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Abstract. Amongst all the renewable energy resources (RES), solar is
the most popular form of energy source and is of particular interest for
its widely integration into the power grid. However, due to the intermit-
tent nature of solar source, it is of the greatest significance to forecast
solar irradiance to ensure uninterrupted and reliable power supply to
serve the energy demand. There are several approaches to perform solar
irradiance forecasting, for instance satellite-based methods, sky image-
based methods, machine learning-based methods, and numerical weather
prediction-based methods. In this paper, we present a review on short-
term intra-hour solar prediction techniques known as nowcasting meth-
ods using sky images. Along with this, we also report and discuss which
sky image features are significant for the nowcasting methods.

Keywords: RES, solar irradiance forecasting, sky image features, now-
casting methods

1 Introduction

The transition from conventional energy source (e.g. fossil fuels) to sustainable
energy source (e.g. renewable energy) is gaining momentum. This involves inte-
grating RES in the power grid which contributes a viable solution to meet the
increasing future energy demand. It thus helps in reducing the carbon footprint
(CO2) and greenhouse gases in the atmosphere. As long as photovoltaic systems
are deployed in areas with sufficient solar yield, they have low impact on sur-
roundings with respect to their energy production and they provide affordable
energy since the fuel is free of cost [1]. As a result of this transition, the PV
installation is expected to increase by more than 4 TW by 2025 and 21.9 TW
by 2050 [2]. However, integration of solar resource creates complex problems due
to its intermittent nature in the energy management and scheduling. Renewable
energy sources like photovoltaic systems typically rely on the weather and thus
lead to variable energy production [3]. The integration also risks to the secure
operation since it can cause an imbalance in demand and supply equilibrium.
Estimating and forecasting solar irradiance has the potential to tackle these is-
sues and reduce the integration and operation costs. The grid integration takes
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place at a variety of time scales which involves series of power system operations
& forecast submission requirements that varies accordingly. Therefore, forecast
is performed over different time horizons corresponding to a particular decision
making activity [4]. The forecasting horizon can be defined as the period of time
forecasts are made for. Forecasting horizons are categorised into very short-term,
short-term, medium-term, and long-term forecasting. Very short-term forecast-
ing is used for smart grid planning with a prediction period ranging from seconds
to 30 min [5]. This type of forecast is useful for utilities for determining electricity
pricing and monitoring of real-time electricity dispatch [6]. Short-term forecast-
ing is carried out for the prediction period ranging from 30 min to several hours
[5]. This forecast is beneficial to the electricity market for making decisions like
economic load dispatch and power system operation. Medium-term forecasting
spans from 6 - 24h [5] and it is essential for maintenance scheduling of a power
system integrated with energy sources. Long-term forecasting lasts till one week
[5] which is suitable for long-term power generation, transmission, distribution
[8]. The increase in forecasting horizon degrades the forecasting accuracy [9]. A
possible approach is to nest forecasting algorithms with different time horizons,
thus using short-term forecasting methods for hourly forecasting and extending
it then to medium-term and long-term forecasting by switching methods. Fi-
lik et al. in [10] present a unified model for hourly load forecasting in short-,
medium-, and long-terms with hourly accuracy. Other than these three forecast-
ing horizons discussed above, there are further classification namely intra-hour,
intra-day and day ahead. Intra-hour also known as nowcasting involves forecast
horizons from seconds to an hour and this overlaps with very short-term and
short-term which helps ensuring grid quality and stability. Island grids and low
quality power supplies rely on such predictions [11].

There are several approaches reported in the literature which aim at solar
irradiance forecasting. They are broadly categorised into approaches based on
satellite or sky images and data-driven methods including artificial intelligence
(AI) and numerical weather prediction (NWP)-based methods. This paper fo-
cuses on reviewing the techniques used for short-term intra-hour solar irradiance
forecasting using sky images integrated with historical data. Along with this, the
paper also reports the image features extracted from sky images which are sig-
nificant for nowcasting. To the best of our knowledge, there is no study present
in the literature which reports a detailed review on the significant features or
parameters extracted from sky images required for solar irradiance forecasting.
This paper aims to close this research gap and to make the readers aware of the
recent developments in this domain. The aim is also to make readers acquainted
with the available datasets.
The paper is organised as follows: Section 2 addresses and discusses the related
work on feature extraction and classification techniques applied on sky images
for estimating solar irradiance. Section 3 reviews openly available datasets. Sec-
tion 4 discusses error metrics for the evaluation of the quality of an approach,
followed by a conclusion of the paper and future work in Section 5.
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2 Sky images based forecasting

Photovoltaic (PV) output power can be estimated either using indirect or direct
approaches. The indirect approach assesses PV power output using the solar
irradiance forecasts obtained using irradiance data along with other meteorolog-
ical features. In contrast, direct methods rely on the output power of the PV
for estimation. The work reported in this paper focuses on the indirect forecast
approach where the aim is to address the techniques used for solar irradiance
forecasting using sky-images with high spatial and temporal resolution. Spatial
resolution refers to the size of one pixel which stands for a picture element i.e.
the smallest individual ’block’ that makes up the image. With higher resolu-
tion it is possible to distinguish smaller details in an image. Temporal resolution
refers to the frequency with which the data is collected i.e. the resolution of a
measurement with respect to time. Since satellite-based images suffer from poor
spatial and temporal resolutions, images from sky cameras are recognised as a
more capable solution for intra-hour solar irradiance forecast.

Models based on sky images can be explored under two frameworks. The
first framework is a physics-based model that typically follows a step by step
approach as mentioned below.

1. discrimination between clear-sky pixels and cloudy pixels

2. cloud classification and cloud optical depth determination

3. determination of cloud motion and cloud advection

4. cloud height and cloud shadow tracking

The first step is to distinguish the pixels on the image between cloudy and
clear-sky, followed by further classifying the images with cloudy pixels in different
categories of cloud types with the corresponding layer according to altitude range
(shown in Fig. 1). The cloud classes along with their description according to
International Cloud Classification System (ICCS) are shown in the table 1 below:

To assess cloud type classification, image sets are used which includes all the
predefined cloud types. The selection procedure is performed sometimes manu-
ally by visually identifying the cloud type or sometimes according to phenomeno-
logical classes defined by international cloud classification system (as chosen by
Heinle et al. in [12]). Then, a cloud type classification algorithm for example
k-nearest neighbour (kNN) is applied. The last step calculating the cloud height
and cloud shadow tracking is performed when multiple cameras are available.

The second approach is based on a data-driven approach that relies on extrac-
tion of image features that are used as predictors in machine learning algorithms
such as convolution neural network. These features include average, standard de-
viation, and entropy of images. Contributions by researchers in both approaches
are covered in this paper.

A basic block diagram for sky images based solar irradiance forecast is shown
in Fig. 2.
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Table 1: Cloud types with description

Cloud levels Cloud types Description

High (5-13 km)
Cirrus Thin clouds, wispy

Cirrocumulus Fish scales like structure, whitish
Cirrostratus Sheet-like appearance, light grey to

whitish

Mid (2-7 km)
Altocumulus Globular patches of clouds, grayish-white

color
Altostratus Uniformly grey, smooth

Nimbostratus Thick clouds, overcast, grey

Low (0-2 km)
Stratus Thin layer clouds, grey, usually overcast

Cumulus Puffy clouds with well-defined rounded
edges, white

Cumulonimbus Puffy thick clouds, mostly overcast, grey
Stratocumulus Lumpy layer of clouds, broken to over-

cast, white or grey

Input image
Identify cloud

properties

Determine
ground

observation
of irradiance
components

Forecast
irradiance

Fig. 2: Basic building blocks

The first step is to acquire images using a sky camera. Typically, the sky
images are acquired using an inexpensive upward looking camera equipped with
fisheye lens to capture the whole sky image covering a 180◦ field of view (FOV).
Followed by this is a preprocessing step, where the cloud properties are identified
which includes cloud coverage, cloud types using cloud classification techniques,
cloud height, cloud velocity. The next step is to determine the ground measure-
ments which includes global horizontal irradiance (GHI) and diffuse horizontal
irradiance (DHI). Direct normal irradiance (DNI) is computed using a funda-
mental relationship between GHI, DHI and DNI given by this formula. Later
irradiance forecast is performed using forecasting algorithm.

GHI = DHI + DNI · cos θs (1)

The original data in an image is provided in color. A partition into three
components red (R), green (G), blue (B) is made before features are calculated.
Out of the three color components B has the highest separation power due to the
color of the sky and different translucency of clouds. The cloud-free sky shows
higher value of B intensity hence appear blue due to scattering of blue light by
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Fig. 1: Cloud types (Image by Valentin de Bruyn / Coton under CC BY-SA 3.0)

the air particles, whereas cloudy sky appear whitish or grey coloured due to the
fact that B and R are scattered similarly.

To estimate the cloud coverage, color features of an image are used. The color
features describe the average color and tonal variation which help in distinguish-
ing between thick dark clouds and bright clouds and also to separate high and
transparent cirrus clouds from others.

The spectral features use the color components of the image to make a dis-
tinction between cloud types. However, considering only spectral features is not
enough for an accurate classification, since they do not provide information about
the spatial distribution of color in an image. The cumuliform clouds and stratocu-
mulus cloud have similar mean color values, hence can not be separated using
only spectral features. This problem is addressed by grey scale images which are
obtained by transforming the red–green–blue (RGB) cloud image into a single-
channel feature image and each pixel is classified on the basis of threshold value
of feature. The textural features exploits the grey scale image to describe the
texture of the image.

For total cloud coverage estimation, various algorithms based on image pro-
cessing have been proposed and tested on images obtained from sky cameras.
The cloud coverage is detected by determining threshold which is obtained by
ratio of R to B of a pixel in an image. In [13], pixels with threshold value greater
than 0.6 were classified as cloudy and pixels with lower value were classified as
cloud-free. Long et al. in [13] compared the results obtained by applying thresh-
olding technique with visual observations. Results indicated an uncertainty of
0.2 while estimating fractional sky cover. Both the methods obtained similar
result for overcast conditions. Long et al. summarised the problem created by
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using thresholding technique in region with circumsolar (situated near the Sun)
pixels due to high aerosol conditions and misdetecting thin clouds. The Sun was
obscured by a shadow band. A correction method is proposed which computes
the possible error in total cloud coverage calculation. This correction value in-
creases with increasing zenith angle and also introduce slight error greater than
1 %.

Instead of using ratio of R and B, Heinle et al. in [12] used difference
red–to–blue difference (R-B). Using difference threshold still results in minor
errors however, results obtained outperformed threshold ratio method. The op-
timal value of R-B utilized in the work is 30.

Kazantzidis et al. in [14] present a multi-color criterion applied on sky images
to determine total cloud coverage, considering visible percentage of Sun. Results
are compared with the ground based weather observations. A set of images is
used under different solar zenith angle were used. Results indicated that using
R-B and red–to–blue ratio (R/B) produce errors in identifying broken or over-
cast clouds under large zenith angles. Using multicolor criterion (which includes
R, G and B intensities) for identifying overcast or broken clouds results in bet-
ter performance as compared to using R-B. Several classification algorithms for
classifying cloud types from sky images are reported in state-of-the-art.

In [15], five feature extraction methods are employed in a classifier based
on kNN and neural network to identify different cloud types. Feature extrac-
tion methods used in the work are autocorrelation, co-occurrence matrices, edge
frequency, Law’s features and primitive length. Singh and Glennen in [15] con-
cluded that no single feature extraction method is suitable for recognising all
classes.

For identifying different cloud types, Calbo and Sabburg in [16] used digital
images. They used three kinds of features spectral, features based on Fourier
transform of an image and features that need distinction between cloudy and
sky pixels. The automatic classification method implemented in the work show
an agreement of 62 % (for eight sky conditions) and 76 % (for five sky conditions
obtained after merging some of sky conditions).

Heinle et al. in [12] propose an automatic cloud classification algorithm to
classify sky images in real-time based on spectral and textural features presented
in table 2. The implemented classifier is based on supervised kNN algorithm due
to its high performance, simple implementation and low computational complex-
ity. To avoid systematic misclassifications some of the cloud types were merged
based on visual similarity. Out of all the ten cloud types presented in table
1, seven different types are selected after merging some of the cloud patterns
depending on availability of data: high thin clouds (cirrus and cirrostratus),
cumuliform clouds (cirrocumulus and altocumulus), stratocumulus clouds, low
cumuliform clouds, thick clouds (cumulonimbus and nimbostratus), stratiform
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clouds. In addition clear sky type also included in the testing set which includes
images with clear sky and images with cloudiness below 10 %.

Table 2: Features utilized for cloud classification algorithm

Features Name

Spectral

Mean R
Mean B

Standard deviation B
Skewness B

Difference R-G
Difference R-B
Difference G-B

Textural

Energy B
Entropy B
Contrast B

Homogenity B
Cloud Cover

Heinle et al. chose 12 spectral and textural features which contains the color
information of the image and grey levels of the images. They computed the fea-
tures and stored them with assigned cloud type in the set of preclassified images.
Then the test was conducted on the test sample including random images. To
classify the images a supervised, non parametric kNN is implemented to classify
the images. The results indicate that the classification accuracy achieved is in
the range of 75% to 88%. Results also show that kNN algorithm could success-
fully classify the two classes of clouds clear sky and cirrus using only first and
second order statistic features in addition to the actual cloudiness information.
Nevertheless, several errors were reported in the paper. One of the error is caused
by misinterpretation of pixels near the sun which can be resolved by the deter-
mination of the position of solar disk and its removal. This can be accomplished
by using geometrical features. Another error is related to confusion between cir-
rus and cumulus cloud types, when the cloudiness amounts less than 30%. This
error can be ruled out using a hierarchical classification process based on the
cloudiness. Similar error exists between cumulus and high cumulus due to simi-
larity in their colour and smooth transition in definition. Also confusions present
between last three classes due to frequent changeover from one to another class.
Heinle et al. suggested to perform an initial partitioning of images into smaller
subimages and classify them in case subimages include enough information to
assign image parts to a cloud class. However, they concluded that an improved
algorithm must be used by including features other than the spectral and tex-
tural features used in the work.
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An improved automatic cloud classification algorithm using kNN is presented
in [14]. In addition to statistical color and textural features, solar zenith an-
gle, the cloud coverage, the visible fraction of solar disk and the existence of
raindrops in sky images are also considered. To detect the existence of rain-
drops, solar zenith angle, cloud coverage and the visible fraction of sky disk
new metrics are introduced. A set of images is used for testing and training
the cloud classifier. The images are selected by visually inspecting them and
assigned to different categories of cloud types. Using average values for each of
the 12 cloud classifications does not provide the optimal result, since clouds of
one class may vary significantly due to the metrics used for classification. To
overcome this problem, subclasses of every cloud class are created on the ba-
sis of extra features (solar zenith angle, cloud coverage, the visible fraction of
solar disk) used in the work, which affect greatly the distribution of light in
sky. The results obtained show the accuracy of classifier ranges between 78%
and 95% in detecting seven cloud types correctly. The average performance of
the classifier reported is 87.9%. The proposed multi color criterion results in
an improvement in estimation of broken and overcast cloudiness and for large
zenith angles. The kNN classifier could classify cumulus cloud with 91.9% ac-
curacy. The remaining 8.1% of images which were actually of cumulus cloud
type got misclassified and got assigned to two other cloud types, in particular
cirrus-cirrostratus (5.1 %) and cirrocumulus-altocumulus (3%) However, misclas-
sification does exist corresponding to the images with only few clouds close to
the horizon far from the camera site. Cirrus-cirrostratus clouds are successfully
detected with 94.6%. The classifier results show quite low performance 78% on
cloud type cirrocumulus-altocumulus, the remaining images got misclassified and
distributed to other classes, i.e., sky cumulus (8.5%), cirrus-cirrostratus (8.4%)
and stratocumulus(5.1%). The clear skies were successfully detected by the clas-
sifier with a classification accuracy of 95%. The remaining images correspond
to the days with considerable high values of aerosol optical depth (AOD), an
optical parameter which is not considered in the classification algorithm.

The study in [17] proposes an automatic smart adaptive cloud identifica-
tion (SACI) system developed to combat the glare caused by using low cost
alternative to sky imagery for cloud condition identification and solar irradi-
ance forecast. SACI system uses smart image categorisation (SIC) algorithm
which combines sky images and solar irradiance measurements to classify sky
condition in three categories: clear, overcast and partly cloudy. The clear sky
period considered is defined as a period of time when clouds do not obscure
sun and the total sky coverage is less than 5%. Overcast period is defined as a
period of time when the sun is obscured by clouds and the total sky coverage is
higher than 90%. The remaining data points are defined as partly cloudy. SACI
uses fixed threshold method (FTM) for overcast images, clear sky library (CSL)
and FTM for clear images, CSL and minimum cross entropy (MCE) for partly
cloudy images. FTM is based on the fact that the cloud pixels (in RGB image)
have higher red (R) intensity values than sky pixels. A normalized normalized
RBR ((R-B)/(R+B)) is used in this work which is robust to noise. Using NRBR
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avoids extremely large RBRs when pixel have very low blue intensities hence
improves visual contrast. MCE is an adaptive thresholding method based on
Otsu algorithm [18]. In this method, it is important to maintain the threshold
within an interval so as to ensure satisfactory performance. The interval limits
are estimated from training set. Once the threshold is determined, pixels with
higher R/B values than the threshold are marked as cloudy. The presence of
glare makes it difficult for FTM and MCE to classify the pixels as cloud (opaque
clouds) since it depends highly on solar geometry and can be tackled by using
classification method based on CSL proposed by Shields et al. in [19]. The CSL
method uses a database of clear-sky images which removes the geometric vari-
ation of clear-sky RBRs that depend on sun-pixel angle and the solar zenith
angle. In addition, a fixed threshold method to identify opaque clouds through
a comparison with clear sky background RBR library are presented. To address
the variations in the haze amount, Shields et al. proposed an improved adaptive
thresholding technique in [20]. Based on the two findings reported in the previous
work, [21] propose a hybrid thresholding technique (HYTA) for cloud detection.
It was found in [22], [23] that the presence of aerosols modifies the R/B ratio
and can impact the performance of cloud classification algorithms. Taking into
account the significance of aerosols variations in the cloud detection and classi-
fication, Ghonima et al. in [24] propose a dynamic thresholding technique based
on CSL method. To remove geometric variation of clear sky caused by sun-pixel
angle and solar zenith angle, RBR of input image is subtracted by reference
clear sky RBR that corresponds to same zenith angle, resulting in a difference
image difference image (RBR-CSL). Further to account the haze effect caused
by the presence of aerosol, a haze correction factor (HCF) is utilized to correct
the images which is defined as difference hcf (RBR-(CSL)(HCF)) before apply-
ing cloud identification. The SIC algorithm proposed in [17] receives images and
the most recent GHI data then decides which cloud identification method has to
be applied. SIC integrates HYTA (classifies images based on their NRBR) with
CSIT method (which uses GHI time series to detect the type of sky image). The
architecture of proposed system is presented in Figure 3.

A very short term GHI prediction based on physics based models is presented
in [25]. The data used in this study includes sky images, ceilometer-based cloud
base height measurements and pyranometer data. The focus is to investigate
the performance of the forecasting model under different cloud conditions. The
cloud detection scheme considers binary states (sky/cloud). In order to determine
and predict the GHI distribution from sky images, the preprocessing steps are
employed on the images. Schmidt et al. use the steps for sky image analysis
and irradiance forecast shown in Figure 4. A modified R/B for each pixel at the
image position is proposed to overcome misclassification of circumsolar area. It
also prevents the misclassification of thick and dark clouds caused by applying
global threshold to the image. Static artificial objects are masked out from field
of view in an image masking step. In cloud mapping step 3D position of cloudy
pixel is determined using cloud base height obtained from ceilometer.
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Fig. 3: Architecture of proposed system

Input raw
image

Image analysis

Cloud
detection

Image
undistortion

Cloud
mapping

Shadow
mapping

Surface
irradiance

Irradiance analysis
Cloud motion

Irradiance forecast

Surface
irradiance

Fig. 4: Workflow for image analysis & GHI forecast

The information obtained from the previous steps about the current sun
position (azimuth angle and zenith angle) and cloud base height, the sun ray
tracing is applied to map the cloud layer as a shadow layer on the ground. Cloud
classification is applied further to classify each image instance in different cloud
condition categories for evaluating forecast performance under different cloud
conditions. Unlike the technique employed in previous work which is based on
kNN, in this work classification technique based on support vector classifica-
tion (SVC) is applied. The number of features utilized for cloud classification
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algorithm include three extra features as compared to the ones used in previous
work. All of these additional features include image texture properties derived
from grey-level co-occurrence matrix defined by [26]. The correlation is a measure
of grey-tone linear dependencies, angular second-moment (ASM) is a measure
of homogenity and dissimilarity is the measure of variation in grey level pairs in
an image.

The next block performs irradiance analysis. The Clear sky index k* (CSI) is
a widely used term in solar irradiance forecasting which is defined as the ratio of
measured irradiance to the calculated clear-sky irradiance. The formula is given
below. The histogram corresponding to this measure indicates the presence of
shadow (overcast condition) and no-shadow (clear sky condition) state.

k∗ =
GHImeas

GHIclear
(2)

The corresponding GHI is computed as

GHI =
k∗hist

GHIclear
(3)

For performing the irradiance forecast, a fundamental information required
is cloud movement and transformation. In the following we focus on cloud move-
ment. The cloud movement is obtained by applying optical flow algorithm avail-
able in open source computer vision (OpenCV) to the original greyscale image,
where the artificial objects are masked out. Applying optical flow algorithm re-
sults in cloud motion vectors (CMVs). The final step is to predict the solar
irradiance upto 25 minutes ahead with an interval of every 15 seconds. Two
main questions are addressed in this work. First is concerning the accuracy
of sky-imager-based analysis under different cloud conditions with respect to
the distance from the camera and secondly its accuracy when compared with
a persistence model. Irradiance analysis accuracy is evaluated on the basis of
distance between pyranometer stations and camera and according to different
cloud classes. The results indicate that the sky imager retrieval for distances
of more than 1-2km from the camera under cumulus cloud conditions outper-
forms a single pyranometer measurement. An increase in distance is observed
for stratocumulus and altocumulus/cirrocumulus to 2-3km and for nimbostra-
tus/cumulonimbus to 6km. The overall forecast showed quite low performance
compared to persistence. However, the increase in forecast performance is no-
table under heterogeneous cloud conditions, leading to increased variability in
surface solar irradiance.

Two effective cloud discrimination methods from digital sky images using
newly defined clear-sky index (CSI) are presented in [27]. One method is an
advanced method (AM) that uses RAW digital image format. The other method
is a simplified method (SM) that uses digital signals in JPEG image format.
The AM needs a RAW image, the spectral response functions in RGB channels,
parameter s, threshold of CSI for cloud discrimination, ozone column amount,
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and solar zenith angles (SZAs). For determining parameter s and CSI threshold,
a set of training samples is created using different sky patterns. The sky patterns
utilized for the work includes complete clear sky, optically thin cirrus clouds,
thick broken clouds, and overcast clouds. The SM requires images in superfine
mode in the JPEG format which has small file size (having three signals R,G,B
in a pixel). The results indicate that CSI is an important parameter of clouds.
In addition to this, results also show that the correct classification rate from
AM is better than that from SM, since using RAW images allow improved cloud
discrimination.

Marquez et al. in [28] present relevance of using three sky cover indices de-
rived from observed cloud cover via total sky imager (TSI), infrared radiation
(IR) measurements and GHI measurements for solar radiation modeling and
forecasting. For solar radiation forecasting, a feed-forward ANN model com-
posed of one input layer, one hidden layer and one output layer. To identify
which time-series variables contribute to the best forecasting performance, four
input combinations are applied as input to the ANN model. The first input
combination used only SC index derived from GHI measurements, the second
set consists SC indices based on GHI and IR, the third set includes SC indices
based on GHI and TSI followed by the fourth set consists of all the SC indices.
The results indicate that using all the SC indices as input to the ANN model
shows the highest forecasting accuracy with RMSE 35.9 %.

In recent work [33], Pedro et al. present model which maps irradiance and
image features directly into irradiance forecasts. Hence it avoids the steps in-
volved in identifying cloud properties (cloud identification, cloud height, cloud
velocity) which possibly can introduce error into the prediction outcome. A tech-
nique based on a block-matching algorithm (BMA), to extract dynamic features
from sky images to increase the accuracy of an intrahour forecasts for both GHI
and DNI values is employed. BMA identifies the bulk motion of clouds rela-
tive to the position of the sun in the sky. An adaptive rectangular-shaped and
wedge-shaped regions of interest are used for selecting the image pixels for the
new features. To produce an intrahour forecast for GHI and DNI, random tree
gradient boosting (XGBoost) algorithms is used. The results are compared with
a model using global features based on nonadaptive image features. An aver-
age increase of 6.8% and 6.7% in forecast skill for GHI and DNI is achieved
respectively when compared with model with nonadaptive image features. In
comparison to clear-sky persistence, the model achieves forecast skills ranging
from 20% to 30% for GHI and 22% to 35% for DNI, which are the highest ever
reported for these time horizons. An overall improvement in the performance
metrics is obtained by applying feature engineering to extract information from
the sky images. Feature extraction techniques applied are based on mutual infor-
mation and Pearson correlation coefficients between image features and training
data. Most important is the simplicity of the model proposed in this work. The
model directly maps irradiance and image features directly into the target fore-
casts avoiding the steps discussed in [33] which includes cloud identifications,
estimations of cloud velocity and height, since it introduce error in the final pre-
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diction of solar irradiance. However, Pedro et al. conclude that BMA filtering
method has to be extended by making modifications in the feature extraction
algorithm to account for the cloud velocity. Including cloud motion information
specifically in a region near the apparent position of the Sun, in adaptive sky
image features do benefit solar irradiance forecast. An example for slow moving
clouds, pixels near the sun have a larger weight than the pixel toward the image’s
edge and vice versa for fast moving clouds.

For nowcasting application, identifying and forecasting the solar position in
the images, especially when covered by clouds is a key issue. Nespoli and Niccolai
address this issue in [35] and present three different techniques for identification
of solar position in images. The first method is based on solar angles based
identification which relies on trigonometric relations in order to find the sun
position on the images. It works with determination of theoretical coordinates in
terms of azimuth and solar elevation angle as a function of time. Once theoretical
angles are computed, they are mapped to acquired images through trigonometric
relations. The second method is based on image processing algorithms and is
capable of identifying the sun by means of its shape and colour. The image is
firstly masked for eliminating all the reflected areas that are not representative
of sky conditions. This procedure can be easily performed because system shape
does not change over time. Once the background is excluded, each color channel
is analysed by means of a threshold value filtering technique, to locate the darker
spot which is the sun. The method reported shows that it is very accurate and
it require less computation time to process the images. However, it is difficult
to locate the sun when it is covered by clouds. The last method is based on
neural networks, which aims at solving drawbacks of both previously mentioned
techniques. ANN takes two inputs, the theoretical angle of the sun (α ,γ), and
generates two outputs the x− and the y− coordinates of the sun on the image.
The main drawback related to this methodology is the requirement of training
set. It is important to cover a wide range of possible solar angles since neural
networks are effective in interpolation.

The three methodologies are compared on the same day. The ability of ANN-
based method is highlighted since it is not affected by cloud coverage and it can
estimate the sun position in early morning and late afternoon. Table 3 presents
the forecasting models used for implementing nowcasting methods.

Table 3: Nowcasting methods

Method Prediction horizon Year & Reference

ANN feed-forward model 1 h 2012 [28]
Persistence model 3-15 min 2013 [29]
Deterministic & MLP model 5-15 min 2016 [30]
Ineichen model [31] 5-15 min 2018 [32]
XGBoost 5-10 min 2019 [33]
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3 Datasets

Solar forecasting is an important technique that enables the integration of vari-
able solar power generation into an electric grid. Despite of the growing interest
in this domain, lack of standardised datasets is a big limitation in reproducing
and benchmarking the forecasting models. Secondly it is a limitation in progress
particularly for those who do not have resources to obtain their own dataset.
Recently some efforts have been made to close this research gap by facilitating
access to the public data.

An open-source tool is provided in [36] for easy access to a publicly avail-
able dataset. The author provides an overview of five datasets along with code
segments which can help in understanding how the datasets can be used in so-
lar research. This further facilitates future contribution and collaboration. The
datasets used for developing the tool are mentioned below:

1. NREL National solar radiation database (NSRDB)1 is a collection of hourly
and half hourly values of various satellite derived irradiance dataset along
with meteorological data.

2. NREL Oahu solar measurement grid (OSMG)2 dataset includes global hor-
izontal and tilted irradiance recorded every second. The data is available
from 2010-03 to 2011-10.

3. NOAA Surface radiation (SURFRAD)3 records three components of solar
irradiance along with several meteorological parameters such as ambient
temperature, station pressure, wind speed. The SURFRAD network was
established in 1993, commenced the operation with four stations in 1995.
Later two more stations were added in 1998 followed by the seventh in 2003.
Due to different commencing date, the length of data for each station varies.

4. The solar radiation data (SoDa)4 offers collection of paid and free solar
radiation and solar related data.

5. NASA shuttle radar topography mission (SRTM)5 dataset provides world-
wide altitude measurements which can be used for developing clear sky mod-
els.

As discussed earlier the dataset SURFRAD reported in [37] provides access to
solar irradiance data and other meteorological features including wind speed and
direction, air temperature, relative humidity and station pressure. The samples
are recorded with resolution of 1 second.

The dataset reported in [38], NSRDB consists of solar radiation derived from
satellite with half-hourly resolution and meteorological data over the United
States and the surrounding regions. The work provides a comprehensive dataset
which can be utilised for solar irradiance forecasting.

1 https://maps.nrel.gov/nsrdb-viewer/
2 https://midcdmz.nrel.gov/apps/sitehome.pl?site=OAHUGRID
3 https://www.esrl.noaa.gov/gmd/grad/surfrad/dataplot.html
4 http://www.soda-pro.com/web-services
5 http://https://dds.cr.usgs.gov/srtm/

https://maps.nrel.gov/nsrdb-viewer/
https://midcdmz.nrel.gov/apps/sitehome.pl?site=OAHUGRID
https://www.esrl.noaa.gov/gmd/grad/surfrad/dataplot.html
http://www.soda-pro.com/web-services
http://https://dds.cr.usgs.gov/srtm/
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Another addition to the availability of quality dataset as an open source in-
cludes a recent work reported in [34] which present a comprehensive dataset6

that includes three years of quality controlled dataset for GHI and DNI with
one minute resolution. To develop and benchmark solar forecasting methods for
intra-hour, intra-day and day ahead the dataset provides multiple years of de-
tailed data of irradiance and weather, along with high resolution sky images,
satellite images and NWP data for the same target area and time interval. Au-
thors also provide sample codes using simple regression methods to provide base-
line models for future studies. The sky camera captures Red-Green-Blue (RGB)
color images at a medium resolution of 1536 × 1536 pixels with 1 minute in-
terval. The images can be used for both the frameworks namely physics based
models and data-driven models. Open source datasets that report ground based
measurements and sky images are summarised in Table 4.

Table 4: Available datasets on sky images and ground measurements

Dataset Data description Data resolution Year

OSMG Ground based irradiance 17 stations
1 sec GHI Grid
3 sec RSR 3-Component

2010-2011

SURFRAD Ground based irradiance,
meteorological data

7 stations
3 min till 1 Jan 2009
1 min since 1 Jan 2009

1995-present

Comprehensive
dataset

Ground based irradiance,
sky images, NWP fore-
casts, satellite images

1 min 2014-2016

4 Error metrics

4.1 Error metrics to evaluate solar irradiance forecasts

For evaluating the accuracy of solar irradiance forecasting set of metrics are
used. Out of all statistical metrics are widely used to conduct the performance
evaluation of a forecasting model which includes mean absolute error (MAE),
mean bias error (MBE), root mean square error (RMSE) and normalized root
mean square error (NRMSE). Another important metric is forecast skill (FS)
which is used to define the accuracy and degree of association of predicted ob-
servation over simplified historical observations. The definition of these metrics
is given in the following. In addition, a detailed description can be found in [39],
[40].

6 https://zenodo.org/record/2826939#.X5 5uUJKhTY

https://zenodo.org/record/2826939##.X5_5uUJKhTY
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MAE =

N∑
i=1

|ppred − pmeas|
N

(4)

MBE =

N∑
i=1

(ppred − pmeas)

N
(5)

RMSE =

√√√√ 1

N

N∑
i=1

(ppred − pmeas)
2

(6)

FS = 1− RMSEpred

RMSEmeas
(7)

4.2 Error metrics to evaluate sky imagery based forecasts

Typically evaluation of accuracy of sky image based forecast is conducted after
converting the images into time series forecasts. However, for evaluating the
accuracy of a classification algorithm used in classifying different cloud types
while processing a sky image, an accuracy measure named ACC is utilized [25].
ACC is defined as the ratio of correctly predicted states (sunny or cloudy) over
all instances.

ACC =
TS + TC

TS + TC + FS + FC
(8)

To predict the visibility of the state of the sun authors in [41] used three
metrics namely precision (PR), recall (RE), Fβ . PR refers to how well predicted
occlusions match actual occlusion. RE refers to how well the actual occlusions
are predicted. Fβ score combines both of these values in a single metric.

PR =
hits

hits+ falsealarms
(9)

RE =
hits

hits+misses
(10)

Fβ = (1 + β2)
PR ·RE

β2 · PR+RE
(11)

5 Conclusion and future work

A detailed review on short-term intra-hour (nowcasting) solar irradiance fore-
casting using sky images has been carried out in this work. We reviewed and
discussed the benefit of using ground based sky images with high spatial and
temporal resolution in addition to weather data to estimate the solar irradiance.
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The models based on physics and data-driven exist in the literature are dis-
cussed in this work, in order to make the readers aware of the recent develop-
ments in this domain. Furthermore, a brief discussion on available standardised
datasets is also presented which can facilitate reproducibility and benchmarking
of forecasting models. Followed by error metrics used for evaluating the perfor-
mance of forecasting models and classification methods is also presented.

We can draw several conclusions from the reported work. First we can in-
fer that using low cost sky camera instead of sky imagers introduces excessive
glare in the images, which in turn degrades the performance of classification
algorithms. The image analysis in the preprocessing step is highly important to
achieve better irradiance forecasting results. Using adaptive sky image features
that depend upon the cloud motion in a region near the position of sun in the
sky is beneficial for solar irradiance forecasting.

The classification algorithm based on SVC also showed promising results in
achieving better classification of different cloud types. An increase in forecasting
accuracy can also be achieved by replacing kNN by XGBoost. If more features
are added to the set of predictors, it can boost the forecasting skill. Along with
this identifying the solar position under clear and overcast conditions in sky
images also proves to be beneficial. The method based on ANN turned out to
be more accurate and reliable than the solar angle and image processing based
identification methods. However, in order to generalize a trend it is important
to cover entire range of possible solar angles.

An important aspect for the research of forecasting methods is the availability
of suitable and available datasets. In this review, we especially identified the
dataset by Pedro et al. [34] to be of interest. It is a comprehensive dataset
supporting the development of hybrid models, since the dataset provides an
access to multiple exogenous inputs including sky or satellite imagery, GHI and
DNI for the duration of three complete years.

Future work in nowcasting methods will require two types of contribution.
First a proper comparison of prediction performances for a reference set of sky
images is required. This should be done with open data and open source imple-
mentations of algorithms, in order to ensure reproducibility of results (cf. [42]).
Second, based on existing algorithms, improved methods, possibly via hybrid
models are expected to be created, once the problem of reproducible assessment
is solved.
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9. C. Garćıa-Martos, J. Rodŕıguez, and M. J. Sánchez. Forecasting electricity prices
and their volatilities using unobserved components. Energy Economics, 33(6):1227
– 1239, 2011.

10. U. Basaran Filik, O. N. Gerek, and M. Kurban. Hourly forecasting of long term
electric energy demand using a novel modeling approach. In 2009 Fourth Inter-
national Conference on Innovative Computing, Information and Control (ICICIC),
pages 115–118, 2009.

11. J. Zhang, R. Verschae, S. Nobuhara, and Jean-François Lalonde. Deep photovoltaic
nowcasting. Solar Energy, 176:267 – 276, 2018.

12. A. Heinle, A. Macke, and A. Srivastav. Automatic cloud classification of whole sky
images. Atmospheric Measurement Techniques, 3(3):557–567, 2010.

13. C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès. Retrieving Cloud Character-
istics from Ground-Based Daytime Color All-Sky Images. Journal of Atmospheric
and Oceanic Technology, 23(5):633–652, 05 2006.

14. A. Kazantzidis, P. Tzoumanikas, A.F. Bais, S. Fotopoulos, and G. Economou.
Cloud detection and classification with the use of whole-sky ground-based images.
Atmospheric Research, 113:80 – 88, 2012.

15. M. Singh and M. Glennen. Automated ground-based cloud recognition. Pattern
Analysis and Applications, 8(3):258–271, 2005.

16. J. Calbo and J. Sabburg. Feature Extraction from Whole-Sky Ground-Based Im-
ages for Cloud-Type Recognition. Journal of Atmospheric and Oceanic Technology,
25(1):3–14, 2008.

17. Y. Chu, H. T. C. Pedro, L. Nonnenmacher, R. H. Inman, Z. Liao, , and C. F. M.
Coimbra. A smart image-based cloud detection system for intrahour solar irradiance
forecasts. Atmospheric and Oceanic Techniques, 31(9):1995–2007, 2014.

18. N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9:62–66, 1979.

19. R. W. Johnson Shields, J. E. and T. L. Koehler. Automated whole sky imaging
systems for cloud field assessment. American Meteorological Society, page 17–22,
1993.

20. J.E. Shields, M.E. Karr, A.R. Burden, R.W. Johnson, and W.S. Hodgkiss. Scien-
tific Report on Whole Sky Imager Characterization of Sky Obscuration by Clouds
for the Starfire Optical Range: Scientific Report for AFRL Contract FA9451-008-
C-0226. University of California San Diego, Scripps Instiution of Oceanography,
Marine Physical Lab.



A review on nowcasting methods 19

21. Qingyong Li, Weitao Lu, and Jun Yang. A Hybrid Thresholding Algorithm for
Cloud Detection on Ground-Based Color Images. Journal of Atmospheric and
Oceanic Technology, 28(10):1286–1296, 10 2011.

22. A. Cazorla, J. E. Shields, M. E. Karr, F. J. Olmo, A. Burden, and L. Alados-
Arboledas. Technical note: Determination of aerosol optical properties by a cali-
brated sky imager. Atmospheric Chemistry and Physics, 9(17):6417–6427, 2009.
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