com/xmc

[5] K. Beck, “Simple Smalltalk Testing,” The Smalltalk Report, vol. 4, no. 2,
1994.

[6] P. Fagerburg and A. McInnes, “Develop Robust Firmware Faster With
Automated Unit Testing,” Synchroness Inc., White Paper, Mar. 2008.

[7] J. Zakizadeh, S. Das, M. Assaf, E. Petriu, M. Sahinoglu, and W.-B. Jone,
“Testing Analog and Mixed-Signal Circuits with Built-In Hardware -
A New Approach,” in Instrumentation and Measurement Technology
Conference, 2005. IMTC 2005. Proceedings of the IEEE, vol. 1, May
2005, pp. 166–171.

[8] E. Schlunder. (2010) High-Speed Serial Bootloader for PIC16
and PIC18 Devices. AN1310. Accessed 2015-02. Microchip. http:
//ww1.microchip.com/downloads/en/appnotes/01310a.pdf

[9] J. Garcia-Zubia, I. Angulo, U. Hernandez, M. Castro, E. Sancristobal,
P. Orduña, J. Irurzun, and J. de Garibay, “Easily Integrable platform
for the deployment of a Remote Laboratory for microcontrollers,” in
Education Engineering (EDUCON), 2010 IEEE. IEEE, 2010, pp. 327–
334.

[10] eLua. Accessed 2015-02. http://www.eluaproject.net
[11] p14p - python-on-a-chip. Accessed 2015-02. https://code.google.com/p/

python-on-a-chip
[12] T. W. Barr, “Microcontroller Programming for the Modern World,” Ph.D.

dissertation, Rice University, 2014.
[13] D. George. (2015, Feb.) MicroPython. http://micropython.org/
[14] D. Harel, “Statecharts: a visual formalism for complex systems,” Science

of Computer Programming, vol. 8, no. 3, pp. 231–274, Jun. 1987.
http://linkinghub.elsevier.com/retrieve/pii/0167642387900359

[15] R. Ierusalimschy, Programming in Lua, 3rd ed., R. Ierusalimschy, Ed.
Ierusalimschy, Roberto, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

